GINS2与肿瘤相关性研究最新进展
The Latest Progress of GINS2 Correlation with Tumor Research
DOI: 10.12677/ACM.2023.133447, PDF, HTML, XML, 下载: 250  浏览: 378 
作者: 熊楚晖:青海大学研究生院,青海 西宁
关键词: 肿瘤GINS复合体GINS2psf2Tumor GINS Complex GINS2 psf2
摘要: 随着我国肿瘤发生率的持续增高,我们需要一个对于肿瘤更加有效的治疗方式和更为敏感的诊断方法,同时我们也要加深了解肿瘤的发生及发展过程,从中发现相关规律并找到予以防治的方法。GINS2又称psf2与psf1,psf3,sld5共同组成GINS复合体的组成部分,并在细胞复制修复及周期调控中发挥着重要作用。近来相关研究表明GISN2与多种肿瘤的预后及发展密切相关,本文就GISN2目前相关研究进展探讨其与肿瘤之间的相关关系。
Abstract: With the continuous increase of the incidence of tumors in China, we need a more effective treat-ment and more sensitive diagnostic method for tumors. At the same time, we should also deepen the understanding of the occurrence and development process of tumors, and find out the relevant laws and find ways to prevent and cure them. GINS 2, also known as psf 2, together with psf 1, psf 3, slld 5, forms components of the GINS complex and plays an important role in cell replication repair and cycle regulation. Recently, relevant studies have shown that GISN2 is closely related to the prognosis and development of a variety of tumors. In this paper, we explore the relationship be-tween the correlation of GISN2 and tumors.
文章引用:熊楚晖, 周瀛. GINS2与肿瘤相关性研究最新进展[J]. 临床医学进展, 2023, 13(3): 3144-3149. https://doi.org/10.12677/ACM.2023.133447

1. GINS2蛋白及其GINS复合体的相关结构与功能

1.1. 结构

GINS2,也被称为PSF2,是由位于人类染色体16q24位点的GINS2基因编码的 [1] 其由6个螺旋和6条链组成 [2] ,与psf1、psf3、sld5共同组成GINS复合物。GINS复合物是一个90 kda的异四聚体,其四个组成部分蛋白质序列相似可能来源于同一个起源,并在古细菌中得到了验证 [3] ,电子显微镜(EM)研究显示,爪蟾GINS具有环状结构,与钳位增殖细胞核抗原(PCNA)结构相似,可能预示着其功能具有一定相似性 [4] ,GINS复合体由Sld5、psf1、psf3和Psf2顺时针排列并广泛地相互作用形成一个中空的椭圆形,中心管道可能不足以容纳单链或双链DNA [5] [6] ,中心通道的功能目前尚不清楚;Psf3n端短肽可能在门控进入通道中的作用已被提出 [7] ,但什么可能被门控目前尚不清楚。Sld5和Psf2的结构分别与Psf1和Psf3相似,这种结构上的相似性导致了GINS复合物的整个分子结构中存在伪双重对称 [5] 。根据目前对GINS复合体结构的研究,可以推断GINS复合体在复制叉上的作用和位置方面具有重要意义。

1.2. 功能

在真核生物的细胞周期中DNA复制需要经过一系列严密的调控,首先是M期和G1期形成复制前复合物(pre-RC),其次在S期组装其他复制蛋白以装载DNA聚合酶启动DNA合成。2003年高山等人发现GINS复合体在DNA复制过程中发挥十分重要的作用,并猜测GINS复合物可能与复制起源有关 [4] ,在进行复制的细胞进入M期后小染色体维持复合物2-7 (Mcm2-7)和起始识别复合物(orc)及cdc6、cdt1在复制起始处加载共同形成复制前复合物(pre-RC) [8] 。随后MCM2-7与GINS、cdc45共同结合后形成CMG复合体,GINS复合物激活mcm2-7解旋酶活性在DNA复制叉移动前展开DNA双链 [9] ,同时GINS作为桥梁将MCM与Polα-引物酶和DNA聚合酶(Polε)的引导体内DNA复制合成 [10] ,并提供了一种机制将前导链上的MCM解旋酶的进展与后随链上的启动事件结合起来 [11] 。同时有证据表明GINS可能在染色体分离也发挥作用,并与其在s期中的作用不同。在裂变酵母中,psf2基因被鉴定为Survivin同源物Bir1中温度敏感突变bir1-46的多拷贝抑制因子。Psf2蛋白的过表达也挽救了额外的bir1-46突变表型,包括TBZ敏感性(TBZ是一种微管毒药),这表明该蛋白可能在有丝分裂或胞质分裂中发挥作用 [1] 。也有相关研究表明GINS2与一系列受体、生长因子和一些重要蛋白一起,参与了细胞周期和增殖。

2. GINS2与肿瘤的相关性

2.1. 乳腺癌

2009年张、刘等人通过1200个乳腺肿瘤数据,确定了GINS2可能与乳腺癌转移相关 [12] ,并在随后的一年里通过筛选5760个人类基因,确定GINS2与体内的乳腺癌一个亚组侵袭性特征相关,并表明了核GINS2蛋白水平可区分增值活跃的癌细胞 [13] ,2014年通过研究发现GINS2转录水平较高的乳腺癌患者的他莫昔芬疗效较差且具有剂量依赖性,并表明了GINS2转录水平可以作为RFS和DMFS细胞乳腺癌的独立预后因子,且根据实验数据得出GINS2转录本的过表达与p53序列突变、组织学分级、肿瘤大小、他莫昔芬治疗、和获得性内分泌治疗耐药性显著相关 [14] 。在随后几年的研究中发现GINS2的表达在三阴性乳腺癌(TNBC)细胞系中富集。通过敲低GINS2的表达降低了TNBC细胞的生长、侵袭能力和干细胞样特性,并表明了GINS2的沉默导致基质金属蛋白酶-9 (MMP9)的显著降低影响TNBC的发生发展 [15] 。近年来多数研究表明了GINS2与乳腺癌及其亚型的增值及转移、治疗、预后等密切相关,且敲低GINS2的表达后这些特征有明显改善,如此可以判断GINS2可以作为乳腺癌的潜在生物标志物和的治疗靶点 [14] [15] 。

2.2. 结直肠癌

通过使用实时荧光定量PCR方法检测76例结直肠癌标本中GINS2的mrna表达情况,并分析其与结直肠癌患者临床病理特征及预后的关系发现GINS2的表达于结直肠癌的预后显著相关 [16] 。并在随后对结直肠癌的5-FU耐药性研究中确定了GINS2对于其耐药性的影响,表明GINS2的表达与结直肠癌的耐药性密切相关,且GINS2的高表达增加了结直肠癌的耐药性 [17] 。

2.3. 白血病

在GINS2siRNA转染到HL60细胞后,发现HL60细胞生长明显受到抑制 [18] 。目前已有研究表明酵母双杂交实验和免疫共沉淀,GINS2与PML-C (PML的结构域)相互作用,并发现转染GINS2 siRNA的细胞中凋亡相关蛋白Bcl-2的表达降低,而Bax的表达增加,同时在白血病相关研究中表明GINS2能通过p38MAPK信号通路在细胞生长过程中发挥作用,GINS2的表达水平可能会影响ATM、CHK2、bcl-2、bax及P53基因等相关基因的表达,并与白血病细胞的增值及凋亡密切相关 [19] 。

2.4. 肺癌

在肺腺癌的早期研究中,从90个肺腺癌样本中检查出GINS2与其正常周围组织具有表达差异,并通过pcr发现GINS2 mRNA在II期肺腺癌中显著高表达 [20] 。随后在对于非小细胞肺癌中的研究中表明在非小细胞肺癌中下调GINS2可通过p53/GADD45A通路抑制细胞增殖并促进细胞凋亡,同时也有相关研究表明GINS2的表达水平可以通过STAT信号通路及PI3K/Akt和MEK/ERK信号通路影响非小细胞肺癌的生理变化 [21] [22] ,促进细胞增殖、迁移、侵袭和上皮间充质转变。这可能是NSCLC治疗的一个靶点 [23] 。

2.5. 甲状腺癌

通过对于GINS2与甲状腺肿瘤相关研究发现,敲低或提高相关瘤细胞中的GINS2表达表明,GINS2的低表达可能通过调节CITED2和LOXL2的表达来抑制TC细胞增殖,促进细胞凋亡 [24] ,并表明沉默GINS2可以抑制MAPK通路的激活,进而影响细胞的增殖、凋亡、迁移和侵袭 [25] 。提示GINS2在甲状腺癌中可能是一种潜在的诊断或预后的生物标志物和治疗的药物靶点。

2.6. 其他肿瘤

在黑色素瘤中已有相关研究表明GINS2受lncRNA XIST/miR 23a 3p调控,介导A375细胞的增殖和凋亡 [26] ,并在随后的生信研究中发现GINS2的表达与黑色素瘤的预后及进展密切相关 [27] 。并表明可能GINS2可能成为治疗黑色素瘤的潜在新靶点及新的标志物。在膀胱癌研究中发现LncRNA SNHG3通过miR-515-5p/GINS2轴影响膀胱癌的增值和转移 [28] ,TRPM2-AS通过与miR-22-3p结合,增加GINS2的表达并导致膀胱癌细胞增殖、迁移、侵袭和EMT。也标示着膀胱与GINS2密切相关 [29] 。并通过胃腺癌标本组织与异体种植实验表明了GINS2的高表达对胃腺癌促进增值的作用 [30] 。同时随着近年来的研究,发现GINS2在卵巢癌、宫颈癌、胰腺癌、肝内胆管癌等相关癌症组织中高表达于其周围正常组织,均预示着GINS2可能于这些肿瘤的发生发展相关 [31] [32] [33] [34] 。

3. 讨论

随着近年来对于肿瘤相关的研究更倾向于机制研究,越来越多的研究开始寻找各个肿瘤与其增值、转移、间充质转变的相关基因及其相关通路,试图从肿瘤发生的根源去寻找肿瘤发生的原因及其诊断、治疗的方法,越来越多的研究发现GINS2与多数肿瘤的发生发展、增值、转移、预后、分期等密切相关,其在大多数肿瘤组织中高表达于周围正常组织,并在多数细胞及异体种植实验中发现GINS2的高表达促进肿瘤细胞的增值、转移和瘤体体积增大,相反GINS2的低表达能很好的控制肿瘤细胞的增值,停滞周期促进凋亡。GINS2作为GINS复合体中的一部分,在细胞周期中的作用主要随GINS复合体表现,但其单独的功能并不完全明确,例如目前在黑色素瘤及膀胱癌中可以作为下游因子受上游调控因子调控细胞周期及增值、转移,同时在白血病、肺癌、甲状腺癌中又可以作为上游调控因子调控下游因子对肿瘤进展进行调控 [19] [23] [25] 。随着将来对于GINS2更深入的研究,相信终将明白GINS2在肿瘤中完整的作用,并可能作为一个新的肿瘤标志物及治疗靶点。

NOTES

*通讯作者。

参考文献

[1] Huang, H.K., Bailis, J.M., Leverson, J.D., et al. (2005) Suppressors of Bir1p (Survivin) Identify Roles for the Chromo-somal Passenger Protein Pic1p (INCENP) and the Replication Initiation Factor Psf2p in Chromosome Segregation. Mo-lecular and Cellular Biology, 25, 9000-9015.
https://doi.org/10.1128/MCB.25.20.9000-9015.2005
[2] Choi, J.M., Lim, H., Kim, J.J., et al. (2007) Crystal Structure of the Human GINS Complex. Genes & Development, 21, 1316-1321.
https://doi.org/10.1101/gad.1548107
[3] Makarova, K.S., Wolf, Y.I., Mekhedov, S.L., et al. (2005) Ancestral Pa-ralogs and Pseudoparalogs and Their Role in the Emergence of the Eukaryotic Cell. Nucleic Acids Research, 33, 4626-4638.
https://doi.org/10.1093/nar/gki775
[4] Takayama, Y., Kamimura, Y., Okawa, M., et al. (2003) GINS, a Novel Multiprotein Complex Required for Chromosomal DNA Replication in Budding Yeast. Genes & Development, 17, 1153-1165.
https://doi.org/10.1101/gad.1065903
[5] Kubota, Y., Takase, Y., Komori, Y., et al. (2003) A Novel Ring-Like Complex of Xenopus Proteins Essential for the Initiation of DNA Replication. Genes & Development, 17, 1141-1152.
https://doi.org/10.1101/gad.1070003
[6] Boskovic, J., Coloma, J., Aparicio, T., et al. (2007) Molecular Architec-ture of the Human GINS Complex. EMBO Reports, 8, 678-684.
https://doi.org/10.1038/sj.embor.7401002
[7] Chang, Y.P., Wang, G., Bermudez, V., et al. (2007) Crystal Struc-ture of the GINS Complex and Functional Insights into Its Role in DNA Replication. Proceedings of the National Academy of Sciences of the United States of America, 104, 12685-12690.
https://doi.org/10.1073/pnas.0705558104
[8] Hyrien, O. (2016) How MCM Loading and Spreading Specify Eu-karyotic DNA Replication Initiation Sites. F1000Research, 5.
https://doi.org/10.12688/f1000research.9008.1
[9] MacNeill, S.A. (2010) Structure and Function of the GINS Complex, a Key Component of the Eukaryotic Replisome. Biochemical Journal, 425, 489-500.
https://doi.org/10.1042/BJ20091531
[10] De Falco, M., Ferrari, E., De Felice, M., et al. (2007) The Human GINS Complex Binds to and Specifically Stimulates Human DNA Polymerase Alpha-Primase. EMBO Reports, 8, 99-103.
https://doi.org/10.1038/sj.embor.7400870
[11] Marinsek, N., Barry, E.R., Makarova, K.S., et al. (2006) GINS, a Central Nexus in the Archaeal DNA Replication Fork. EMBO Reports, 7, 539-545.
https://doi.org/10.1038/sj.embor.7400649
[12] Thomassen, M., Tan, Q. and Kruse, T.A. (2009) Gene Expression Meta-Analysis Identifies Chromosomal Regions and Candidate Genes Involved in Breast Cancer Metastasis. Breast Cancer Research and Treatment, 113, 239-249.
https://doi.org/10.1007/s10549-008-9927-2
[13] Rantala, J.K., Edgren, H., Lehtinen, L., et al. (2010) Integrative Functional Genomics Analysis of Sustained Polyploidy Phenotypes in Breast Cancer Cells Identifies an Oncogenic Pro-file for GINS2. Neoplasia, 12, 877-888.
https://doi.org/10.1593/neo.10548
[14] Zheng, M., Zhou, Y., Yang, X., et al. (2014) High GINS2 Transcript Level Predicts Poor Prognosis and Correlates with High Histological Grade and Endocrine Therapy Resistance through Mam-mary Cancer Stem Cells in Breast Cancer Patients. Breast Cancer Research and Treatment, 148, 423-436.
https://doi.org/10.1007/s10549-014-3172-7
[15] Peng, L., Song, Z., Chen, D., et al. (2016) GINS2 Regulates Ma-trix Metallopeptidase 9 Expression and Cancer Stem Cell Property in Human Triple Negative Breast Cancer. Biomedicine & Pharmacotherapy, 84, 1568-1574.
https://doi.org/10.1016/j.biopha.2016.10.032
[16] Wei, H.B., Wen, J.Z., Wei, B., et al. (2011) Expression and Clinical Significance of GINS Complex in Colorectal Cancer. Chinese Journal of Gastrointestinal Surgery, 14, 443-447.
[17] Lee, S.H., Nam, J.K., Park, J.K., et al. (2014) Differential Protein Expression and Novel Biomarkers Re-lated to 5-FU Resistance in a 3D Colorectal Adenocarcinoma Model. Oncology Reports, 32, 1427-1434.
https://doi.org/10.3892/or.2014.3337
[18] Zhang, X., Zhong, L., Liu, B.Z., et al. (2013) Effect of GINS2 on Pro-liferation and Apoptosis in Leukemic Cell Line. International Journal of Medical Sciences, 10, 1795-1804.
https://doi.org/10.7150/ijms.7025
[19] Gao, Y., Wang, S., Liu, B. and Zhong, L. (2013) Roles of GINS2 in K562 Human Chronic Myelogenous Leukemia and NB4 Acute Promyelocytic Leukemia Cells. International Journal of Molec-ular Medicine, 31, 1402-1410.
https://doi.org/10.3892/ijmm.2013.1339
[20] Liu, M., Pan, H., Zhang, F., Zhang, Y., et al. (2013) Identification of TNM Stage-Specific Genes in Lung Adenocarcinoma by Genome-Wide Expression Profiling. Oncology Letters, 6, 763-768.
https://doi.org/10.3892/ol.2013.1469
[21] Sun, D., Zong, Y., Cheng, J., et al. (2021) GINS2 Attenuates the Development of Lung Cancer by Inhibiting the STAT Signaling Pathway. Journal of Cancer, 12, 99-110.
https://doi.org/10.7150/jca.46744
[22] Chi, F., Wang, Z., Li, Y. and Chang, N. (2020) Knockdown of GINS2 In-hibits Proliferation and Promotes Apoptosis through the p53/GADD45A Pathway in Non-Small-Cell Lung Cancer. Bio-science Reports, 40, BSR20193949.
https://doi.org/10.1042/BSR20193949
[23] Huang, L., Chen, S., Fan, H., et al. (2021) GINS2 Promotes EMT in Pancreatic Cancer via Specifically Stimulating ERK/MAPK Signaling. Cancer Gene Therapy, 28, 839-849.
https://doi.org/10.1038/s41417-020-0206-7
[24] Ye, Y., Song, Y.N., He, S.F., et al. (2019) GINS2 Promotes Cell Proliferation and Inhibits Cell Apoptosis in Thyroid Cancer by Regulating CITED2 and LOXL2. Cancer Gene Therapy, 26, 103-113.
https://doi.org/10.1038/s41417-018-0045-y
[25] He, S., Zhang, M., Ye, Y., et al. (2021) GINS2 Affects Cell Pro-liferation, Apoptosis, Migration and Invasion in Thyroid Cancer via Regulating MAPK Signaling Pathway. Molecular Medicine Reports, 23, 246.
https://doi.org/10.3892/mmr.2021.11885
[26] Hao, Y.Q., Liu, K.W., Zhang, X., et al. (2021) GINS2 Was Regu-lated by lncRNA XIST/miR-23a-3p to Mediate Proliferation and Apoptosis in A375 Cells. Molecular and Cellular Bio-chemistry, 476, 1455-1465.
https://doi.org/10.1007/s11010-020-04007-y
[27] Ma, J., Cai, X., Kang, L., et al. (2021) Identification of Novel Biomarkers and Candidate Small-Molecule Drugs in Cutaneous Melanoma by Comprehensive Gene Microarrays Analy-sis. Journal of Cancer, 12, 1307-1317.
https://doi.org/10.7150/jca.49702
[28] Tian, Y., Guan, Y., Su, Y., et al. (2021) TRPM2-AS Promotes Bladder Cancer by Targeting miR-22-3p and Regulating GINS2 mRNA Expression. OncoTargets and Therapy, 14, 1219-1237.
https://doi.org/10.2147/OTT.S282151
[29] Dai, G., Huang, C., Yang, J., et al. (2020) LncRNA SNHG3 Promotes Bladder Cancer Proliferation and Metastasis through miR-515-5p/GINS2 Axis. Journal of Cellular and Molecular Med-icine, 24, 9231-9243.
https://doi.org/10.1111/jcmm.15564
[30] Feng, H., Zeng, J., Gao, L., et al. (2021) GINS Complex Subunit 2 Facil-itates Gastric Adenocarcinoma Proliferation and Indicates Poor Prognosis. The Tohoku Journal of Experimental Medicine, 255, 111-121.
https://doi.org/10.1620/tjem.255.111
[31] Yan, T., Liang, W., Jiang, E., et al. (2018) GINS2 Regulates Cell Prolif-eration and Apoptosis in Human Epithelial Ovarian Cancer. Oncology Letters, 16, 2591-2598.
https://doi.org/10.3892/ol.2018.8944
[32] Ouyang, F., Liu, J., Xia, M., et al. (2017) GINS2 Is a Novel Prognostic Biomarker and Promotes Tumor Progression in Early-Stage Cervical Cancer. Oncology Reports, 37, 2652-2662.
https://doi.org/10.3892/or.2017.5573
[33] Bu, F., Zhu, X., Yi, X., et al. (2020) Expression Profile of GINS Com-plex Predicts the Prognosis of Pancreatic Cancer Patients. OncoTargets and Therapy, 13, 11433-11444.
https://doi.org/10.2147/OTT.S275649
[34] Obama, K., Ura, K., Satoh, S., et al. (2005) Up-Regulation of PSF2, a Member of the GINS Multiprotein Complex, in Intrahepatic Cholangiocarcinoma. Oncology Reports, 14, 701-706.
https://doi.org/10.3892/or.14.3.701