伴中央–颞区棘波的自限性癫痫发病机制、共患病及药物治疗进展
Progress in Pathogenesis, Comorbidity and Drug Treatment of Self-Limited Epilepsy with Centrotemporal Spikes
DOI: 10.12677/ACM.2023.133458, PDF, HTML, XML, 下载: 356  浏览: 510 
作者: 谢 丽, 李听松:重庆医科大学附属儿童医院康复科,重庆
关键词: 伴中央–颞区棘波的自限性癫痫发病机制共患病药物治疗Self-Limited Epilepsy with Centrotemporal Spikes Pathogenesis Comorbidity Medication
摘要: 伴中央–颞区棘波的自限性癫痫是儿童最常见的癫痫综合征,以自限性癫痫发作为主要特征,可伴有不同程度的精神、行为及认知障碍。其发病机制可能与遗传因素、大脑微结构损伤、大脑功能网络受损等相关,同时其可合并行为认知等方面并发症,对于患者生活质量有不同程度的影响,抗发作药物治疗的时机、方案还缺乏可靠证据支持。本文通过对伴中央颞区棘波的自限性癫痫最新文献查阅,拟对其发病机制、共患病及治疗方案做一综述。
Abstract: Self-limiting epilepsy with centrotemporal spikes is the most common epilepsy syndrome in chil-dren, with self-limited seizures as the main feature, and can be accompanied by different levels of mental, behavioral and cognitive disorders. Its pathogenesis may be related to genetic factors, brain micro-structure damage, brain functional network damage, etc. At the same time, it can be combined with behavioral cognitive and other complications, which have different degrees of im-pact on the quality of life for patients. The timing and plan of anti-epileptic drug treatment still lack reliable evidence support. This article reviews the pathogenesis, comorbidity and treatment of self-limited epilepsy with central temporal spikes by reviewing the latest literature.
文章引用:谢丽, 李听松. 伴中央–颞区棘波的自限性癫痫发病机制、共患病及药物治疗进展[J]. 临床医学进展, 2023, 13(3): 3222-3227. https://doi.org/10.12677/ACM.2023.133458

1. 引言

伴有中央–颞区棘波的自限性癫痫(Self-limited epilepsy with centrotemporal spikes, SeLECTS),过去称为伴中央颞区棘波的良性癫痫(Benign epilepsy with centrotemporal spikes, BECT) [1] ,近些年的研究在癫痫发作频率、病情进展,伴有的神经心理障碍方面均报道了更为严重的后果,故2022年国际抗癫痫协会在新的分类中使用“自限性”一词取代“良性”。同时SeLECTS在语言障碍、脑电图睡眠期持续癫痫样放电等表现与获得性癫痫失语综合征(Landau-Kleffner syndrome, LKS)、癫痫伴慢波睡眠期持续棘慢波(epilepsy with continuous spikes and waves during slow sleep, CSWS)等综合征有部分重叠,临床研究中约6.6%的SeLECTS患者符合更严重的癫痫性脑病的标准 [2] ,有学者提出应将其视为癫痫–失语症谱系疾病中表现较轻的癫痫性脑病。

SeLECTS的发病机制尚不完全明确,可能涉及复杂的遗传机制,近期研究提出大脑微结构异常及功能网络的等存在异常,可能与SeLECTS患者癫痫发作及其合并的一系列认知障碍相关。发病机制的探讨对于提供治疗思路及改善预后至关重要。同时SeLECTS合并的神经心理损害如注意力缺陷、语言障碍等已被广泛报道,其对于学龄前及学龄期儿童的技能学习、社交发展等均有影响,对于这些共患病的系统认知有助于临床中及时识别及积极干预,对于提升患者生活质量具有重要意义。另外临床中超过2/3的SeLECTS患者接受了抗发作药物治疗 [3] ,但对于典型SeLECTS是否应启用药物治疗仍存争议 [4] ,药物治疗时机及方案尚无可靠证据。本文就目前报道的发病机制、共患病及药物治疗情况进行综述。

2. SeLECTS的发病机制

SeLECTS可能存在复杂的遗传背景,但目前报道的可能相关的基因突变如GRIN2A、ELP4、CHRNA5、PRRT2、SRPX2等均在LKS、CSWS等更为严重的癫痫–失语症谱系疾病表型中更常见 [5] ,Lemke等人报道了GRIN2A在CSWS患者中突变率约有17.6%,而典型的SeLECTS患者中仅约4.9% [6] ,另一项研究中11.1%的LKS和7.1%的ABPE中检测到GRIN2A突变,而典型SeLECTS患者中未发现 [7] ,同样的有研究分析PRRT2、ELP4、SRPX2等单基因突变与癫痫SeLECTS的关联后发现这些基因与SeLECTS并无关联,Shi等人也在一项大规模全基因组关联研究中经比对后未发现主要致病基因,提出SeLECTS的遗传可能为多种常见基因突变共同导致,同时报道了母亲在出生时吸烟可使BECTS风险增加3.9倍 [5] ;表明对于典型SeLECTS可能有必要进行进一步的多基因共同作用及表观遗传的分析,而目前报道的单基因突变可能仅对后续非典型进展及认知障碍具有提示作用。

SeLECTS患者大脑白质存在微观结构的改变,尤其是丘脑Rolandic皮层回路,其结构及功能连接均存在异常,Emily等人观察到,不同于健康儿童丘脑Rolandic皮层回路结构连接随着年龄增长而增加,较小年龄段SeLECTS患者其结构连接有异常增加,随着年龄增加结构连接相对减少,由此提出异常增加的结构连接可能涉及SeLECTS的发病,而后续连接减少可能是一种代偿机制 [8] 。同样的Hunki Kwon等人对比了疾病活动期、缓解期的SeLECTS患者及健康儿童的丘脑Rolandic皮层结构及功能网络连接,发现无论在疾病活动期还是缓解后的患者中,结构及功能连接与年龄的正相关均遭到破坏,并进一步将丘脑Rolandic回路异常定位到Rolandic下皮层–外侧核丘脑运动回路,其功能连接在SeLECTS疾病活动期患者中随着年龄出现异常增加,且可随着症状的缓解而缓解,但缓解后其结构连接呈异常增加 [9] 。基于MRI的形态学研究还发现SeLECTS患者中存在灰质异常增厚,主要集中在Rolandic区及涉及执行功能的区域,年龄越小越明显,随着癫痫病程的延长,皮层厚度可逐渐变薄 [10] ,符合其病程自限性特点,YinXu等人的研究对比是否接受药物治疗的SeLECTS患者,发现使用药物治疗的患者其皮层厚度较未接收药物治疗的患者变薄,同时治疗后的患者较治疗前相应区域的皮层更薄,表明皮层形态改变可能在抗发作药物治疗中起到中介作用。

SeLECTS患者合并的认知及行为障碍可能与中央颞区棘波(Centrotemporal spikes, CTS)密切相关,在双胞胎试验中观察到,即使没有癫痫发作,仅监测到CTS也可表现出类似的认知障碍及神经心理异常,同时注意缺陷及多动障碍(Attention deficit and hyperactivity disorder, ADHD)、孤独症谱系障碍(Autism Spectrum Disorder, ASD)等患者中CTS发生率远高于健康儿童中发病率。其机制可能与CTS干扰慢波及纺锤波的形成有关,后者对于记忆巩固及大脑突触可塑性至关重要,可进一步导致认知受损 [11] ,在合并ESES的患者中尤为显著 [12] ,但这种纺锤波缺陷仅在疾病的活动期短暂存在 [11] 。另外,CTS还可影响正常的灰质修剪过程,使得本应消除的连接保留或建立异常连接,这对于执行功能影响尤为突出,涉及多种技能发展 [13] 。此外神经功能影像学发现致痫区的皮质存在代谢亢进,而病灶周围及远端的局部皮质存在代谢低下、功能连接减少,由此提出周围皮层抑制学说,认为这种代谢减低的皮质涉及到默认模式网络(default mode network, DMN),这可能是影响认知的机制之一 [14] 。

3. SeLECTS的共患病

在SeLECTS患者可合并一系列精神行为并发症 [2] ,最常见的为ADHD,目前报道的共患率在29%~65.6%之间不等 [15] ,均远高于儿童中7%~8%的患病率,共患ADHD的SeLECTS患者表现以注意力缺陷为主,且起病年龄越小的患者,注意力缺陷更严重 [16] ,共患ADHD的儿童在智力、语言等方面得分低于正常儿童;且较无相关合并症的SeLECTS患者病程更长,更倾向于接受多种抗发作药物治疗 [17] ,但随着病情缓解,注意力网络受损等可逆转 [18] 。其次抑郁焦虑等情绪障碍在SeLECTS患者中也较为常见,发生率约为23.6% [2] ,情绪障碍可能与年龄、放电指数及发作频率相关 [19] 。另有小部分患者还可合并孤独症谱系障碍、对立违抗性障碍等 [15] 。这些精神行为合并症在疾病活动期对于患儿技能学习、社交等方面有不同程度的影响,虽然研究报道在长期随访中对成年后生活质量无显著影响,但鉴于患者多处于学龄前及学龄期,仍有必要进行积极干预 [20] 。

一项大型META分析报道SeLECTS患者存在广泛的认知功能受损 [21] ,尤其是长期存储及获取能力缺陷,涉及将新信息进行储存和固化为长期记忆的能力,以及后续通过联想获取已经存储的信息,其次整体智能、获得知识、短期记忆能力、处理速度和流利程度–获取均有中等程度的受损,视觉信息处理能力则存在轻度受损。这些认知缺陷在SeLECTS患者中可表现为不同程度的语言障碍如语言表达能力,语言流畅度、语音意识、阅读能力等 [22] ,以及其他非语言认知功能如视觉整合能力、执行功能、精细动作执行、记忆和处理速度等;进一步可损害SeLECTS患者的社会认知能力,影响患者日常沟通及人际关系的处理 [23] ,同时SeLECTS患者对于悲伤、恐惧和厌恶的情绪识别能力得分显著低于健康儿童,起病年龄越小这种差异越明显 [24] 。这些认知缺陷的发生多认为与发作频率、脑电图等临床特征无显著相关 [23] ,意味着即使在癫痫发作罕见或得到控制的患者,进行认知评估也很有必要。

4. SeLECTS药物治疗反应及药物选择

SeLECTS的发作稀疏及自限性病程为是否启用药物治疗带来争议,研究表明抗发作药物对于SeLECTS患者控制癫痫发作疗效十分有限,约三分之二患者在用药后仍有至少一次癫痫发作,即使达到连续12月无发作,仍有38.3%患者后续再次发作 [25] ,且与未接受药物治疗的SeLECTS患者相比,药物治疗仅在最初1~2年内可显著减少发作频次 [4] ,接受药物治疗还会增加患者自卑、焦虑、抑郁及病耻感等,对其社交及自身发展造成影响 [26] ,部分药物如卡马西平、奥卡西平甚至可能加重病情、诱导其他形式发作、加重认知障碍等,故在衡量是否启用药物治疗及选用治疗方案时,应综合考量利弊。通常认为癫痫发作次数少、仅在夜间发作及年龄接近自然缓解的患者,一般不需要抗发作药物治疗,而有癫痫频繁发作、日间发作、出现继发性全身性发作,合并与SeLECTS相关的精神行为异常及认知障碍,以及出现睡眠中的癫痫电状态((ESES)等脑电图恶化趋势时应考虑开始药物治疗 [27] 。

关于抗发作药物的选择目前仍然缺乏可靠证据,2013年IALE提出的SeLECTS的用药指南中推荐证据仅为C级(CBZ, VPA)、D级(GBP, LEV, OXC, STM) [28] ;不同国家地区用药方案有很大差异,2021年英国国家卫生与临床优化研究所推荐的一线药物为CBZ、LTG,2020的比利时癫痫指南中推荐VPA、LEV、sulthiame作为首选 [29] ,国内专家共识则推荐OXC作为一线用药。国内临床最常用的抗发作药物是OXC、LEV及VPA [3] 。上述抗发作药物在癫痫发作结局上无显著差异,实际临床决策中需同时参考各类药物的安全性、耐受性及对神经心理等问题的改善作用等。

5. 研究展望

近年来基因测序及大脑功能影像学等检测手段为进一步探讨SeLECTS发病机制等提供了便利,还需更多研究进一步阐明,未来对于SeLECTS的遗传机制可能需要更多的多基因分析及表观遗传的研究,同时SeLECTS患者广泛合并的神经心理异常及认知障碍可能与其临床特征无关,故临床中应重视其心理及认知功能的评估,对于提升患者生活质量至关重要;另外目前抗发作药物治疗仍疗效有限,尤其对于有非典型进展的患者,需要更多临床研究协助用药方案的制定。

参考文献

[1] Specchio, N., Wirrell, E.C., Scheffer, I.E., Nabbout, R., Riney, K., Samia, P., Guerreiro, M., Gwer, S., Zuberi, S.M., Wilmshurst, J.M., Yozawitz, E., Pressler, R., Hirsch, E., Wiebe, S., Cross, H.J., Perucca, E., Moshe, S.L., Tinuper, P. and Auvin, S. (2022) International League Against Epilepsy Classification and Definition of Epilepsy Syndromes with Onset in Childhood: Position Paper by the ILAE Task Force on Nosology and Definitions. Epilepsia, 63, 1398-1442.
https://doi.org/10.1111/epi.17241
[2] Ross, E.E., Stoyell, S.M., Kramer, M.A., Berg, A.T. and Chu, C.J. (2020) The Natural History of Seizures and Neuropsychiatric Symptoms in Childhood Epilepsy with Centrotemporal Spikes (CECTS). Epilepsy & Behavior, 103, Article ID: 106437.
https://doi.org/10.1016/j.yebeh.2019.07.038
[3] Liu, M.-J., Su, X.-J., Md, X.-Y.S., Wu, G.-F., Zhang, Y.-Q., Gao, L., Wang, W., Liao, J.-X., Wang, H., Mai, J.-N., Gao, J.-Y., Shu, X.-M., Huang, S.-P., Zhang, L. and Zou, L.-P. (2017) Clinical Features of Benign Epilepsy of Childhood with Centrotemporal Spikes in Chinese Children. Medicine, 96, e5623.
https://doi.org/10.1097/MD.0000000000005623
[4] Xie, W., Ross, E.E., Kramer, M.A., Eden, U.T. and Chu, C.J. (2018) Timing Matters: Impact of Anticonvulsant Drug Treatment and Spikes on Seizure Risk in Benign Epilepsy with Centrotemporal Spikes. Epilepsia Open, 3, 409-417.
https://doi.org/10.1002/epi4.12248
[5] Shi, X.Y., Wang, G., Li, T., Li, Z., Leo, P., Liu, Z., Wu, G., Zhu, H., Zhang, Y., Li, D., Gao, L., Yang, L., Wang, W., Liao, J., Wang, J., Zhou, S., Wang, H., Li, X., Gao, J., Zhang, L., Shu, X., Li, D., Li, Y., Chen, C., Zhang, X., Partida, G.C., Lundberg, M., Reutens, D., Bartlett, P., Brown, M.A., Zou, L.P. and Xu, H. (2020) Identification of Susceptibility Variants to Benign Childhood Epilepsy with Centro-Temporal Spikes (BECTS) in Chinese Han Population. EBioMedicine, 57, Article ID: 102840.
https://doi.org/10.1016/j.ebiom.2020.102840
[6] Lemke, J.R., Lal, D., Reinthaler, E.M., Steiner, I., Nothnagel, M., Alber, M., Geider, K., Laube, B., Schwake, M., Finsterwalder, K., Franke, A., Schilhabel, M., Jahn, J.A., Muhle, H., Boor, R., Van Paesschen, W., Caraballo, R., Fejerman, N., Weckhuysen, S., De Jonghe, P., Larsen, J., Moller, R.S., Hjalgrim, H., Addis, L., Tang, S., Hughes, E., Pal, D.K., Veri, K., Vaher, U., Talvik, T., Dimova, P., Guerrero Lopez, R., Serratosa, J.M., Linnankivi, T., Lehesjoki, A.E., Ruf, S., Wolff, M., Buerki, S., Wohlrab, G., Kroell, J., Datta, A.N., Fiedler, B., Kurlemann, G., Kluger, G., Hahn, A., Haberlandt, D.E., Kutzer, C., Sperner, J., Becker, F., Weber, Y.G., Feucht, M., Steinbock, H., Neophythou, B., Ronen, G.M., Gruber-Sedlmayr, U., Geldner, J., Harvey, R.J., Hoffmann, P., Herms, S., Altmuller, J., Toliat, M.R., Thiele, H., Nurnberg, P., Wilhelm, C., Stephani, U., Helbig, I., Lerche, H., Zimprich, F., Neubauer, B.A., Biskup, S. and von Spiczak, S. (2013) Mutations in GRIN2A Cause Idiopathic Focal Epilepsy with Rolandic Spikes. Nature Genetics, 45, 1067-1072.
https://doi.org/10.1038/ng.2728
[7] Yang, X., Qian, P., Xu, X., Liu, X., Wu, X., Zhang, Y. and Yang, Z. (2018) GRIN2A Mutations in Epilepsy-Aphasia Spectrum Disorders. Brain and Development, 40, 205-210.
https://doi.org/10.1016/j.braindev.2017.09.007
[8] Thorn, E.L., Ostrowski, L.M., Chinappen, D.M., Jing, J., Westover, M.B., Stufflebeam, S.M., Kramer, M.A. and Chu, C.J. (2020) Persistent Abnormalities in Rolandic Thalamocortical White Matter Circuits in Childhood Epilepsy with Centrotemporal Spikes. Epilepsia, 61, 2500-2508.
https://doi.org/10.1111/epi.16681
[9] Kwon, H., Chinappen, D.M., Huang, J.F., Berja, E.D., Walsh, K.G., Shi, W., Kramer, M.A. and Chu, C.J. (2022) Transient, Developmental Functional and Structural Connectivity Abnormalities in the Thalamocortical Motor Network in Rolandic Epilepsy. NeuroImage: Clinical, 35, Article ID: 103102.
https://doi.org/10.1016/j.nicl.2022.103102
[10] Xu, Y., Xu, Q., Zhang, Q., Stufflebeam, S.M., Yang, F., He, Y., Hu, Z., Weng, Y., Xiao, J., Lu, G. and Zhang, Z. (2021) Influence of Epileptogenic Region on Brain Structural Changes in Rolandic Epilepsy. Brain Imaging and Behavior, 16, 424-434.
https://doi.org/10.1007/s11682-021-00517-5
[11] Kramer, M.A., Stoyell, S.M., Chinappen, D., Ostrowski, L.M., Spencer, E.R., Morgan, A.K., Emerton, B.C., Jing, J., Westover, M.B., Eden, U.T., Stickgold, R., Manoach, D.S. and Chu, C.J. (2021) Focal Sleep Spindle Deficits Reveal Focal Thalamocortical Dysfunction and Predict Cognitive Deficits in Sleep Activated Developmental Epilepsy. Journal of Neuroscience, 41, 1816-1829.
https://doi.org/10.1523/JNEUROSCI.2009-20.2020
[12] Klinzing, J.G., Tashiro, L., Ruf, S., Wolff, M., Born, J. and Ngo, H.-V.V. (2021) Auditory Stimulation during Sleep Suppresses Spike Activity in Benign Epilepsy with Centrotemporal Spikes. Cell Reports Medicine, 2, Article ID: 100432.
https://doi.org/10.1016/j.xcrm.2021.100432
[13] Filippini, M., Boni, A., Giannotta, M. and Gobbi, G. (2013) Neuropsychological Development in Children Belonging to BECTS Spectrum: Long-Term Effect of Epileptiform Ac-tivity. Epilepsy & Behavior: E&B, 28, 504-511.
https://doi.org/10.1016/j.yebeh.2013.06.016
[14] Van Bogaert, P. (2020) Epilepsy Syndromes of Childhood with Sleep Activation: Insights from Functional Imaging. European Journal of Paediatric Neurology, 24, 58-60.
https://doi.org/10.1016/j.ejpn.2019.12.006
[15] Özgen, Y., Güngör, M., Kutlu, M. and Kara, B. (2021) Clinical and Electrophysiological Predictors of Behavioral Disorders in Patients with Benign Childhood Epilepsy with Centrotemporal Spikes. Epilepsy & Behavior: E&B, 121, Article ID: 108037.
https://doi.org/10.1016/j.yebeh.2021.108037
[16] Danhofer, P., Pejčochová, J., Dušek, L., Rektor, I. and Ošlejšková, H. (2018) The Influence of EEG-Detected Nocturnal Centrotemporal Discharges on the Expression of Core Symptoms of ADHD in Children with Benign Childhood Epilepsy with Centrotemporal Spikes (BCECTS): A Prospective Study in a Tertiary Referral Center. Epilepsy & Behavior: E&B, 79, 75-81.
https://doi.org/10.1016/j.yebeh.2017.11.007
[17] Huang, C., Hu, W., Tan, G., Xu, Y. and Liu, L. (2020) Clinical and Electroencephalographic Features of Benign Childhood Epilepsy with Centrotemporal Spikes Comorbidity with Attention-Deficit Hyperactivity Disorder in Southwest China. Epilepsy & Behavior, 111, Article ID: 107240.
https://doi.org/10.1016/j.yebeh.2020.107240
[18] Wu, L., Yang, X., Wang, X., Yu, S. and Yang, B. (2021) The Attention Networks in Benign Epilepsy with Centrotemporal Spikes: A Long-Term Follow-Up Study. Journal of Clin-ical Neuroscience, 88, 22-27.
https://doi.org/10.1016/j.jocn.2021.03.022
[19] Liu, X. and Han, Q. (2016) Depression and Anxiety in Children with Benign Childhood Epilepsy with Centrotemporal Spikes (BCECTS). BMC Pediatrics, 16, 128.
https://doi.org/10.1186/s12887-016-0670-2
[20] Camfield, C.S. and Camfield, P.R. (2014) Rolandic Epilepsy Has Little Effect on Adult Life 30 Years Later: A Population-Based Study. Neurology, 82, 1162-1166.
https://doi.org/10.1212/WNL.0000000000000267
[21] Wickens, S., Bowden, S.C. and D’Souza, W. (2017) Cog-nitive Functioning in Children with Self-Limited Epilepsy with Centrotemporal Spikes: A Systematic Review and Me-ta-Analysis. Epilepsia, 58, 1673-1685.
[22] Teixeira, J.M., Santos, M.E. and Oom, P. (2020) Oral Language in Children with Benign Childhood Epilepsy with Centrotemporal Spikes. Epilepsy & Behavior: E&B, 111, Article ID: 107328.
https://doi.org/10.1016/j.yebeh.2020.107328
[23] Lima, E.M., Rzezak, P., Montenegro, M.A., Guerreiro, M.M. and Valente, K.D.R. (2020) Social Cognition in Childhood Epilepsy with Centrotemporal Spikes. Seizure, 78, 102-108.
https://doi.org/10.1016/j.seizure.2020.03.014
[24] Wu, L., Yang, X., Zhang, K., Wang, X. and Yang, B. (2021) Impairment of Eye Emotion Discrimination in Benign Childhood Epilepsy with Centrotemporal Spikes: A Neuropsy-chological Study. Brain and Behavior, 11, e02154.
https://doi.org/10.1002/brb3.2154
[25] Watemberg, N., Afunevitz, S., Ganelin-Cohen, E. and Mahajnah, M. (2018) Clinical Features at the Time of Diagnosis of Benign Epilepsy with Centrotemporal Spikes Do Not Predict Subsequent Seizures. Pediatric Neurology, 88, 36-39.
https://doi.org/10.1016/j.pediatrneurol.2018.08.024
[26] An, O., Nagae, L.M., Aringazina, A. and Winesett, S.P. (2021) Comparative Assessment of Health-Related Quality of Life with and without Anticonvulsant Therapy in Patients with Childhood Epilepsy with Centrotemporal Spikes. Journal of International Medical Research, 49, No. 8.
https://doi.org/10.1177/03000605211039805
[27] Miranda, M.J. and Ahmad, B.B. (2017) Treatment of Rolandic Epilepsy. LID-V06170482 [pii].
[28] Glauser, T., Ben-Menachem, E., Fau-Bourgeois, B., et al. (2013) Updated ILAE Evidence Review of Antiepileptic Drug Efficacy and Effectiveness as Initial Monotherapy for Epileptic Seizures and Syndromes. Epilepsia, 54, 551-563.
[29] Boon, P.A.-O., Ferrao Santos, S.A.-O., Jansen, A.A.-O., Lagae, L.A.-O., Legros, B.A.-O. and Weckhuysen, S.A.-O. (2021) Recommendations for the Treatment of Epilepsy in Adult and Pedi-atric Patients in Belgium: 2020 Update. Acta Neurologica Belgica, 121, 241-257.