心力衰竭合并低钠血症相关机制的研究
Research of the Mechanisms Associated with Hyponatremia in Heart Failure
DOI: 10.12677/ACM.2023.132280, PDF, HTML, XML, 下载: 158  浏览: 323 
作者: 努尔比牙·吾买尔, 郭玉君*:新疆医科大学第一附属医院心力衰竭科,新疆 乌鲁木齐
关键词: 低钠血症Na+心力衰竭机制Hyponatremia Na+ Sodium Mechanism
摘要: 心力衰竭(heart failure, HF)被认为是一种全身性慢性炎症状态,血清Na+浓度水平与HF病情严重程度相关,并预测患者不良生存率。低钠血症常见于晚期心力衰竭,是神经体液激活程度的标志,也是潜在疾病严重程度的标志。故探讨心力衰竭出现低钠血症以及低钠血症对心力衰竭影响的相关机制有重要意义。
Abstract: Heart failure is a state of systemic chronic inflammatory. Serum Na+ concentration levels correlate with the severity of HF and predict poor prognosis. Hyponatremia occurs in advanced heart failure, and it is a marker of the degree of neurohumoral activation as well as an indication of the severity of the underlying disease. Therefore, it is important to explore the mechanisms associated with the development of hyponatremia in heart failure and the effect of hyponatremia on heart failure.
文章引用:努尔比牙·吾买尔, 郭玉君. 心力衰竭合并低钠血症相关机制的研究[J]. 临床医学进展, 2023, 13(2): 2012-2017. https://doi.org/10.12677/ACM.2023.132280

1. 引言

低钠血症(Hyponaremia)指的是血清Na+浓度低于135 mmol/L [1] [2] [3] 的病理状态。国内外多项研究结果表明 [4] [5] [6] ,低钠血症在预测心力衰竭患者发生恶性预后中有重要的预测价值。心力衰竭合并低钠血症预示着更长的住院天数、更差的预后、更高的死亡率 [3] [7] [8] 。多项临床回顾性研究报道,哪怕是轻微或者慢性低钠血症,即使其基础疾病不太可能引起低钠血症的,依然和患者死亡率增加相关 [9] 。明确血清Na+与心力衰竭之间的相互作用机制,可能会为患者带来治疗心衰的新希望。本文将从心力衰竭伴低钠血症的相关概念、发病机制以及血清Na+浓度下降对心力衰竭的影响等方面进行综述。

2. 心力衰竭合并低钠血症的现状

心力衰竭是一种进展性疾病 [10] ,一旦病情进展就预示着不良预后。晚期心力衰竭患者可能因出现相关并发症而死亡。心衰发病机制较复杂,包括氧化应激、神经体液机制过度激活、细胞因子参与等。据《中国心血管健康与疾病报告2021概要》报道 [11] ,我国现患心血管疾病人数3.3亿,其中心力衰竭890万。HF发病率、病死率、医疗相关费用呈逐年递增趋势,心衰给我们带来了极其沉重的社会负担。低钠血症:是HF患者常见的电解质紊乱,仅反应血浆中的Na+浓度,与体内总血清Na+量无关,体内总体血清Na+可以正常甚或稍有增高。HF患者中发生低钠血症率约为10%~20% [2] [5] [12] ,较为常见的类型为稀释性低钠血症,与恶性预后独立相关。心衰患者病情复杂,心输出量减少及有效循环血容量减少引起的多种神经体液机制异常激活,使用强效利尿药物、严格限制钠盐摄入等因素导致水Na+排泄受损从而更易引起低钠血症。低钠血症对心衰的发展存在直接或间接的影响,可引起心衰恶化,增加死亡率 [9] [13] [14] 。

3. 心力衰竭患者发生低钠血症的发病机制

正常的水血清Na+平衡是通过形成渴感、肾素-血管紧张素-醛固酮系统(renin-angiotensin-aldosterone system, RAAS)和交感神经系统(sympathetic nervus system, SNS)的激活和心房利钠因子分泌等机制精密的控制在比较狭小的范围之内的 [15] [16] 。HF是一种临床综合征群,HF发生低钠血症的病理过程非常复杂,涉及到多种神经体液细胞因子等调节机制。

1) ADH非渗透性分泌增加

心衰患者出现体液潴留时,虽然因血浆渗透压下降而对应精氨酸加压(arginine vasopressin, AVP)的释放量减少,但是这种作用被有效循环血量不足对AVP的正性调节作用所覆盖,体内AVP总体水平升高 [15] [17] ,即 ADH非渗透性分泌增加。AVP是一种多肽类激素,人体调节水平衡最重要的激素,它由下丘脑合成,存贮于垂体后叶中,经垂体释放入血,产生抗利尿作用 [18] 。持续释放的AVP通过增加肾脏集合管中水通道的数量,特别是水通道蛋白-2 (AQP2),提高集合管对水的通透性,加重水潴留 [3] 。因此,可以认为低渗性低钠血症是一种水代谢障碍 [19] 。

2) 神经体液机制异常激活

HF患者较为常见的低钠血症类型为稀释性低钠血症,又称为水中毒,是属于高容量低渗性低钠血症。HF患者心肌收缩力减弱导致有效循环血量减少,压力感受器激活,引起交感神经反射性兴奋,肾脏血流量下降,最终会RAAS异常激活,促进AVP释放,增加水Na+在肾脏的重吸收,水的重吸收大于Na+的重吸收,体内水分过多,血液中的Na+被稀释,出现低钠血症 [3] [15] [20] 。

3) 治疗相关的低钠血症

限钠、使用袢利尿剂广泛运用于体液负荷显著的心衰患者 [21] ,利尿剂被广泛认为是治疗心衰的基石 [22] 。真性低钠血症也称为低容量低渗性低钠血症,其特点是再心衰治疗过程中反复大剂量使用利尿药物导致失钠大于失水或者严格限制钠盐摄入量,血容量不足,体内总钠量不足,患者没有明显水肿的表现。

血清Na+是袢利尿剂(loop diuretics, LDs)作用的目标离子 [23] 。LDs经主要作用于Henle袢,抑制Na+ -K+ -2Cl转运蛋白,促进Na+排泄,而噻嗪类利尿剂是远曲小管钠氯共转运体阻滞剂,无论是袢利尿剂还是噻嗪类利尿剂,其共同的作用机制是通过促使Na+排泄发挥利尿作用。长期使用利尿剂,而未重视电解质也会导致电解质紊乱,诱发低钠血症。研究表示,噻嗪类利尿剂联合小剂量袢利尿剂是心力衰竭患者发生低钠血症和低钾血症的独立预测因子,并具有较高的死亡率 [24] 。

4. 低钠血症对心力衰竭患者的影响机制

1) 直接损害心肌细胞

Na+是细胞外液中主要的渗透活性离子,Na+稳态对维持细胞正常体积、静息膜电位和Na+依赖性转运体系统至关重要 [25] 。生理情况下,心肌细胞具有一定的调节性容积回缩(regulatory volume decrease, RVD)能力,细胞内外渗透压发生变化时维持自身容积的相对稳定。当细胞外Na+浓度降低时,产生跨膜渗透梯度,细胞外水分向细胞内流动,导致细胞渗透性肿胀。同时,细胞向细胞外排除离子(如K+和Cl)和有机渗透液(肌醇、磷酸肌酸和氨基酸等)以降低胞内渗透压,使已膨大的细胞容积向正常容积恢复 [25] [26] [27] [28] 。心力衰竭合并低钠血症时,由于长期缺血缺氧,乳酸、腺苷等代谢产物堆积,造成胞内高渗,细胞外水分流向细胞内,导致细胞渗透性肿胀。细胞RDV功能下降或者细胞膜破坏后,对心肌细胞造成不可逆性损伤,细胞破裂和坏死,心肌细胞数量减少,心肌收缩力下降,加剧心衰恶化。

2) 钙循环紊乱

细胞膜两侧的钠浓度梯度和膜电位严格控制线粒体中的Na+/Ca2+交换剂(NCX)的活性和转运方向(正向或反向) [25] 。NCX活性的微小变化可能会显著改变Ca2+稳态。生理条件下,NCX正向模式运行,即将1个Ca2+运输出细胞,转运3个Na+进入细胞,从而参与细胞内钙离子(如心肌和神经元)的稳态 [29] [30] 。当细胞外Na+浓度下降时,膜两侧的离子电化学梯度也下降,从而导致NCX逆向转运 [31] 。与在胞外低钠环境中,由于钠/钙交换器的逆向转运模式的激活,刺激细胞内钙离子浓度增加 [32] 。钙稳态的破坏将诱发各种心律失常、心肌收缩力下降、加速心衰病程恶化。

3) 干扰能量代谢

细胞内Na+浓度([Na+]i)和Na+转运通过线粒体中的Na+/Ca2+交换器控制线粒体Ca2+浓度([Ca2+]m)。低[Na+]i有助于升高[Ca2+]m,刺激参与三羧酸循环的脱氢酶 [33] ,加速产生NADH和NADPH,增加ATP产量以满足更高的能量需求和维持氧化还原稳态。然而,在心力衰竭伴有低钠血症的病理生理情况下,[Na+]i过度增加诱发氧化应激 [34] [35] ,出现线粒体功能异常,ATP合成不足、能量代谢障碍,加剧循环衰竭等恶性预后的出现。

4) 对免疫和肠道菌群的影响

低钠血症本身或通过细胞水肿导致的粘膜屏障破坏可能会刺激炎症 [36] 。辅助性T细胞17 (Th17)和白介素-17 (IL-17)具有炎症特性,在具有抵抗细胞外病原体和真菌的能力,同时也是自身免疫性疾病的重要驱动因素。研究报道,TH17细胞功能下降可能与此有关。体外高浓度氯化钠环境促进了表面具有CD4分子的T淋巴细胞(CD4+T细胞)向TH17细胞的分化,高盐饮食通过激活Th17细胞在小鼠模型中加速了自身免疫性疾病的发展 [26] 。同样,增加氯化钠浓度可能会增强对微生物的保护作用,而降低氯化钠浓度或低钠血症可以通过抑制Th17细胞来降低保护作用,将导致肠道菌群紊乱。心力衰竭与内脏循环充血有关,导致肠道黏膜水肿和屏障功能受损,进一步出现细菌移位,菌群失调等病理变化。全身血液循环中细菌代谢产物加剧整体炎症状态 [37] ,直接或间接的损害宿主的生理机能,加剧心衰恶化程度。

5. 展望

低钠血症是心力衰竭患者最常见的电解质紊乱之一。心力衰竭患者中低钠血症成为了诊断不良临床症状的稳定可靠的血清学标志物。然而,由于低钠血症无特异性临床症状,极易被临床医师忽视。至今我们尚不清楚低钠血症通过什么途径影响心力衰竭患者预后,是否仅仅是严重合并症的标志,还是直接导致死亡。针对细胞外Na+浓度下降对心力衰竭患者预后的影响需要进行进一步的临床研究以明确具体疾病进展的机制,以提高对低钠血症的重视,尽早进行治疗干预,提高患者的生活质量,改善远期预后。

NOTES

*通讯作者Email: 506011207@qq.com

参考文献

[1] Adrogué, H.J., Tucker, B.M. and Madias, N.E. (2022) Diagnosis and Management of Hyponatremia: A Review. JAMA, 328, 280-291.
https://doi.org/10.1001/jama.2022.11176
[2] 赵雪梅, 邹长虹, 王运红, 翟玫周琼. 住院心力衰竭患者入院时血钠水平与院内病死率的关系[J]. 中华心力衰竭和心肌病杂志, 2020, 4(1): 37-42.
[3] Ishikawa, S.E. (2015) Hyponatremia Associated with Heart Failure: Pathological Role of Vasopressin-Dependent Impaired Water Excretion. Journal of Clinical Medicine, 4, 933-947.
https://doi.org/10.3390/jcm4050933
[4] Lee, H., Lee, S.E., Park, C.S., et al. (2018) Hyponatraemia and Its Prognosis in Acute Heart Failure Is Related to Right Ventricular Dys-function. Heart (British Cardiac Society), 104, 1670-1677.
https://doi.org/10.1136/heartjnl-2017-312084
[5] Klein, L., O’Connor, C.M., Leimberger, J.D., et al. (2005) Lower Serum Sodium Is Associated with Increased Short-Term Mortality in Hospitalized Patients with Worsening Heart Failure: Results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF) Study. Circulation, 111, 2454-2460.
https://doi.org/10.1161/01.CIR.0000165065.82609.3D
[6] Bettari, L., Fiuzat, M., Felker, G.M., et al. (2012) Sig-nificance of Hyponatremia in Heart Failure. Heart Failure Reviews, 17, 17-26.
https://doi.org/10.1007/s10741-010-9193-3
[7] Sato, N., Gheorghiade, M., Kajimoto, K., et al. (2013) Hypo-natremia and In-Hospital Mortality in Patients Admitted for Heart Failure (from the ATTEND Registry). The American Journal of Cardiology, 111, 1019-1025.
https://doi.org/10.1016/j.amjcard.2012.12.019
[8] Bavishi, C., Ather, S., Bambhroliya, A., et al. (2014) Prognos-tic Significance of Hyponatremia among Ambulatory Patients with Heart Failure and Preserved and Reduced Ejection Fractions. The American Journal of Cardiology, 113, 1834-1838.
https://doi.org/10.1016/j.amjcard.2014.03.017
[9] Hoorn, E.J. and Zietse, R. (2013) Hyponatremia and Mortality: Moving beyond Associations. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foun-dation, 62, 139-149.
https://doi.org/10.1053/j.ajkd.2012.09.019
[10] Yuzefpolskaya, M., Bohn, B., Nasiri, M., et al. (2020) Gut Micro-biota, Endotoxemia, Inflammation, and Oxidative Stress in Patients with Heart Failure, Left Ventricular Assist Device, and Transplant. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation, 39, 880-890.
https://doi.org/10.1016/j.healun.2020.02.004
[11] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37(6): 553-578.
[12] Fonarow, G.C., Heywood, J.T., Heidenreich, P.A., et al. (2007) Temporal Trends in Clinical Characteristics, Treatments, and Outcomes for Heart Failure Hospitalizations, 2002 to 2004: Findings from Acute Decompensated Heart Failure National Registry (ADHERE). American Heart Jour-nal, 153, 1021-1028.
https://doi.org/10.1016/j.ahj.2007.03.012
[13] 赵悦, 江新宁, 张思宁, 马良睢岩. 低钠血症对中、重度心力衰竭患者心脏功能和预后的影响[J]. 临床荟萃, 2011, 26(24): 2153-2155.
[14] Jao, G.T. and Chiong, J.R. (2010) Hyponatremia in Acute Decompensated Heart Failure: Mechanisms, Prognosis, and Treatment Options. Clinical Cardi-ology, 33, 666-671.
https://doi.org/10.1002/clc.20822
[15] Urso, C., Brucculeri, S. and Caimi, G. (2015) Ac-id-Base and Electrolyte Abnormalities in Heart Failure: Pathophysiology and Implications. Heart Failure Reviews, 20, 493-503.
https://doi.org/10.1007/s10741-015-9482-y
[16] Schrier, R.W. (1990) Body Fluid Volume Regulation in Health and Disease: A Unifying Hypothesis. Annals of Internal Medicine, 113, 155-159.
https://doi.org/10.7326/0003-4819-113-2-155
[17] Schrier, R.W. (2006) Water and Sodium Retention in Edema-tous Disorders: Role of Vasopressin and Aldosterone. The American Journal of Medicine, 119, S47-S53.
https://doi.org/10.1016/j.amjmed.2006.05.007
[18] Bankir, L., Bouby, N. and Ritz, E. (2013) Vasopressin: A Nov-el Target for the Prevention and Retardation of Kidney Disease? Nature Reviews. Nephrology, 9, 223-239.
https://doi.org/10.1038/nrneph.2013.22
[19] 安阳, 刘景娇, 张睢扬, 谢建新. 低钠血症的研究进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(5): 688-691.
[20] Davila, C.D. and Udelson, J.E. (2019) Hypervolemic Hyponatremia in Heart Failure. Frontiers of Hormone Research, 52, 113-129.
https://doi.org/10.1159/000493242
[21] Taylor, C.J., Moore, J. and O’Flynn, N. (2019) Diagnosis and Management of Chronic Heart Failure: NICE Guideline Update 2018. The British Journal of General Practice: The Journal of the Royal College of General Practitioners, 69, 265-266.
https://doi.org/10.3399/bjgp19X702665
[22] Simonavičius, J., Knackstedt, C. and Brunner-La Rocca, H.P. (2019) Loop Diuretics in Chronic Heart Failure: How to Manage Congestion? Heart Failure Reviews, 24, 17-30.
https://doi.org/10.1007/s10741-018-9735-7
[23] 刘建军, 王江红, 刘研, 高廷廷, 任燕军. 评估心力衰竭患者利尿剂抵抗理论依据和临床实践研究[J]. 中国心血管病研究, 2022, 20(9): 854-858.
[24] 张佳雨, 汪宇, 王林琳, 冯六六, 刘新兵. 利尿剂的种类及其在心力衰竭治疗中的研究进展[J]. 实用心脑肺血管病杂志, 2021, 29(5): 8-13.
[25] Klapczyńska, K., Aleksandrowicz, M. and Koźniewska, E. (2022) Role of the Endothelial Reverse Mode So-dium-Calcium Exchanger in the Dilation of the Rat Middle Cerebral Artery during Hypoosmotic Hyponatremia. Pflugers Archiv: European Journal of Physiology, 475, 381-390.
https://doi.org/10.1007/s00424-022-02770-z
[26] Tang, W., Li, D.Y. and Hazen, S.L. (2019) Dietary Metabolism, the Gut Microbiome, and Heart Failure. Nature Reviews. Car-diology, 16, 137-154.
https://doi.org/10.1038/s41569-018-0108-7
[27] Pasantes-Morales, H., Franco, R., Ordaz, B., et al. (2002) Mechanisms Counteracting Swelling in Brain Cells during Hyponatremia. Archives of Medical Research, 33, 237-244.
https://doi.org/10.1016/S0188-4409(02)00353-3
[28] 张知非, 刘杰, 保肇实, 史路平, 徐萌. 大鼠心室肌细胞调节性细胞容积减少的离子通道机制研究[J]. 心脏杂志, 2009, 21(4): 445-448.
[29] Annunziato, L., Pignataro, G. and Di Renzo, G.F. (2004) Pharmacology of Brain Na+/Ca2+ Exchanger: From Molecular Biology to Therapeutic Perspectives. Pharmacological Reviews, 56, 633-654.
https://doi.org/10.1124/pr.56.4.5
[30] Kim, B. and Matsuoka, S. (2008) Cytoplasmic Na+-Dependent Modulation of Mitochondrial Ca2+ via Electrogenic Mitochondrial Na+-Ca2+ Exchange. The Journal of Physiology, 586, 1683-1697.
https://doi.org/10.1113/jphysiol.2007.148726
[31] Kashihara, T., Nakayama, K., Matsuda, T., et al. (2009) Role of Na+/Ca2+ Exchanger-Mediated Ca2+ Entry in Pressure-Induced Myogenic Constriction in Rat Posterior Cerebral Arteries. Journal of Pharmacological Sciences, 110, 218-222.
https://doi.org/10.1254/jphs.09054SC
[32] Borgdorff, A.J., Somjen, G.G. and Wadman, W.J. (2000) Two Mechanisms That Raise Free Intracellular Calcium in Rat Hippocampal Neurons during Hypoosmotic and Low NaCl Treatment. Journal of Neurophysiology, 83, 81-89.
https://doi.org/10.1152/jn.2000.83.1.81
[33] McCormack, J.G., Halestrap, A.P. and Denton, R.M. (1990) Role of Calcium Ions in Regulation of Mammalian Intramitochondrial Metabolism. Physiological Reviews, 70, 391-425.
https://doi.org/10.1152/physrev.1990.70.2.391
[34] Liu, T. and O’Rourke, B. (2008) Enhancing Mitochondrial Ca2+ Uptake in Myocytes from Failing Hearts Restores Energy Supply and Demand Matching. Circulation Research, 103, 279-288.
https://doi.org/10.1161/CIRCRESAHA.108.175919
[35] Barsony, J., Manigrasso, M.B., Xu, Q., et al. (2013) Chronic Hyponatremia Exacerbates Multiple Manifestations of Senescence in Male Rats. Age (Dordrecht, Netherlands), 35, 271-288.
https://doi.org/10.1007/s11357-011-9347-9
[36] Mandai, S., Kuwahara, M., Kasagi, Y., et al. (2013) Lower Serum Sodium Level Predicts Higher Risk of Infection-Related Hospitalization in Maintenance Hemodialysis Pa-tients: An Observational Cohort Study. BMC Nephrology, 14, Article No. 276.
https://doi.org/10.1186/1471-2369-14-276
[37] Tang, W.H., Kitai, T. and Hazen, S.L. (2017) Gut Microbiota in Cardiovascular Health and Disease. Circulation Research, 120, 1183-1196.
https://doi.org/10.1161/CIRCRESAHA.117.309715