联合降脂治疗的降脂疗效及对糖代谢的影响
Lipid-Lowering Efficacy of Combined Lipid-Lowering Therapy and Its Effect on Glucose Metabolism
DOI: 10.12677/ACM.2023.132216, PDF, HTML, XML, 下载: 196  浏览: 298 
作者: 夏 源, 李桂琼*:重庆医科大学附属第二医院,重庆
关键词: 他汀类药物依折麦布PCSK9抑制剂糖代谢Statin Ezetimibe PCSK9 Inhibitors Glucose Metabolism
摘要: 中国居民动脉粥样硬化性心血管疾病(ASCVD)死亡位居单病种死亡首位。他汀类药物稳定的降脂疗效是其成为ASCVD预防首选药物的基础。但是已有研究证实长期使用他汀类药物有增加新发糖尿病的风险。新的降脂药依折麦布和PCSK9抑制剂已经被指南推荐使用,联合他汀类药物使用能进一步减少ASCVD风险,安全性获得肯定,暂未发现对糖代谢有负面影响。本文就联合降脂治疗的疗效及对糖代谢的影响进行阐述。
Abstract: Atherosclerotic cardiovascular disease (ASCVD) deaths among Chinese residents rank first in terms of single disease deaths. The stable lipid-lowering efficacy of statin is the basis for them being the drugs of choice for ASCVD prevention. However, studies have confirmed that long-term statin use has an increased risk of new-onset diabetes. The new lipid-lowering drugs ezetimibe and PCSK9 in-hibitors have been recommended by guidelines, and their use in combination with statin can fur-ther reduce the risk of ASCVD with a positive safety profile. This article describes the efficacy of combined lipid-lowering therapy and the effect on glucose metabolism.
文章引用:夏源, 李桂琼. 联合降脂治疗的降脂疗效及对糖代谢的影响[J]. 临床医学进展, 2023, 13(2): 1567-1573. https://doi.org/10.12677/ACM.2023.132216

1. 引言

在过去的20~30年里,中国居民动脉粥样硬化性心血管疾病(ASCVD)危险因素普遍暴露、发病率显著增加,死亡率位居高位 [1] 。经调查,2019年农村、城市人口因心血管疾病(CVD)死亡人数超过总死亡人数的40%,加强控制高血压、血脂异常、糖尿病、吸烟等心血管病主要危险因素已成为我国人群心血管病防治措施的重中之重 [2] 。其中血脂异常的管理在临床上备受关注 [3] 。尽管生活方式已经朝着有益的方向转变,但这些举措给相关指标带来的具体变化仍与指南推荐的目标之间有差距。需要制定出更优化的防治策略来应对我国人口老龄化和危险因素持续流行所带来的CVD防治负担 [2] 。

2. 血脂异常管理现状

血脂包括胆固醇、甘油三酯(TG)和类脂(磷脂、糖脂、固醇、类固醇),与临床关系密切的主要是固醇和TG,其中胆固醇主要分为低密度脂蛋白胆固醇(Low Density Lipoprotein Cholesterol, LDL-C)和高密度脂蛋白胆固醇(High Density Lipoprotein Cholesterol, HDL-C)。其中低LDL-C或总胆固醇(TC)升高为主的血脂异常是心血管疾病的重要危险因素。近年来,研究发现脂蛋白(a)通过与动脉粥样硬化、炎症和血栓形成增加相关的机制,是动脉粥样硬化性心血管疾病的独立和因果危险因素 [4] 。脂蛋白(a)也作为预防动脉粥样硬化所关注的治疗靶点 [5] 。2012~2015年中国高血压调查(CHS)发现我国 ≥ 35岁人群血脂异常患病率为34.7% [6] 。一项横断面调查 [7] 研究应用《中国成人血脂异常防治指南(2016年修订版)》 [8] 对血脂异常国际研究–中国(DYSIS-China)数据库中25,317例 ≥ 45岁患者(至少1种调脂药物治疗超过3个月)精选进行再次分析,结果指出中国血脂异常患者中96.6%为ASCVD高危和极高危,总体LDL-C达标率仅为37.3%。ASCVD极高危患者的首要治疗目标LDL-C < 1.8 mmol/L,达标率仅为26.9%。根据降胆固醇药物机制分类,临床上常用的降低胆固醇的药物主要有抑制胆固醇合成的他汀类药物、胆固醇吸收抑制剂依折麦布以及抑制LDL受体降解的PCSK9抑制剂 [9] 。2022美国心脏病学会发布的共识建议,对于临床极高危ASCVD患者使用高强度他汀治疗后仍有LDL-C ≥ 1.4 mmol/L,推荐联用非他汀类药物治;对于基线LDL-C > 4.9 mmol/L的非极高危ASCVD患者,如未诊断家族性高胆固醇血症,在应用最大耐受剂量他汀治疗时,LDL-C > 1.4 mmol/L,考虑加用非他汀类药物治疗 [10] 。我国2020年中国心血管病一级预防指南中特别概述了目前他汀类药物仍然作为降胆固醇治疗的基础,该类药物长期使用有潜在的对糖代谢的影响,新发糖尿病的风险增加。结合我国人群对于他汀类药物相较于欧美人群耐受较差,不推荐使用高强度大剂量他汀。大部分高危以及极高危人群使用常规剂量他汀很难使LDL-C达到目标值,建议使用联合降脂治疗达到强化降胆固醇目标 [11] 。

3. 他汀类药物的对糖代谢的影响

他汀类药物主要作用就是高效的竞争抑制细胞内甲羟戊酸的合成从而导致肝脏细胞内的胆固醇水平降低从而启动了一系列协调反应,刺激细胞膜表面低密度脂蛋白受体(LDL-R)数量和活性增加,提升LDL的清除率,从而降低血清LDL-C的浓度 [12] [13] 。他汀类药物对于降低主要不良心血管事件风险的积极作用是肯定的 [14] 。胆固醇治疗研究者协作组曾发布过一篇纳入14项他汀类药物治疗的随机对照试验共90,000人数据的meta分析,分析报告指出每降低1.0 mol/L血清LDL-C浓度,可降低20%发生CVD事件的风险,证实残余LDL-C的浓度与CVD事件密切相关 [15] 。但值得注意的是,增加一倍他汀类药物剂量,LDL-C水平进一步降低仅6%,这表明他汀类药物降低LDL-C的疗效是有限制的 [16] 。他汀类药物对TG也有改善作用,平均约降低基线水平的10%~20%,在阿托伐他汀、瑞舒伐他汀等强度更大的他汀使用过程中,显示出更高的降TG能力 [17] ;但未观察到有降低脂蛋白(a)的作用 [18] 。然而在2008年的一项瑞舒伐他汀干预的随机对照试验(共17,802名实验对象,随访年限中位数为1.9年,最长5年)中的亚组分析中报告了瑞舒伐他汀能增加新发糖尿病(NOD)的风险,医生报告的NOD率增加了25%,检测到糖化血红蛋白中位水平明显增加(0.3%) [19] 。2012年,美国FDA官网公开发表了此类药物极有可能引发糖耐量异常、糖化血红蛋白升高以及NOD的相关声明 [20] 。近年来仍有研究证实,在28,149例持续使用他汀类药物的患者与随访期间相同数量的未接受降脂治疗的患者进行了对比。接受他汀类药物的人群比未使用过该类药物的人群(0.69人每100人/年和0.42人每100人/年) NOD的风险高 [21] 。他汀类药物导致血糖升高或者NOD的机制可能是通过增加胰岛素抵抗或者胰岛β细胞功能受损,也可能是两个过程协同作用 [22] 。在一项临床试验中,非糖尿病受试者予以高强度阿托伐他汀干预10周会增加胰岛素抵抗和胰岛素分泌 [23] 。美国一项回顾性匹配队列研究发现,他汀类药物的使用与糖尿病进展相关,在他汀药物治疗组观察到主要终点事件(开始启动胰岛素治疗、使用降糖药物类别数量的增加、5次或5次以上血糖测量值达200 mg/dL以上、新诊断的酮症酸中毒或未控制的糖尿病) [24] 。对未明确患ASCVD及糖尿病的受试者予以有阿托伐他汀(40 mg/d)治疗10周会增加胰岛素抵抗和胰岛素分泌 [23] 。

4. 他汀类药物影响糖代谢的机制

4.1. 胰岛素抵抗增加

他汀类药物刺激肝脏中的糖异生提高空腹血糖水平。他汀类药物通过自噬基因ATG7诱导自噬通量增加进而上调葡萄糖-6-磷酸酶催化亚基和磷酸烯醇式丙酮酸羧激酶1的基因表达水平,增加肝脏糖异生,进而导致胰岛素抵抗 [25] 。氟伐他汀联合脂多糖在3T3-L1脂肪细胞中以剂量依赖的方式在NLRP3炎症小体介导下显著降低胰岛素介导的磷酸化蛋白激酶B (AKT)水平从而导致胰岛素抵抗 [26] 。他汀类药物可诱导类异戊二烯减少从而阻断蛋白质的异戊二烯化这一过程,触发了脂肪组织中NLRP3/Caspase-1炎症小体的激活和IL-1β依赖的胰岛素抵抗 [27] 。骨骼肌中的葡萄糖利用主要通过胰岛素介导,需要胰岛素受体、胰岛素受体底物1/2、AKT、多种底物共同参与 [28] 。近期有研究证实,在小鼠骨骼肌细胞中,TAZ是Hippo/Wnt信号通路调控胰岛素敏感性的重要调节因子,它通过转录因子结合因子c-Jun和Tead4刺激胰岛素受体底物1的转录 [29] 以及刺激Wnt信号通路诱导的胰岛素受体底物1表达 [30] [31] 。而他汀类药物可降低TAZ的水平导致胰岛素抵抗 [29] 。在一项体外研究证实洛伐他汀可以导致3T3-L1脂肪前体细胞的葡萄糖转运蛋白4 (GLUT4)下调和葡萄糖转运蛋白1(GLUT1)的上调,从而抑制以胰岛素刺激的葡萄糖转运造成胰岛素抵抗 [32] 。辛伐他汀使细胞膜上GLUT4表达降低,引起小鼠C2C12肌管中葡萄糖摄取受损 [33] 。

4.2. 胰岛β细胞功能受损

阿托伐他汀通过抑制小G蛋白的基因表达,例如Rab5a,随后抑制胰岛mTOR信号通路,使得β细胞功能受损 [34] 。阿托伐他汀可以抑制人胰岛β细胞的基础以及葡萄糖刺激后的胰岛素分泌,这种分泌改变与氧化应激条件引起的线粒体功能障碍有关 [35] 。

4.3. 其他

棕色脂肪脂肪组织能提升外周血葡萄糖摄取、改善胰岛素敏感性 [36] 。研究人员发现抑制甲羟戊酸途径对棕色脂肪细胞活性剂白色脂肪褐变产生负面影响,主要是由于香叶基香叶焦磷酸(GGPP)的缺乏。GGPP能促进脂肪细胞褐变同时参与小G蛋白的异戊二烯化过程;小G蛋白在白色脂肪褐变过程中其重要作用,同时还具有调节棕色脂肪的生热功能 [37] 。部分研究还提出包括延迟葡萄糖清除率 [38] 、DNA的甲基化 [39] 等潜在机制。

5. 联合治疗的降脂疗效及对糖代谢的影响

5.1. 他汀联合依折麦布的降脂疗效及对糖代谢的影响

依折麦布(Ezetimibe)是一种小肠胆固醇吸收的抑制剂,其通过阻断小肠绒毛上皮的刷状缘的甾醇载体NPC1L1与受胆固醇刺激的粘合蛋白/AP2之间的关联来阻断NPC1L1的内吞作用 [40] ,抑制肠道对胆固醇的摄取,而不影响脂溶性营养素的吸收。由于胆固醇传递减少,肝脏会上调LDL-R的表达,从而导致血液中低密度脂蛋白的清除率增加 [5] 。一项共纳入4252例使用他汀/依折麦布联合治疗患者的回顾性研究表示从他汀类药物单药治疗转向联合治疗,导致LDL-C水平额外降低31.0%~41.0% [41] 。一项为期6年的队列研究表明接受他汀类药物和依折麦布联合治疗的急性冠脉综合征和多种合并病患者比单独接受他汀类药物的患者再住院和血运重建的风险降低 [42] 。在韩国一项大型随机开放实验共纳入3780例患者,随机分为(1:1)联合治疗组(瑞舒伐他汀10 mg + 依折麦布10 mg)和单药组(瑞舒伐他汀20 mg)。随访期3结束后,联合治疗组较单药组主要终点事件(CVD死亡、重大心血管事件或非致死性卒中)发生率低。联合治疗组在第1、2、3年LDL-C下降水平均高于单药组,安全性及耐受性也优于单药组 [43] 。在一项研究依折麦布与NOD风险的系统回顾和荟萃分析中,证实依折麦布不会增加糖尿病风险 [44] 。此外,一项大型的综述和荟萃分析还表示,依折麦布并没有提高血糖水平,事实上,依折麦布联合低剂量他汀类药物治疗超过3个月,甚至可以改善血糖 [45] 。一项依折麦布对糖代谢影响的临床研究中,他汀单药治疗组在1年后胰岛素抵抗显著增加,而依折麦布联合组胰岛素抵抗无显著增加。此外,根据胰岛素抵抗指数(HOMA-IR)比较,中途添加依折麦布的他汀类药物治疗组的胰岛素抵抗有下降的趋势 [46] 。

5.2. 他汀联合PCSK9抑制剂的降脂疗效及对糖代谢的影响

前蛋白转化酶枯草杆菌蛋白酶-Kexin-9 (PCSK9)抑制剂是目前热门的新型降脂药物。其通过阻断PCSK9对LDL-R的降解来降低LDL-C水平 [5] 。临床常用的主要是evolocumab和alirocumab,两种药物药理学较为相似。大型随机试验FOURIER试验已证实在他汀治疗基础上联用evolocumab能进一步改善ASCVD患者CVD结局,evolocumab组LDL-C水平较基线降低60%,主要终点事件减少15% (CVD死亡、非致死性心肌梗死、非致死性卒中、不稳定心绞痛或冠脉血运重建),且evolocumab组较安慰剂组不良事件(包括新发糖尿病和神经认知事件)并无明显差异 [47] 。随后发布的FOURIER-OLE试验 [48] 结果对其进行了补充。FOURIER-OLE试验共纳入了6635名在他汀类药物治疗基础上有动脉粥样硬化性心血管疾病病史且空腹LDL-C水平为≥70 mg/dl或非高密度脂蛋白胆固醇(HDL-C)水平为100 mg/dl的患者,中位随访年限为5年。在延长随访期间,最初随机接受evolocumab治疗的患者比随机接受安慰剂治疗的患者发生主要不良心血管事件的风险低15%~20%,发生心血管死亡的风险降低23%。长期随访观察,evolocumab组患者的不良事件的总体年化发生率与安慰剂组相似。除良好的降LDL-C能以外,ODYSSEY试验还显示出alirocumab能降低脂蛋白(a)水平,较基线下降约23% [49] 。

6. 总结

各种研究证据证实了针对ASCVD的风险评估管理不应仅专注于LDL-C,尽管目前降脂的首要目标依旧是LDL-C,但脂蛋白(a)、非-HDL-C的达标仍应重视。他汀类药物作为降脂的一线药物,其对于预防心血管事件的积极作用毋庸置疑,但对于脂蛋白(a)以及非-HDL-C的达标无法满足。单用他汀类药物难以使高危人群实现全面血脂管理。基于我国是糖尿病大国,他汀对糖代谢的影响也需重视。近年来有不少新的降脂药物上市,其疗效已在临床在获得肯定。许多试验已经证明在他汀类药物治疗基础上的患者,采用联合治疗能进一步改善CVD结局,同时不会加重对糖代谢的影响。尤其对于糖尿病高风险人群,早期启动联合治疗,能提高患者远期收益。在患糖尿病高风险患者或已诊断糖尿病患者选择降脂方案时应当考虑他汀类药物对糖代谢带来的负面影响以及提高血脂管理的达标率。现临床上主要还是采用他汀联合依折麦布/PCSK9抑制剂。PCSK9抑制剂和依折麦布都表现出良好的安全性和耐受性,相比于单药治疗,早期使用联合治疗为ASCVD高风险人群带来显著获益。长期使用不会使血糖恶化或其他不良事件发生率增加。早期联合降脂治疗能减少血脂暴露风险,是全面血脂管理的大趋势。还有部分新的非他汀类降脂药物,如小干扰核糖核酸(siRNA)、bampedoic acid、Lomitapide等均在降脂方面取得不错的疗效,但缺乏针对CVD结局的研究,尚不明确对CVD结局的影响,还需要更多高质量大规模的试验来提供证据。

NOTES

*通讯作者。

参考文献

[1] Zhao, D., Liu, J., Wang, M., Zhang, X. and Zhou, M. (2019) Epidemiology of Cardiovascular Disease in China: Current Features and Implications. Nature Reviews Cardiology, 16, 203-212.
https://doi.org/10.1038/s41569-018-0119-4
[2] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37(6): 553-578.
[3] Critchley, J., Liu, J., Zhao, D., Wei, W. and Capewell, S. (2004) Explaining the Increase in Coronary Heart Disease Mortality in Beijing between 1984 and 1999. Circulation, 110, 1236-1244.
https://doi.org/10.1161/01.CIR.0000140668.91896.AE
[4] Reyes-Soffer, G., Ginsberg, H., Berglund, L., et al. (2022) Lipoprotein(a): A Genetically Determined, Causal, and Prevalent Risk Factor for Atherosclerotic Cardiovascular Disease: A Scientific Statement from the American Heart Association. Arteriosclerosis, Thrombosis, and Vascular Biol-ogy, 42, e48-e60.
https://doi.org/10.1161/ATV.0000000000000147
[5] ESC Committee for Practice Guidelines (CPG) and ESC National Cardiac Societies (2019) 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Atherosclerosis, 290, 140-205.
https://doi.org/10.1016/j.atherosclerosis.2019.08.014
[6] 李苏宁, 张林峰, 王馨, 等. 2012~2015年我国≥35岁人群血脂异常状况调查[J]. 中国循环杂志, 2019, 34(7): 681-687.
[7] 赵旺, 叶平, 胡大一, 赵水平. 根据《中国成人血脂异常防治指南(2016年修订版)》再分析DYSIS-China横断面调查[J]. 中国心血管杂志, 2020, 25(1): 55-61.
[8] 诸骏仁, 高润霖, 赵水平, 等. 中国成人血脂异常防治指南(2016年修订版) [J]. 中国循环杂志, 2016, 31(10): 937-953.
[9] Warraich, H.J., Wong, N.D. and Rana, J.S. (2015) Role for combination Therapy in Diabetic Dyslipidemia. Current Cardiology Reports, 17, Article No. 32.
https://doi.org/10.1007/s11886-015-0589-5
[10] Lloyd-Jones, D., Morris, P., Ballantyne, C., et al. (2022) 2022 ACC Expert Consensus Decision Pathway on the Role of Nonstatin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk: A Report of the American College of Cardiology Solution Set Oversight Committee. Journal of the American College of Cardiology, 80, 1366-1418.
https://doi.org/10.1016/j.jacc.2022.07.006
[11] 中华医学会心血管病学分会, 中国康复医学会心脏预防与康复专业委员会, 中国老年学和老年医学会心脏专业委员会, 中国医师协会心血管内科医师分会血栓防治专业委员会. 中国心血管病一级预防指南[J]. 中华心血管病杂志, 2020, 48(12): 1000-1038.
[12] Brown, M.S. and Goldstein, J.L. (1997) The SREBP Pathway: Regulation of Cholesterol Metabolism by Proteolysis of a Membrane-Bound Tran-scription Factor. Cell, 89, 331-340.
https://doi.org/10.1016/S0092-8674(00)80213-5
[13] Goldstein, J.L. and Brown, M.S. (2009) The LDL Receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 431-438.
https://doi.org/10.1161/ATVBAHA.108.179564
[14] Jia, Y., Wen, J., Qureshi, R., et al. (2021) Effect of Redun-dant Clinical Trials from Mainland China Evaluating Statins in Patients with Coronary Artery Disease: Cross Sectional Study. BMJ, 372, Article No. n48.
https://doi.org/10.1136/bmj.n48
[15] Baigent, C., Keech, A., Kearney, P., et al. (2005) Efficacy and Safety of Cho-lesterol-Lowering Treatment: Prospective Meta-Analysis of Data from 90,056 Participants in 14 Randomised Trials of Statins. Lancet, 366, 1267-1278.
https://doi.org/10.1016/S0140-6736(05)67394-1
[16] Collins, R.C., Reith, C., Emberson, J., et al. (2016) Interpre-tation of the Evidence for the Efficacy and Safety of Statin Therapy. Lancet, 388, 2532-2561.
https://doi.org/10.1016/S0140-6736(16)31357-5
[17] Sharma, A., Joshi, P.H., Rinehart, S., et al. (2016) Baseline Very Low-Density Lipoprotein Cholesterol Is Associated with the Magnitude of Triglyceride Lowering on Statins, Feno-fibric Acid, or Their Combination in Patients with Mixed Dyslipidemia. Journal of cardiovascular Translational Re-search, 7, 465-474.
https://doi.org/10.1007/s12265-014-9559-3
[18] Khera, A.V., Everett, B.M., Caulfield, M.P., et al. (2014) Lipo-protein(a) Concentrations, Rosuvastatin Therapy, and Residual Vascular Risk: An Analysis from the JUPITER Trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin). Circulation, 129, 635-642.
https://doi.org/10.1161/CIRCULATIONAHA.113.004406
[19] Ridker, P., Danielson, E., Fonseca, F., et al. (2008) Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein. The New England Jour-nal of Medicine, 359, 2195-2207.
https://doi.org/10.1056/NEJMoa0807646
[20] Arnaboldi, L. and Corsini, A. (2015) Could Changes in Adiponectin Drive the Effect of Statins on the Risk of New- Onset Diabetes? The Case of Pitavastatin. Atherosclerosis Supplements, 16, 1-27.
https://doi.org/10.1016/S1567-5688(14)70002-9
[21] Go, A.S., Ambrosy, A.P., Kheder, K., et al. (2020) Statin Therapy and Risk of Incident Diabetes Mellitus in Adults with Cardiovascular Risk Factors. The American Journal of Cardiology, 125, 534-541.
https://doi.org/10.1016/j.amjcard.2019.11.011
[22] Betteridge, D. and Carmena, R. (2016) The Diabetogenic Action of Statins - Mechanisms and Clinical Implications. Nature Reviews Endocrinology, 12, 99-110.
https://doi.org/10.1038/nrendo.2015.194
[23] Abbasi, F., Lamendola, C., Harris, C., et al. (2021) Statins Are As-sociated with Increased Insulin Resistance and Secretion. Arteriosclerosis, Thrombosis, and Vascular Biology, 41, 2786-2797.
https://doi.org/10.1161/ATVBAHA.121.316159
[24] Mansi, I., Chansard, M., Lingvay, I., et al. (2021) Associa-tion of Statin Therapy Initiation with Diabetes Progression: A Retrospective Matched-Cohort Study. JAMA Internal Medicine, 181, 1562-1574.
https://doi.org/10.1001/jamainternmed.2021.5714
[25] Wang, H.J., Park, J.Y., Kwon, O., et al. (2015) Chronic HMGCR/HMG-CoA Reductase Inhibitor Treatment Contributes to Dysglycemia by Upregulating Hepatic Gluconeo-genesis through Autophagy Induction. Autophagy, 11, 2089-2101.
https://doi.org/10.1080/15548627.2015.1091139
[26] Henriksbo, B.D., Lau, T.C., Cavallari, J.F., et al. (2014) Fluvastatin Causes NLRP3 Inflammasome-Mediated Adipose Insulin Resistance. Diabetes, 63, 3742-3747.
https://doi.org/10.2337/db13-1398
[27] Henriksbo, B.D., Tamrakar, A.K., Xu, J., et al. (2019) Statins Promote In-terleukin-1β-Dependent Adipocyte Insulin Resistance through Lower Prenylation, Not Cholesterol. Diabetes, 68, 1441-1448.
https://doi.org/10.2337/db18-0999
[28] Taniguchi, C., Emanuelli, B. and Kahn, C. (2006) Critical Nodes in Signal-ling Pathways: Insights into Insulin Action. Nature Reviews Molecular Cell Biology, 7, 85-96.
https://doi.org/10.1038/nrm1837
[29] Hwang, J.-H., Kim, A.R., Kim, K.M., et al. (2019) TAZ Couples Hippo/Wnt Signalling and Insulin Sensitivity through Irs1 Expression. Nature Communications, 10, Article No. 421.
https://doi.org/10.1038/s41467-019-08287-x
[30] Yoon, J.C., Ng, A., Kim, B.H., et al. (2010) Wnt Signaling Reg-ulates Mitochondrial Physiology and Insulin Sensitivity. Genes & Development, 24, 1507-1518.
https://doi.org/10.1101/gad.1924910
[31] Azzolin, L., Zanconato, F., Bresolin, S., et al. (2012) Role of TAZ as Mediator of Wnt Signaling. Cell, 151, 1443-1456.
https://doi.org/10.1016/j.cell.2012.11.027
[32] Chamberlain, L.H. (2001) Inhibition of Isoprenoid Biosynthesis Causes Insulin Resistance in 3T3-L1 Adipocytes. FEBS Letters, 507, 357-361.
https://doi.org/10.1016/S0014-5793(01)03007-1
[33] Sanvee, G.M., Panajatovic, M.V., Bouitbir, J. and Krähen-bühl, S. (2019) Mechanisms of Insulin Resistance by Simvastatin in C2C12 Myotubes and in Mouse Skeletal Muscle. Biochemical Pharmacology, 164, 23-33.
https://doi.org/10.1016/j.bcp.2019.02.025
[34] Shen, L., Gu, Y., Qiu, Y., et al. (2020) Atorvastatin Targets the Islet Mevalonate Pathway to Dysregulate mTOR Signaling and Reduce β-Cell Functional Mass. Diabetes, 69, 48-59.
https://doi.org/10.2337/db19-0178
[35] Urbano, F., Bugliani, M., Filippello, A., et al. (2017) Atorvastatin but Not Pravastatin Impairs Mitochondrial Function in Human Pancreatic Islets and Rat β-Cells. Direct Effect of Oxidative Stress. Scientific Reports, 7, Article No. 11863.
https://doi.org/10.1038/s41598-017-11070-x
[36] Iwen, K., Backhaus, J., Cassens, M., et al. (2017) Cold-Induced Brown Adipose Tissue Activity Alters Plasma Fatty Acids and Improves Glucose Metabolism in Men. The Journal of Clinical Endocrinology and Metabolism, 102, 4226-4234.
https://doi.org/10.1210/jc.2017-01250
[37] Balaz, M., Becker, .A, Balazova, L., et al. (2019) Inhibition of Mevalonate Pathway Prevents Adipocyte Browning in Mice and Men by Affecting Protein Prenylation. Cell Metabolism, 29, 901-916.
https://doi.org/10.1016/j.cmet.2018.11.017
[38] Cheng, D., Wang, Y., Gao, S., et al. (2015) Atorvastatin Delays the Glucose Clearance Rate in Hypercholesterolemic Rabbits. Biomedicine & Pharmacotherapy, 72, 24-29.
https://doi.org/10.1016/j.biopha.2015.03.007
[39] Ochoa-Rosales, C., Portilla-Fernandez, E., Nano, J., et al. (2020) Epigenetic Link between Statin Therapy and Type 2 Diabetes. Diabetes Care, 43, 875-884.
https://doi.org/10.2337/dc19-1828
[40] Ge, L., Wang, J., Qi, W., et al. (2008) The Cholesterol Absorption Inhibitor Ezetimibe Acts by Blocking the Sterol- Induced Internalization of NPC1L1. Cell Metabolism, 7, 508-519.
https://doi.org/10.1016/j.cmet.2008.04.001
[41] Lee, J., Lee, S.H., Kim, H., et al. (2021) Low-Density Lipoprotein Cholesterol Reduction and Target Achievement after Switching from Statin Monotherapy to Statin/Ezetimibe Combina-tion Therapy: Real-World Evidence. Journal of Clinical Pharmacy and Therapeutics, 46, 134-142.
https://doi.org/10.1111/jcpt.13271
[42] Lin Wu, F.-L., Wang, J., Ho, W., et al. (2017) Effectiveness of a Combina-tion of Ezetimibe and Statins in Patients with Acute Coronary Syndrome and Multiple Comorbidities: A 6-Year Popula-tion-Based Cohort Study. International Journal of Cardiology, 233, 43-51.
https://doi.org/10.1016/j.ijcard.2017.02.006
[43] Kim, B.-K., Hong, S.-J., Lee, Y.-J., et al. (2022) Long-Term Ef-ficacy and Safety of Moderate-Intensity Statin with Ezetimibe Combination Therapy versus High-Intensity Statin Mono-therapy in Patients with Atherosclerotic Cardiovascular Disease (RACING): A Randomised, Open-Label, Non-Inferiority Trial. Lancet, 400, 380-390.
https://doi.org/10.1016/S0140-6736(22)00916-3
[44] Chiu, S.W., Pratt, C.M., Feinn, R. and Chatterjee, S. (2020) Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors and Ezetimibe on Risk of New-Onset Diabetes: A Systematic Review and Meta-Analysis of Large, Double-Blinded Randomized Controlled Trials. Journal of Cardiovascular Phar-macology and Therapeutics, 25, 409-417.
https://doi.org/10.1177/1074248420924983
[45] Wu, H., Shang, H. and Wu, J. (2018) Effect of Ezetimibe on Glycemic Control: A Systematic Review and Meta- Analysis of Randomized Controlled Trials. Endocrine, 60, 229-239.
https://doi.org/10.1007/s12020-018-1541-4
[46] Cho, Y., Kim, R.-H., Park, H., et al. (2020) Effect of Ezetimibe on Glucose Metabolism and Inflammatory Markers in Adipose Tissue. Biomedicines, 8, Article No. 512.
https://doi.org/10.3390/biomedicines8110512
[47] Sabatine, M.S., Giugliano, R.P., Keech, A.C., et al. (2017) Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. The New England Journal of Medicine, 376, 1713-1722.
https://doi.org/10.1056/NEJMoa1615664
[48] O’Donoghue, M., Giugliano, R., Wiviott, S., et al. (2022) Long-Term Evolocumab in Patients with Established Atherosclerotic Cardiovascular Disease. Circulation, 146, 1109-1119.
https://doi.org/10.1161/CIRCULATIONAHA.122.061620
[49] Bittner, V., Szarek, M., Aylward, P., et al. (2020) Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome. Journal of the Amer-ican College of Cardiology, 75, 133-144.
https://doi.org/10.1016/j.jacc.2019.10.057