ADA基因新发突变致不典型重症联合免疫缺陷病一例并文献复习
A Case of Atypical Severe Combined Immunodeficiency Caused by a New Mutation of ADA Gene and Literature Review
DOI: 10.12677/ACM.2023.132209, PDF, HTML, XML, 下载: 323  浏览: 432 
作者: 陈 潇, 张 磊, 官 慧, 梁 卉*:青岛大学附属妇女儿童医院血液肿瘤科,山东 青岛
关键词: 腺苷脱氨酶缺乏症儿童免疫缺陷基因检测Adenosine Deaminase Deficiency Children Immune Deficiency Genetic Test
摘要: 目的:探讨一例腺苷脱氨酶(adenosine deaminase, ADA)基因新发突变致不典型重症联合免疫缺陷病,加强临床医生对该病的早期诊断与认识。方法:回顾性分析2022年2月青岛大学附属妇女儿童医院收治的一例ADA缺乏症致不典型重症联合免疫缺陷病的患儿,结合相关文献分析该病的临床表现、免疫分型及基因诊断。结果:该患儿以反复感染,血液、免疫、呼吸、内分泌等多系统受累为主要临床表现,实验室检查提示淋巴细胞减少、lgE明显升高,基因检测发现ADA基因新发突变位点,诊断为ADA缺乏症致不典型重症联合免疫缺陷病,在积极控制感染同时,予免疫支持治疗,病情好转。目前予积极完善配型,等待造血干细胞移植。结论:不典型重症联合免疫缺陷病患儿起病年龄较晚,免疫损害轻,单靠临床表现较难分辨,基因检测为该病确诊提供重要依据。
Abstract: Objective: To investigate a case of atypical severe combined immunodeficiency caused by a new mutation in the adenosine deaminase (ADA) gene and to enhance clinicians’ early diagnosis and understanding of the disease. Methods: A retrospective analysis was performed for a child admitted to Women and Children’s Hospital, Qingdao University, in February 2022, with atypical severe com-bined immunodeficiency due to ADA deficiency. Combined with relevant literature, the clinical manifestations, immunophenotyping, and genetic diagnosis of the disease were analyzed. Results: The child had recurrent infection and blood, immune, respiratory, endocrine, and other mul-ti-system involvement as the primary clinical manifestations. Laboratory tests showed lymphopenia and markedly elevated lgE. Gene examination revealed new mutation sites of ADA gene, which was diagnosed as ADA deficiency, causing atypical severe combined immunodeficiency disease. While actively controlling the infection, he was given immunosupportive therapy. Afterward, his condition improved. The child is currently actively refining the matching and waiting for hematopoietic stem cell transplantation. Conclusion: Children with atypical severe combined immunodeficiency disease have a late onset and mild immune impairment. It is difficult to distinguish the children by clinical manifestations alone. Genetic testing provides an important basis for the diagnosis of the disease.
文章引用:陈潇, 张磊, 官慧, 梁卉. ADA基因新发突变致不典型重症联合免疫缺陷病一例并文献复习[J]. 临床医学进展, 2023, 13(2): 1510-1516. https://doi.org/10.12677/ACM.2023.132209

1. 引言

重症联合免疫缺陷病(severe combined immunodeficiency disorder, SCID)是一组原发性免疫缺陷性疾病,致病基因包括JAK3、ADA、IL2RG、IL7RA等 [1] ,其本质是由于遗传缺陷导致内源性T淋巴细胞缺失,同时其他淋巴细胞亚群受到内在影响,在接触机会或非机会致病菌时表现为严重或反复感染,因此未得到及时诊治的患儿常在婴儿期出现死亡结局 [2] 。但部分患者免疫缺陷较轻,临床表现不典型,因而被归类于不典型SCID [3] 。本文将报道一例腺苷脱氨酶(adenosine deaminase, ADA)基因新发突变致不典型SCID患儿,了解该病的临床特征,并结合遗传学检测,对该病的早期诊断十分必要。

2. 病历资料

患儿男,4岁11月,因“下肢疼痛2天,皮疹伴血象异常1天”于2022年2月3日首次就诊于我院。患儿入院2天前诉双下肢疼痛,病初疼痛不著,活动无明显受限,偶诉头痛,以枕部为著,偶有鼻衄,按压后可止血,未予特殊处理。入院1天前双下肢疼痛渐加重,活动受限,发现双下肢出现多量红色皮疹,查血常规示血红蛋白104 g/L,血小板77 × 109/L,遂收入院。既往有2次肺炎住院史;近2年来晨起或剧烈运动后易出现咳嗽症状,间断口服孟鲁司特钠治疗,症状加重时予抗感染治疗;2021年5月因身材矮小就诊,诊断为“甲状腺功能减退症、矮小症”,口服左甲状腺素钠片至今;进食牛奶后易出现皮肤瘙痒症状。家族史无特殊。查体:体温36.4℃,脉搏130次/分,呼吸26次/分,血压97/65 mmHg,神志清醒,双侧膝关节至双侧足背可见多量皮疹,表现为针尖样大小出血点及瘀斑,部分融合成片,压之不褪色,疹间皮肤正常。浅表淋巴结未触及肿大,心肺腹查体未见异常。左侧足背触痛,表面无明显肿胀。神经查体未见异常。

入院后完善相关化验检查:血常规示白细胞:7.54 × 109/L,血红蛋白:102 g/L,血小板:63 × 109/L,中性粒细胞:5.47 × 109/L;粪便隐血试验阳性;凝血常规示D-二聚体:1.59 mg/L,余项大致正常;血沉:60 mm/1H;C反应蛋白:8.09 mg/L;G试验:209.5 pg/ml;免疫球蛋白测定示lgE:1563.9 IU/ml,lgA:3.22 g/L,lgM 0.34 g/L;抗核抗体lgG阳性,核型1滴度1:1000;抗双链DNA弱阳性;甲状腺五项:FT3:3.25 pmol/L,FT4:11.68 pmol/L,A-TG > 500 IU/ml,A-TPO:168.2 IU/ml,TSH:39.15 uIU/ml;尿常规、血生化、EB病毒检测、呼吸道病原体检测、痰培养、结核杆菌检测、Coombs试验、抗心磷脂抗体等未见异常。胸部CT提示支气管肺炎,双肺透光度不均匀、略高;骨髓细胞学检查结果示有核细胞增生活跃,产板型巨核细胞较少见,可见巨核细胞产板不良。腹部、甲状腺超声未见明显异常。入院后予头孢唑肟抗感染,氟康唑抗真菌,加强呼吸道管理,调整左甲状腺素钠片用量等积极对症治疗;经治疗后,临床症状体征明显好转。

患儿病变涉及血液、免疫、呼吸、内分泌等多系统,高度怀疑先天免疫缺陷性疾病所致,经家属同意后,予送检全外显子基因测序。线粒体全基因突变分析未见异常。核基因分析结果提示ADA基因复合杂合突变:c.424C>T (p.R142X),来源于父亲;c.606G>A (p.Q202=),来源于母亲(见图1表1)。结合患儿临床表现及基因检测结果,考虑为ADA缺乏所致的不典型重症联合免疫缺陷病。

Figure 1. ADA exon Sanger sequencing of the patient and his parents

图1. 患儿及父母ADA外显子Sanger测序图

患儿于2022年3月8日因间断发热伴咳嗽再次入院,予复查血常规、甲状腺五项、免疫球蛋白大致同前,炎症指标明显升高,淋巴细胞亚群计数:CD3+%:92.39%,CD3+:284.82个/ul,CD3+CD4+%:1.95%,CD3+CD8+%:9.73%,CD16+CD56+%:0.58%,CD16+CD56+:1.76个/ul,CD19+%:6.2%,CD19+:18.87个/ul。痰液宏基因检出:流感嗜血杆菌、假肺炎链球菌、热带念珠菌。胸部CT示双肺支气管扩张及炎症明显。予加强抗感染力度,同时输注免疫球蛋白免疫支持治疗。目前予积极完善配型,等待造血干细胞移植(hematopoietic stem cell transplantation, HSCT)。

Table 1. The results of the patient’s genetic test

表1. 患儿基因检测分析结果

3. 讨论

腺苷脱氨酶(adenosine deaminase, ADA)是一种嘌呤代谢途径的关键酶,同时是一种重要的免疫调节因子,在促进免疫系统成熟及维持机体内环境稳定方面有着重要意义 [4] 。其编码基因位于20号染色体长臂上,包含12个外显子序列,跨度32 kb [5] 。根据孟德尔遗传定律,双等位基因突变可导致酶活性受损或丧失,即ADA缺乏症,一种常染色体隐性遗传病 [6] ,目前已发现70多个突变位点,大部分为错义突变 [7] 。基于一项美国新生儿免疫缺陷筛查,估算ADA缺乏症发病率约1/50万,而在欧洲发病率约为1/37.5万-1/66万,由于地理限制等创始人效应影响,部分地区可能出现高发病率 [8] [9] 。

本例患儿ADA基因存在复合杂合突变,其中位于424号核苷酸由胞嘧啶C变为胸腺嘧啶T(c.424C>T),导致142位精氨酸(CGA)变成无义密码子(TGA) (p.R142X);R142X位于外显子5的富嘌呤段内,可能通过破坏剪接增强子引起外显子的跳跃 [10] ,根据美国医学遗传学与基因组学学会(American College of Medical Genetics and Genomics, ACMG)指南,考虑为致病性变异。位于606号核苷酸由鸟嘌呤G变为腺嘌呤A (c.606G>A),导致氨基酸发生同义突变(p.Q202=),但该突变位于外显子边缘,可能通过影响剪接而致病,临床意义未明,既往无该位点报道。其父母分别为上述基因突变的携带者,结合患儿的临床特点及家系基因检测结果,考虑ADA基因复合杂合突变为该患儿致病原因。

ADA缺乏导致代谢毒物的堆积,如腺苷、脱氧腺苷三磷酸等,影响免疫稳态 [11] ,同时其活性与许多自身免疫性疾病有关,约占SCID的10%~20%。根据起病早晚,SCID可以分为早发型和迟发型;根据残存的蛋白质功能,部分患者可能表现为SCID渗漏、Omenn综合征 [12] ;而典型与不典型的区分,则更侧重于临床表现 [13] 。本例患儿发病年龄大于1岁,且无致命性感染发生,免疫缺陷表现较轻,与典型SCID有明显不同,表现为不典型SCID。

国际免疫学会根据淋巴细胞数量,将ADA缺乏症分类为T(-)B(-)NK(-)SCID型 [14] 。在不同组织器官中,ADA活性不同,在脾脏、胃肠道、淋巴结中活性明显高于非淋巴器官,在T细胞中活性高于B细胞 [15] ,本例患儿T、B、NK淋巴细胞数量均有明显降低,与该表型相符。Felgentreff等人研究发现,在不典型SCID中幼稚T细胞数目减少、lgE水平升高对该病的诊断具有提示性意义 [13] ,本例患儿lgE明显升高,其他亚类免疫球蛋白大致正常,高水平lgE可能与寡克隆Th2扩增有关 [16] ;Noordzij等人研究发现,不同免疫表型和基因型的患者,其B细胞分化停滞阶段有所不同 [17] ,但目前仍尚未完全明确,在缺乏T、B淋巴细胞时,出现lgE升高而其他亚类正常的情况。

淋巴细胞数目减少及免疫功能丧失为ADA缺乏症的常见临床表现,患儿可能出现免疫性甲状腺功能降低、溶血性贫血、免疫性血小板减少等表现 [18] 。而ADA广泛分布于胸腺、大脑、肺脏、肝脏、骨骼等器官组织中,因此不仅影响免疫功能,而且对各系统造成严重损害 [19] 。一方面由于免疫性破坏造成贫血及血小板减少,另一方面研究表明ADA缺乏所产生的高水平代谢毒物将改变骨髓微环境进而影响骨髓发育,导致造血干细胞数量减少,并且以中性粒细胞生长受限尤为明显 [20] [21] 。在ADA缺乏小鼠模型中,肺泡出现巨噬细胞及中性粒细胞累积的病理表现,腺苷等代谢产物导致气道炎症及重塑等慢性肺疾病,而进一步将小鼠ADA/A2BR (细胞表面腺苷受体)双基因敲除,肺部屏障功能反而减弱,A2BR信号研究可能为靶向治疗提供帮助 [22] [23] 。该患儿反复气道炎症、高敏性,伴支气管扩张,除积极抗感染治疗外,在寻找到合适供体前进行酶替治疗可能有利于呼吸道症状的改善 [24] 。患儿身高位于P3 (同年龄同性别人群第3百分位数)左右,骨骼缺陷是该病的共同特征,在小鼠模型中可以发现破骨细胞及成骨细胞平衡紊乱,进而影响骨重塑 [25] 。部分患儿可能还会影响消化、心血管等系统,表现为累及全身的免疫缺陷性疾病。

反复感染等临床表现、相关免疫学特征有助于明确有无免疫缺陷,而基因检测有助于疾病确诊;近年来通过量化T细胞受体切除环对新生儿SCID筛查,也为疾病的早期诊断提供帮助 [26] 。目前针对该病的治疗,建议向所有新诊断的患者提供酶替代疗法来稳定机体免疫,该举措同时能改善肝肺、骨骼、听力等功能 [27] ,并起到移植前“桥梁”作用,但并非治愈性方法;对于能够匹配合适供体的患者都应尽快进行异基因造血干细胞移植,或者接受以逆转录病毒为载体的自体造血干细胞基因治疗 [28] 。本例患儿予积极抗感染、维持免疫稳态,经治疗后症状好转、生活质量提高,但仍有反复感染;HSCT可能是使疾病长期缓解或治愈的唯一途径,目前予积极完善配型,等待HSCT。

本文总结了一例ADA基因新发突变致不典型重症联合免疫缺陷病,根据临床资料考虑患儿存在轻度免疫缺陷,并通过基因检测明确其致病基因。相较于典型SCID,本例患儿临床表现不典型,实验室检查结果以T淋巴细胞减少、lgE水平升高、其他类型免疫球蛋白无明显降低为特征,为临床诊断带来一定困扰;但基因检测为该病确诊提供重要依据,因此对于临床中反复感染,但实验室检查不能完全支持诊断的病例,积极、尽早的完善相关基因检测有利于疾病的诊疗。

参考文献

NOTES

*通讯作者Email: lianghuiqd@163.com

参考文献

[1] Tangye, S.G., Al-Herz, W., Bousfiha, A., et al. (2022) Human Inborn Errors of Immunity: 2022 Update on the Classifi-cation from the International Union of Immunological Societies Expert Committee. Journal of Clinical Immunology, 42, 1473-1507.
https://doi.org/10.1007/s10875-022-01289-3
[2] Fischer, A., Notarangelo, L.D., Neven, B., et al. (2015) Severe Combined Immunodeficiencies and Related Disorders. Nature Reviews Disease Primers, 1, Article No. 15061.
https://doi.org/10.1038/nrdp.2015.61
[3] 杜鸿强, 安云飞, 赵晓东. 不典型重症联合免疫缺陷病的临床研究进展[J]. 中华儿科杂志, 2014, 52(12): 906-909.
[4] Gao, Z.W., Wang, X., Zhang, H.Z., et al. (2021) The Roles of Adenosine Deaminase in Autoimmune Diseases. Autoimmunity Reviews, 20, Article ID: 102709.
https://doi.org/10.1016/j.autrev.2020.102709
[5] Valerio, D., Duyvesteyn, M.G., Dekker, B.M., et al. (1985) Adenosine Deaminase: Characterization and Expression of a Gene with a Remarkable Promoter. The EMBO Journal, 4, 437-443.
https://doi.org/10.1002/j.1460-2075.1985.tb03648.x
[6] Arredondo-Vega, F.X., Santisteban, I., Daniels, S., et al. (1998) Adenosine Deaminase Deficiency: Genotype-Phenotype Correlations Based on Expressed Activity of 29 Mutant Alleles. The American Journal of Human Genetics, 63, 1049- 1059.
https://doi.org/10.1086/302054
[7] Essadssi, S., Krami, A.M., Elkhattabi, L., et al. (2019) Computational Analysis of nsSNPs of ADA Gene in Severe Combined Immunodeficiency Using Molecular Modeling and Dynamics Simulation. Journal of Immunology Research, 2019, Article ID: 5902391.
https://doi.org/10.1155/2019/5902391
[8] Kwan, A., Abraham, R.S., Currier, R., et al. (2014) Newborn Screening for Severe Combined Immunodeficiency in 11 Screening Programs in the United States. JAMA, 312, 729-738.
https://doi.org/10.1001/jama.2014.9132
[9] Flinn, A.M. and Gennery, A.R. (2018) Adeno-sine Deaminase Deficiency: A Review. Orphanet Journal of Rare Diseases, 13, 65.
https://doi.org/10.1186/s13023-018-0807-5
[10] Santisteban, I., Arredondo-Vega, F.X., Kelly, S., et al. (1995) Three New Adenosine Deaminase Mutations That Define a Splicing Enhancer and Cause Severe and Partial Phenotypes: Implications for Evolution of a CpG Hotspot and Expression of a Transduced ADA cDNA. Human Molecular Genetics, 4, 2081-2087.
https://doi.org/10.1093/hmg/4.11.2081
[11] Blackburn, M.R. and Thompson, L.F. (2012) Adenosine Deaminase Deficiency: Unanticipated Benefits from the Study of a Rare Immunodeficiency. The Journal of Immunology, 188, 933-935.
https://doi.org/10.4049/jimmunol.1103519
[12] Dorsey, M.J., Dvorak, C.C., Cowan, M.J., et al. (2017) Treatment of Infants Identified as Having Severe Combined Immunodeficiency by Means of Newborn Screening. Jour-nal of Allergy and Clinical Immunology, 139, 733-742.
https://doi.org/10.1016/j.jaci.2017.01.005
[13] Felgentreff, K., Perez-Becker, R., Speckmann, C., et al. (2011) Clinical and Immunological Manifestations of Patients with Atypical Severe Combined Immunodeficiency. Clinical Im-munology, 141, 73-82.
https://doi.org/10.1016/j.clim.2011.05.007
[14] Bousfiha, A., Jeddane, L., Picard, C., et al. (2020) Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. Journal of Clinical Immunology, 40, 66-81.
https://doi.org/10.1007/s10875-020-00758-x
[15] Bradford, K.L., Moretti, F.A., Carbonaro-Sarracino, D.A., et al. (2017) Adenosine Deaminase (ADA)-Deficient Severe Combined Immune Deficiency (SCID): Molecular Pathogenesis and Clinical Manifestations. Journal of Clinical Immunology, 37, 626-637.
https://doi.org/10.1007/s10875-017-0433-3
[16] Al-Shaikhly, T. and Ochs, H.D. (2019) Hyper IgE syndromes: Clinical and Molecular Characteristics. Immunology & Cell Biology, 97, 368-379.
https://doi.org/10.1111/imcb.12209
[17] Noordzij, J.G., De Bruin-Versteeg, S., Verkaik, N.S., et al. (2002) The Immunophenotypic and Immunogenotypic B-Cell Differentiation Arrest in Bone Marrow of RAG-Deficient SCID Pa-tients Corresponds to Residual Recombination Activities of Mutated RAG Proteins. Blood, 100, 2145-2152.
[18] Sauer, A.V., Brigida, I., Carriglio, N., et al. (2012) Autoimmune Dysregulation and Purine Metabolism in Adenosine Deami-nase Deficiency. Frontiers in Immunology, 3, 265.
https://doi.org/10.3389/fimmu.2012.00265
[19] Whitmore, K.V. and Gaspar, H.B. (2016) Adenosine Deaminase Deficiency—More Than Just an Immunodeficiency. Frontiers in Im-munology, 7, 314.
https://doi.org/10.3389/fimmu.2016.00314
[20] Sokolic, R., Maric, I., Kesserwan, C., et al. (2011) Myeloid Dysplasia and Bone Marrow Hypocellularity in Adenosine Deaminase-Deficient Severe Combined Im-mune Deficiency. Blood, 118, 2688-2694.
https://doi.org/10.1182/blood-2011-01-329359
[21] Tsui, M., Min, W., Ng, S., et al. (2021) The Use of Induced Pluripotent Stem Cells to Study the Effects of Adenosine Deaminase Deficiency on Human Neutrophil Development. Frontiers in Immunology, 12, Article ID: 748519.
https://doi.org/10.3389/fimmu.2021.748519
[22] Blackburn, M.R., Volmer, J.B., Thrasher, J.L., et al. (2000) Metabolic Consequences of Adenosine Deaminase Deficiency in Mice Are Associated with Defects in Alveogenesis, Pulmonary Inflammation, and Airway Obstruction. Journal of Experimental Medicine, 192, 159-170.
https://doi.org/10.1084/jem.192.2.159
[23] Zhou, Y., Mohsenin, A., Morschl, E., et al. (2009) Enhanced Airway Inflammation and Remodeling in Adenosine Deaminase-Deficient Mice Lacking the A2B Adenosine Receptor. The Journal of Immunology, 182, 8037-8046.
https://doi.org/10.4049/jimmunol.0900515
[24] Booth, C., Algar, V.E., Xu-Bayford, J., et al. (2012) Non-Infectious Lung Disease in Patients with Adenosine Deaminase Deficient Severe Combined Immunodeficiency. Journal of Clinical Immunology, 32, 449-453.
https://doi.org/10.1007/s10875-012-9658-3
[25] Sauer, A.V., Mrak, E., Hernandez, R.J., et al. (2009) ADA-Deficient SCID Is Associated with a Specific Microenvironment and Bone Phenotype Characterized by RANKL/OPG Imbalance and Osteoblast Insufficiency. Blood, 114, 3216-3226.
https://doi.org/10.1182/blood-2009-03-209221
[26] Kuo, C.Y., Garabedian, E., Puck, J., et al. (2020) Adenosine Deaminase (ADA)-Deficient Severe Combined Immune Deficiency (SCID) in the US Immunodeficiency Network (USIDNet) Registry. Journal of Clinical Immunology, 40, 1124-1131.
https://doi.org/10.1007/s10875-020-00857-9
[27] Xu, X., Negandhi, J., Min, W., et al. (2019) Early Enzyme Re-placement Therapy Improves Hearing and Immune Defects in Adenosine Deaminase Deficient-Mice. Frontiers in Im-munology, 10, 416.
https://doi.org/10.3389/fimmu.2019.00416
[28] Kohn, D.B., Hershfield, M.S., Puck, J.M., et al. (2019) Consensus Approach for the Management of Severe Combined Immune Deficiency Caused by Adenosine Deaminase Deficiency. Journal of Allergy and Clinical Immunology, 143, 852-863.
https://doi.org/10.1016/j.jaci.2018.08.024