MRI对乳腺癌药物治疗所致心脏毒性的早期检测
Early Detection of MRI Cardiac Toxicity Caused by the Treatment of Breast Cancer Drugs
DOI: 10.12677/ACM.2023.133677, PDF, HTML, XML, 下载: 165  浏览: 268  科研立项经费支持
作者: 王 滕*, 王翠艳:山东大学,山东 济南;山东省立医院放射科,山东 济南
关键词: 磁共振成像乳腺癌心脏毒性化学治疗靶向治疗Magnetic Resonance Imaging Breast Cancer Cardiotoxicity Chemotherapy Targeted Therapy
摘要: 有数据显示,乳腺癌已占据女性癌症发病率和死亡率的首位,但得益于医疗水平的进步,患者的生存时间整体延长。然而代价是心脏毒性和心功能不全的风险增加,有必要引起医生足够的警惕和重视。心脏磁共振(Cardiac Magnetic Resonance, CMR)可显示心脏的结构、功能及心肌组织特征,其先进的测量应变及mapping技术可早期发现心肌损伤,包括心肌水肿、纤维化及亚临床心肌功能改变等。总之心脏MRI可早期发现乳腺癌治疗所致心脏毒性,并对后续的监测、疗效评估及预后判断具有重要的临床价值。本文就MRI对乳腺癌药物治疗所致心脏毒性的早期检测作一综述。
Abstract: Some data show that breast cancer has occupied the first place in terms of cancer morbidity and mortality in women, but due to medical advances, patients have an overall longer survival time. The cost, however, is an increased risk of cardiotoxicity and cardiac insufficiency, warranting sufficient vigilance and attention from physicians. Cardiac Magnetic Resonance (CMR) reveals the structure, function, and myocardial tissue characteristics of the heart, and its advanced strain and mapping techniques allow for early detection of myocardial injury, including myocardial edema, fibrosis, and subclinical myocardial functional changes. In conclusion, cardiac MRI can provide early detection of cardiotoxicity due to breast cancer treatment and is clinically important for follow-up monitoring, efficacy assessment, and prognosis. In this paper, we review the early detection of cardiotoxicity due to breast cancer drug therapy by MRI.
文章引用:王滕, 王翠艳. MRI对乳腺癌药物治疗所致心脏毒性的早期检测[J]. 临床医学进展, 2023, 13(3): 4726-4733. https://doi.org/10.12677/ACM.2023.133677

1. 引言

目前,乳腺癌占全球女性癌症发病率和死亡率的首位,且在中国的发病率还在快速升高 [1],但得益于医疗水平的进步,患者生存时间明显延长 [2]。然而,癌症治疗产生的心脏毒性对幸存者生存质量的影响越来越大,早期发现及监测心脏毒性是必不可少的 [3] [4]。心脏磁共振(Cardiac Magnetic Resonance, CMR)具有多参数,多序列,可重复,无创等优点,其先进的应变及mapping等技术可在左室射血分数(Left Ventricular Ejection Fraction, LVEF)下降之前早期发现心肌损伤,为临床早期干预提供重要信息。

2. 常用药物及致病机制

乳腺癌治疗常用传统化疗药包括:① 蒽环类,如阿霉素、柔红霉素等;② 烷化剂,如环磷酰胺、铂类等;③ 抗代谢药,如5-氟尿嘧啶、甲氨蝶呤和卡倍他滨等;④ 微管抑制剂,如紫杉醇、多西他赛等。乳腺癌治疗常用靶向药物为HER2受体抑制剂,如曲妥珠单抗、帕妥珠单抗、奈拉替尼等。

2.1. 传统化疗药

蒽环类药物是乳腺癌化疗最常用的药物,但其所致心脏毒性的风险也是最大的。蒽环类药物对心脏的损伤主要是通过抑制心肌拓扑异构酶IIβ,影响DNA的转录和复制 [5],进而导致过量活性氧(Reactive Oxygen Species, ROS)产生和线粒体损伤 [6],最终可致心肌细胞纤维化、萎缩、凋亡甚至坏死 [7] [8]。蒽环类药物相关心力衰竭(Heart Failure, HF)是剂量依赖性的,一项回顾性研究表明,大多数事件发生在累积剂量 ≥ 500 mg/m2。总体而言,累积剂量为400 mg/m2时,HF的发生率约为5%,500 mg/m2时为16%,550 mg/m2时为26%,700 mg/m2时为48% [9]。然而,患者对蒽环类药物的敏感性存在很大的差异。虽然许多人耐受标准剂量的蒽环类药物,没有长期并发症,但其他患者可能最早在第一次服药后就出现与治疗相关的心脏毒性 [10]。

环磷酰胺的心脏毒性相对罕见,主要见于给予较高单剂量药物治疗的患者。心力衰竭通常发生在给药后3周内,降低该药物的剂量可大大降低这些不良事件的发生率 [11]。含铂的化疗需要高静脉输液量,以避免铂相关的毒性。但是已经存在心肌损伤的患者的这种容量超负荷,往往是导致首次或反复发作心力衰竭的原因,而不是这些药物的直接毒性 [12]。

5-氟尿嘧啶(5-FU)及其口服前体药物卡培他滨可导致心肌缺血,发生率通常 < 10% [13]。缺血的机制可能与其诱导冠状动脉痉挛有关,潜在的冠状动脉疾病似乎增加了这种风险。与5-FU相关的心脏毒性似乎主要与其给药程序有关,而不是与使用的剂量有关。持续输注比推注有更高的风险 [14]。

紫杉醇导致心律失常的原因可能是细胞器的损伤 [14]。多烯紫杉醇与蒽环类药物、环磷酰胺或曲妥珠单抗联合使用或后续使用,是否会增加心力衰竭的发病率还未确定;因为,在多药联用方案中单独使用药物的作用往往很难评估 [12]。

2.2. HER2受体抑制剂

曲妥珠单抗可抑制心肌细胞人表皮生长因子受体,从而导致线粒体和收缩蛋白的ATP耗竭和收缩功能障碍。与HER2阳性乳腺癌患者心脏毒性相关的主要药物包括蒽环类药物和曲妥珠单抗 [15]。在HER2阳性的乳腺癌患者中,由于癌症治疗而导致的主要心脏事件的5年累积发生率估计为4.13%,而在普通非癌症人群中相应的发生率为1.68% [16] [17]。当蒽环类药物与曲妥珠单抗联合使用时,患者的无病生存期和总生存期显著增加,但心脏毒性发生率很高。已知曲妥珠单抗导致心脏毒性的病理生理机制与直接对心肌细胞造成结构性损害的蒽环类药物相反,其作用机制包括通过抑制信号转导、新血管生成和修复其他治疗方法造成的DNA损伤而产生细胞毒性 [18]。这些损害机制可能解释了同时使用曲妥珠单抗和蒽环类药物会增加心脏毒性的风险。曲妥珠单抗可以通过干扰细胞生存和修复的稳态机制和途径来加重和加速先前的蒽环类药物治疗造成的损害 [19]。

3. 心脏磁共振研究进展

3.1. 心脏结构序列

常规轴位、冠状位和矢状位的T1和T2加权定位图像提供了有关心胸结构的基本形态数据 [20]。尤其是乳腺癌患者,可表现为药物相关的HF所致的胸腔积液。此外,可以确定转移灶,这可能有助于设计治疗策略。

3.2. 心脏功能序列

常规电影序列可提供射血分数、每搏输出量、容积、心肌质量及心指数等多种功能信息,并且具有良好的可重复性及较高的观察者间和观察者内的一致性 [21]。CMR是目前检测和监测心室功能和容量的金标准 [22]。

癌症治疗可导致LVEF下降,由于心脏本身的代偿机制,当LVEF出现明显下降时,往往已经发生了不可逆的损伤 [23]。组织学研究表明,在接受心脏毒性化疗后,左心室射血分数下降之前,心肌细胞受损就是佐证 [24]。因此,以LVEF评价心脏毒性较为滞后,不能及时发现亚临床心功能损伤,而使患者错失最佳治疗时间窗。

特征追踪(Feature Tracking, FT)技术可以利用电影序列计算心肌应变。尽管LVEF正常,但在乳腺癌患者中可发现FT计算的整体纵向应变(Global Longitudinal Strain, GLS)和整体周向应变(Global Circle Strain, GCS)异常,并且GCS的下降已被证明可以预测LVEF在接触蒽环类药物3个月后的下降 [25]。在一组接受蒽环类药物治疗且LVEF正常的血液癌症患者中,基线整体纵向应变 < −17.5%的患者心源性死亡或有症状的心力衰竭的概率增加6倍 [26]。另一种测量应变的方法是通过Fast-SENC获得,这种方法快速且不依赖于屏气动作。Sorin Giusca等人基于Fast-SENC CMR提出的正常心肌百分比(%),可以确定接受化疗的癌症患者的心脏安全性,不仅可以早期发现,还可以预测那些有发展成亚临床心脏毒性风险的人 [27]。

左心室舒张末期容量(Left Ventricular End-diastolic Volume, LVEDV)和左心室收缩末期容量(Left Ventricular End-systolic Volume, LVESV)的变化在LVEF出现任何可察觉的下降之前就出现了,并且可以通过电影序列很好地显示出来 [28]。而且服用蒽环类药物后左心室质量减少,其可能是心肌细胞萎缩所致 [8]。左心室质量是一个重要的心血管事件预测因子,当左心室质量 < 57 g/m2时,发生心血管死亡事件的风险明显升高 [29]。

CMR的空间分辨率足以表征右心室(Right Ventricle, RV)心肌,提供对RV功能的准确评估。曲妥珠单抗已被证明可引起右心室射血分数(Right ventricular ejection fraction, RVEF)的轻微下降,似乎在治疗完成6个月后开始恢复,18个月后恢复正常 [30]。这种现象在蒽环类药物中也有报道 [31]。而且有研究发现LVEF和RVEF的时间变化模式可能是平行的,尽管只发现了不显著的相关性 [30]。

由于CMR监测RV心肌应变的数据很少,其长期预测意义在很大程度上是未知的。有关心脏超声的研究发现,在接受表柔比星治疗的乳腺癌患者中,右室游离壁纵向应变(Free Wall Longitudinal Strain, FWLS)的下降与呼吸困难的发展显著相关,与左、右室收缩和舒张期功能无关 [32]。此外,在同时接受化疗和放疗的III期非小细胞肺癌患者中,RV FWLS的基线和百分比变化已被证明是全因死亡率的独立预测因素 [33]。有研究发现RV容量的显著增加也可以指示心脏毒性 [30]。

CMR可准确测量左心房(Left Atrium, LA)的大小,研究显示暴露于蒽环类药物的患者LA大小增加 [34]。同时CMR卓越的空间分辨率提供了LA心肌特征追踪的额外好处,以确定整个左心房排空周期中的LA应变 [35]。

3.3. 心肌组织特征序列

CMR T1 mapping和T2 mapping技术是一种很有前途的非侵入性工具,可通过纵向和横向弛豫的变化量化心肌组织变化,从而早期识别心脏毒性 [36]。延迟钆剂强化(Late Gadolinium Enhancement)难以检测到弥漫性纤维化,但Native T1能够在不使用钆剂的情况下检测局部或弥漫性心肌病变过程引起的心肌变化 [37],通过增强后T1 mapping可量化细胞外体积(Extracellular Volume, ECV),精确评估心肌组织变化。ECV增加可能是由扩大细胞外空间的因素(例如弥漫性纤维化和/或水肿)或减少心肌体积的因素(例如心肌细胞大小和/或数量减少)引起的。细胞内水寿命(intracellular water lifetime, τic)和T2值有助于确定哪个过程导致间质空间增加:是由于水肿(T2增加)、心肌细胞萎缩(τic降低)还是间质纤维化(T2正常或降低,τic正常或升高) [8] [38]。接受蒽环类药物48小时后Native T1值的急剧下降预示着随后可能发生心肌病 [37],2个月后Native T1的升高可预测18个月后LVEF的下降 [39]。有动物实验结果表示,LV心肌的ECV值在左心室射血分数下降前3周显著升高,且RV上下附着点和乳头肌的ECV均超过LV;LV中段Native T1值从第6周开始显著增加,心肌ECV与纤维化程度呈正相关 [40]。

T2 mapping已被证明是一种高度可重复性的量化细胞内和/或细胞外心肌水肿的技术。T2延长(T1和ECV正常)反映了心肌细胞内的细胞水肿,并代表了可逆性蒽环类药物心脏毒性的早期成像标志物。T2延长后继续使用多柔比星导致LVEF明显下降,同时伴有Native T1延长、ECV增加和与蒽环类药物心脏毒性特征一致的组织学变化(即心肌细胞内空泡化、细胞外空间增加和纤维化)。在检测到T2延长后停用蒽环类药物可防止蒽环类药物心脏毒性的临床和病理变化的发展 [41]。同时T2 mapping信号升高和延迟增强为心肌炎症的存在提供了强有力的支持性发现,而心包强化和LVEF降低被认为是支持性发现。

关于LGE的显示及预后作用观点不一。有研究发现LGE仅存在于少数群体中。它的模式和位置不适合单个独特的特征。它几乎在所有情况下都有替代解释。最后,LGE也存在于既没有接受蒽环类药物也没有接受曲妥珠单抗治疗的癌症患者中。因此,蒽环类药物和/或曲妥珠单抗治疗不太可能与LGE相关 [42]。但有动物实验发现在注射DOX后,钆信号的低测量值预示着没有LVEF下降或意外死亡。DOX后钆信号的增加预示着随后的LVEF下降,以及与DOX心脏毒性相一致的细胞内空泡化的组织病理学证据 [43]。

3.4. 血管评估序列

化疗导致的血管毒性机制多种多样,通常涉及过量的ROS,导致促炎细胞因子的释放和细胞信号转导中断,导致心外膜和微血管冠状动脉床的内皮损伤和血管收缩 [44]。负荷CMR已被证明是诊断和对疑似或已知的心外膜冠心病患者进行风险分层的有效手段 [45] [46] [47],且可量化心肌血流(Myocardial Blood Flow, MBF) [48]。有初步研究发现,暴露于潜在心脏毒性化疗的乳腺癌患者中,基于CMR的定量灌注指数与LVEF相关,这意味着微血管功能障碍可能与癌症治疗相关的心功能不全(Cancer Therapy Related Cardiac Dysfunction, CTRCD)相关 [49],并且可能在LV 明显降低之前检测到功能障碍。另外,负荷T1 mapping已被证明与钆剂首过灌注一样准确,并且可以在不使用造影剂的情况下可用于评估先前暴露于蒽环类药物的患者的微血管功能障碍,可作为钆剂首过灌注的合理替代方案 [50]。

主动脉脉搏波速度(Pulse Wave Velocity, PWV)已被用于测量主动脉扩张性,与LV后负荷增加、LV 功能降低和非肿瘤患者死亡率增加相关 [51]。主动脉PWV在暴露于蒽环类药物 [52] [53] 和曲妥珠单抗后早期增加,在停止治疗后似乎部分消退 [54]。主动脉僵硬的机制尚不清楚,但随着时间的推移,僵硬的消退意味着内皮功能障碍,而不是随着年龄或高血压出现的典型的纤维化僵硬机制 [52]。需要进一步的研究来确定这些发现的长期意义。

项目基金

26020032007002多参数MR成像结合人工智能对肿瘤治疗相关心肌损伤的早期识别。

NOTES

*第一作者Email: 1370716477@qq.com

参考文献

[1] 邹小农, 贾漫漫, 王鑫, 支修益. 《2020全球癌症报告》要点解读[J]. 中国胸心血管外科临床杂志, 2021, 28(1): 11-18.
[2] Chen, W., Zheng, R., Baade, P.D., Zhang, S., Zeng, H., Bray, F., et al. (2016) Cancer Statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66, 115-132.
https://doi.org/10.3322/caac.21338
[3] van Dalen, E.C., van der Pal, H.J.H., Kok, W.E.M., Caron, H.N. and Kremer, L.C.M. (2006) Clinical Heart Failure in a Cohort of Chil-dren Treated with Anthracyclines: A Long-Term Follow-Up Study. European Journal of Cancer, 42, 3191-3198.
https://doi.org/10.1016/j.ejca.2006.08.005
[4] Mulrooney, D.A., Yeazel, M.W., Kawashima, T., Mertens, A.C., Mitby, P., Stovall, M., et al. (2009) Cardiac Outcomes in a Cohort of Adult Survivors of Childhood and Adolescent Cancer: Retrospective Analysis of the Childhood Cancer Survivor Study Cohort. BMJ, 339, Article No. b4606.
https://doi.org/10.1136/bmj.b4606
[5] Herrmann, J. (2020) Adverse Cardiac Effects of Cancer Therapies: Cardio-toxicity and Arrhythmia. Nature Reviews Cardiology, 17, 474-502.
https://doi.org/10.1038/s41569-020-0348-1
[6] McGowan, J.V., Chung, R., Maulik, A., Piotrowska, I., Walker, J.M. and Yellon, D.M. (2017) Anthracycline Chemotherapy and Cardiotoxicity. Cardiovascular Drugs and Therapy, 31, 63-75.
https://doi.org/10.1007/s10557-016-6711-0
[7] Shabalala, S., Muller, C.J.F., Louw, J. and Johnson, R. (2017) Polyphenols, Autophagy and Doxorubicin-Induced Cardiotoxicity. Life Sciences, 180, 160-170.
https://doi.org/10.1016/j.lfs.2017.05.003
[8] Ferreira de Souza, T., Quinaglia AC Silva, T., Osorio Costa, F., Shah, R., Neilan, T. G., Velloso, L., et al. (2018) Anthracycline Therapy Is Associated with Cardiomyocyte Atrophy and Pre-clinical Manifestations of Heart Disease. JACC: Cardiovascular Imaging, 11, 1045-1055.
https://doi.org/10.1016/j.jcmg.2018.05.012
[9] Swain, S.M., Whaley, F.S. and Ewer, M.S. (2003) Congestive Heart Failure in Patients Treated with Doxorubicin: A Retrospective Analysis of Three Trials. Cancer, 97, 2869-2879.
https://doi.org/10.1002/cncr.11407
[10] Bristow, M.R., Thompson, P.D., Martin, R.P., Mason, J.W., Billingham, M.E. and Harrison, D.C. (1978) Early Anthracycline Cardiotoxicity. The American Journal of Medicine, 65, 823-832.
https://doi.org/10.1016/0002-9343(78)90802-1
[11] Gottdiener, J.S., Appelbaum, F.R., Ferrans, V.J., Deisseroth, A. and Ziegler, J. (1981) Cardiotoxicity Associated with High-Dose Cyclophosphamide Therapy. Archives of Internal Medicine, 141, 758-763.
https://doi.org/10.1001/archinte.1981.00340060066015
[12] Zamorano, J.L., Lancellotti, P., Rodriguez Muñoz, D., Aboyans, V., Asteggiano, R., Galderisi, M., et al. (2016) 2016 ESC Position Paper on Cancer Treatments and Cardio-vascular Toxicity Developed under the Auspices of the ESC Committee for Practice Guidelines: The Task Force for Cancer Treatments and Cardiovascular Toxicity of the European Society of Cardiology (ESC). European Heart Journal, 37, 2768-2801.
https://doi.org/10.1093/eurheartj/ehw211
[13] Ewer, M.S. and Ewer, S.M. (2015) Cardiotoxicity of anticancer treatments. Nature Reviews Cardiology, 12, 547-558.
https://doi.org/10.1038/nrcardio.2015.65
[14] Martel, S., Maurer, C., Lambertini, M., Pondé, N. and De Azambuja, E. (2017) Breast Cancer Treatment-Induced Cardiotoxicity. Expert Opinion on Drug Safety, 16, 1021-1038.
https://doi.org/10.1080/14740338.2017.1351541
[15] Fanous, I. and Dillon, P. (2016) Cancer Treatment-Related Cardiac Toxicity: Prevention, Assessment and Management. Medical Oncology, 33, Article No. 84.
https://doi.org/10.1007/s12032-016-0801-5
[16] Jerusalem, G., Moonen, M., Freres, P. and Lancellotti, P. (2015) The European Association of Cardiovascular Imaging/heart Failure Association Cardiac Oncology Toxicity Registry: Long-Term Benefits for Breast Cancer Treatment. Future Oncology, 11, 2791-2794.
https://doi.org/10.2217/fon.15.227
[17] Giordano, G., Spagnuolo, A., Olivieri, N., Corbo, C., Campagna, A., Spagnoletti, I., et al. (2016) Cancer Drug Related Cardiotoxicity during Breast Cancer Treatment. Expert Opinion on Drug Safety, 15, 1063-1074.
https://doi.org/10.1080/14740338.2016.1182493
[18] Pondé, N.F., Lambertini, M. and de Azambuja, E. (2016) Twenty Years of Anti-HER2 Therapy-Associated Cardiotoxicity. ESMO Open, 1, e000073.
https://doi.org/10.1136/esmoopen-2016-000073
[19] Barish, R., Gates, E. and Barac, A. (2019) Trastuzumab-Induced Cardiomyopathy. Cardiology Clinics, 37, 407-418.
https://doi.org/10.1016/j.ccl.2019.07.005
[20] Dunet, V., Schwitter, J., Meuli, R. and Beigelman-Aubry, C. (2016) Incidental Extracardiac Findings on Cardiac MR: Systematic Review and Meta-Analysis. Journal of Magnetic Resonance Imaging, 43, 929-939.
https://doi.org/10.1002/jmri.25053
[21] Lambert, J., Lamacie, M., Thampinathan, B., Altaha, M.A., Esmaeilzadeh, M., Nolan, M., et al. (2020) Variability in Echocardiography and MRI for Detection of Cancer Therapy Cardiotoxicity. Heart, 106, 817-823.
https://doi.org/10.1136/heartjnl-2019-316297
[22] Halliday, B.P., Senior, R. and Pennell, D.J. (2021) Assessing Left Ventricular Systolic Function: From Ejection Fraction to Strain Analysis. European Heart Journal, 42, 789-797.
https://doi.org/10.1093/eurheartj/ehaa587
[23] Plana, J.C., Galderisi, M., Barac, A., Ewer, M.S., Ky, B., Scher-rer-Crosbie, M., et al. (2014) Expert Consensus for Multimodality Imaging Evaluation of Adult Patients during and after Cancer Therapy: A Report from the American Society of Echocardiography and the European Association of Cardiovas-cular Imaging. Journal of the American Society of Echocardiography, 27, 911-939.
https://doi.org/10.1016/j.echo.2014.07.012
[24] Ewer, M.S., Ali, M.K., Mackay, B., Wallace, S., Valdivieso, M., Legha, S.S., et al. (1984) A Comparison of Cardiac Biopsy Grades and Ejection Fraction Estimations in Patients Receiv-ing Adriamycin. Journal of Clinical Oncology, 2, 112-117.
https://doi.org/10.1200/JCO.1984.2.2.112
[25] Jolly, M.-P., Jordan, J.H., Meléndez, G.C., McNeal, G.R., D’Agostino, R.B. and Hundley, W.G. (2017) Automated Assess-ments of Circumferential Strain from Cine CMR Correlate with LVEF Declines in Cancer Patients Early after Receipt of Cardio-Toxic Chemotherapy. Journal of Cardiovascular Magnetic Resonance, 19, Article No. 59.
https://doi.org/10.1186/s12968-017-0373-3
[26] Gottbrecht, M., Kramer, C.M. and Salerno, M. (2019) Native T1 and Extracellular Volume Measurements by Cardiac MRI in Healthy Adults: A Meta-Analysis. Radiology, 290, 317-326.
https://doi.org/10.1148/radiol.2018180226
[27] Giusca, S., Korosoglou, G., Montenbruck, M., Gersak, B., Schwarz, A.K., Esch, S., et al. (2021) Multiparametric Early Detection and Prediction of Cardiotoxicity Using Myocardi-al Strain, T1 and T2 Mapping, and Biochemical Markers: A Longitudinal Cardiac Resonance Imaging Study During 2 Years of Follow-up. Circulation: Cardiovascular Imaging, 14, e012459.
https://doi.org/10.1161/CIRCIMAGING.121.012459
[28] Pituskin, E., Mackey, J.R., Koshman, S., Jassal, D., Pitz, M., Haykowsky, M.J., et al. (2017) Multidisciplinary Approach to Novel Therapies in Cardio-Oncology Research (MANTICORE 101-Breast): A Randomized Trial for the Prevention of Trastuzumab-Associated Cardiotoxicity. Journal of Clinical Oncology, 35, 870-877.
https://doi.org/10.1200/JCO.2016.68.7830
[29] Neilan, T.G., Coelho-Filho, O.R., Pena-Herrera, D., Shah, R.V., Jerosch-Herold, M., Francis, S.A., et al. (2012) Left Ventricular Mass in Patients with a Cardiomyopathy after Treatment with Anthracyclines. The American Journal of Cardiology, 110, 1679-1686.
https://doi.org/10.1016/j.amjcard.2012.07.040
[30] Barthur, A., Brezden-Masley, C., Connelly, K.A., Dhir, V., Chan, K.K.W., Haq, R., et al. (2017) Longitudinal Assessment of Right Ventricular Structure and Function by Cardio-vascular Magnetic Resonance in Breast Cancer Patients Treated with Trastuzumab: A Prospective Observational Study. Journal of Cardiovascular Magnetic Resonance, 19, Article No. 44.
https://doi.org/10.1186/s12968-017-0356-4
[31] Ylänen, K., Poutanen, T., Savikurki-Heikkilä, P., Rinta-Kiikka, I., Eerola, A. and Vettenranta, K. (2013) Cardiac Magnetic Resonance Imaging in the Evaluation of the Late Effects of Anthracyclines Among Long-Term Survivors of Childhood Cancer. Journal of the American College of Cardiology, 61, 1539-1547.
https://doi.org/10.1016/j.jacc.2013.01.019
[32] Chang, W.-T., Shih, J.-Y., Feng, Y.-H., Chiang, C.-Y., Kuo, Y.H., Chen, W.-Y., et al. (2016) The Early Predictive Value of Right Ventricular Strain in Epirubicin-Induced Cardiotoxicity in Patients with Breast Cancer. Acta Cardiological Sinica, 32, 550-559.
[33] Chen, L., Huang, J., Wu, W., Ta, S. and Xie, X. (2019) The Impact of Right Ventricular Function on Prognosis in Patients with Stage III Non-Small Cell Lung Cancer after Concurrent Chemoradiotherapy. The International Journal of Cardiovascular Imaging, 35, 1009-1017.
https://doi.org/10.1007/s10554-019-01590-0
[34] de Ville de Goyet, M., Brichard, B., Robert, A., Renard, L., Veyckemans, F., Vanhoutte, L. and Moniotte, S. (2015) Prospective Cardiac MRI for the Analysis of Biventricular Function in Children Undergoing Cancer Treatments. Pediatric Blood & Cancer, 62, 867-874.
https://doi.org/10.1002/pbc.25381
[35] Evin, M., Cluzel, P., Lamy, J., Rosenbaum, D., Kusmia, S., Defrance, C., et al. (2015) Assessment of Left Atrial Function by Mri Myocardial Feature Tracking. Journal of Magnetic Resonance Im-aging, 42, 379-389.
https://doi.org/10.1002/jmri.24851
[36] Messroghli, D.R., Moon, J.C., Ferreira, V.M., Grosse-Wortmann, L., He, T., Kellman, P., et al. (2017) Clinical Recommendations for Cardiovascular Magnetic Resonance Mapping of T1, T2, T2* and Extracellular Volume: A Consensus Statement by the Society for Cardiovascular Magnetic Resonance (SCMR) En-dorsed by the European Association for Cardiovascular Imaging (EACVI). Journal of Cardiovascular Magnetic Reso-nance, 19, Article No. 75.
https://doi.org/10.1186/s12968-017-0389-8
[37] Soufer, A. and Baldassarre, L.A. (2019) The Role of Cardiac Magnetic Resonance Imaging to Detect Cardiac Toxicity from Cancer Therapeutics. Current Treatment Options in Car-diovascular Medicine, 21, Article No. 28.
https://doi.org/10.1007/s11936-019-0732-5
[38] Park, C.J., Branch, M.E., Vasu, S. and Melendez, G.C. (2020) The Role of Cardiac MRI in Animal Models of Cardiotoxicity: Hopes and Challenges. Journal of Cardiovascular Translational Research, 13, 367-376.
https://doi.org/10.1007/s12265-020-09981-8
[39] Haslbauer, J.D., Lindner, S., Valbuena-Lopez, S., Zainal, H., Zhou, H., D’Angelo, T., et al. (2019) CMR Imaging Biosignature of Cardiac Involvement Due to Cancer-Related Treat-ment by T1 and T2 Mapping. International Journal of Cardiology, 275, 179-186.
https://doi.org/10.1016/j.ijcard.2018.10.023
[40] Hong, Y.J., Park, H.S., Park, J.K., Han, K., Park, C.H., Kim, T.K., et al. (2017) Early Detection and Serial Monitoring of Anthracycline-Induced Cardiotoxicity Using T1-Mapping Cardiac Magnetic Resonance Imaging: An Animal Study. Scientific Reports, 7, Article No. 2663.
https://doi.org/10.1038/s41598-017-02627-x
[41] Galán-Arriola, C., Lobo, M., Vílchez-Tschischke, J.P., López, G.J., de Molina-Iracheta, A., Pérez-Martínez, C., et al. (2019) Serial Magnetic Resonance Imaging to Identify Early Stages of Anthracycline-Induced Cardiotoxicity. Journal of the American College of Cardiology, 73, 779-791.
https://doi.org/10.1016/j.jacc.2018.11.046
[42] Modi, K., Joppa, S., Chen, K.-H.A., Athwal, P.S.S., Okasha, O., Velangi, P.S., et al. (2020) Myocardial Damage Assessed by Late Gadolinium Enhancement on Cardiovascular Magnetic Resonance Imaging in Cancer Patients Treated with Anthracyclines and/or Trastuzumab. European Heart Jour-nal-Cardiovascular Imaging, 22, 427-434.
https://doi.org/10.1093/ehjci/jeaa279
[43] Lightfoot, J.C., D’Agostino Jr., R.B., Hamilton, C.A., Jordan, J., Torti, F.M., Kock, N.D., et al. (2010) Novel Approach to Early Detection of Doxorubicin Cardiotoxicity by Gadolini-um-Enhanced Cardiovascular Magnetic Resonance Imaging in an Experimental Model. Circulation: Cardiovascular Im-aging, 3, 550-558.
https://doi.org/10.1161/CIRCIMAGING.109.918540
[44] Varricchi, G., Ameri, P., Cadeddu, C., Ghigo, A., Ma-donna, R., Marone, G., et al. (2018) Antineoplastic Drug-Induced Cardiotoxicity: A Redox Perspective. Frontiers in Physiology, 9, Article 167.
https://doi.org/10.3389/fphys.2018.00167
[45] Greenwood, J.P., Maredia, N., Younger, J.F., Brown, J.M., Nixon, J., Everett, C.C., et al. (2012) Cardiovascular Magnetic Resonance and Single-Photon Emission Computed Tomography for Diagnosis of Coronary Heart Disease (CE-MARC): A Prospective Trial. Lancet, 379, 453-460.
https://doi.org/10.1016/S0140-6736(11)61335-4
[46] Lipinski, M.J., McVey, C.M., Berger, J.S., Kramer, C.M. and Salerno, M. (2013) Prognostic Value of Stress Cardiac Magnetic Resonance Imaging in Patients with Known or Suspected Coronary Artery Disease: A Systematic Review and Meta-Analysis. Journal of the American College of Car-diology, 62, 826-838.
https://doi.org/10.1016/j.jacc.2013.03.080
[47] Schwitter, J., Wacker, C.M., Wilke, N., Al-Saadi, N., Sauer, E., Huettle, K., et al. (2013) MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coro-nary Artery Disease Trial: Perfusion-Cardiac Magnetic Resonance vs. Single-Photon Emission Computed Tomography for the Detection of Coronary Artery Disease: A Comparative Multicentre, Multivendor Trial. European Heart Journal, 34, 775-781.
https://doi.org/10.1093/eurheartj/ehs022
[48] Pack, N.A. and DiBella, E.V.R. (2010) Comparison of Myocardial Perfusion Estimates from Dynamic Contrast-Enhanced Magnetic Resonance Imaging with Four Quantitative Analysis Methods. Magnetic Resonance in Medicine, 64, 125-137.
https://doi.org/10.1002/mrm.22282
[49] Nguyen, V.B.L. (2018) Stress Cardiovascular Magnetic Resonance for Evaluation of Antineoplastic Associated Cardiotoxicity in a Re-al-World Cohort of Breast Cancer Patients. Society of Cardiovascular Magnetic Resonance Scientific Sessions.
[50] Liu, A., Wijesurendra, R.S., Liu, J.M., Greiser, A., Jerosch-Herold, M., Forfar, J.C., et al. (2018) Gadolinium-Free Cardiac MR Stress T1-Mapping to Distinguish Epicardial from Microvascular Coronary Disease. Journal of the American Col-lege of Cardiology, 71, 957-968.
https://doi.org/10.1016/j.jacc.2017.11.071
[51] Boutouyrie, P., Tropeano, A.I., Asmar, R., Gautier, I., Benetos, A., Lacolley, P., et al. (2002) Aortic Stiffness Is an Independent Predictor of Primary Coronary Events in Hypertensive Patients: A Longitudinal Study. Hypertension, 39, 10-15.
https://doi.org/10.1161/hy0102.099031
[52] Chaosuwannakit, N., D’Agostino, R., Hamilton, C.A., Lane, K.S., Ntim, W.O., Lawrence, J., et al. (2010) Aortic Stiffness Increases upon Receipt of Anthracycline Chemotherapy. Journal of Clinical Oncology, 28, 166-172.
https://doi.org/10.1200/JCO.2009.23.8527
[53] Drafts, B.C., Twomley, K.M., D’Agostino, R., Lawrence, J., Avis, N., Ellis, L.R., et al. (2013) Low to Moderate Dose Anthracycline-Based Chemotherapy Is Associated with Early Non-invasive Imaging Evidence of Subclinical Cardiovascular Disease. JACC: Cardiovascular Imaging, 6, 877-885.
https://doi.org/10.1016/j.jcmg.2012.11.017
[54] Grover, S., Lou, P.W., Bradbrook, C., Cheong, K., Kotasek, D., Leong, D.P., et al. (2015) Early and Late Changes in Markers of Aortic Stiffness with Breast Cancer Therapy. Internal Medicine Journal, 45, 140-147.
https://doi.org/10.1111/imj.12645