肿瘤相关巨噬细胞在非小细胞肺癌中的研究进展
Research Progress of Tumor Associated Macrophages in Non-Small Cell Lung Cancer
DOI: 10.12677/ACM.2023.134827, PDF, HTML, XML, 下载: 185  浏览: 382 
作者: 彭修法:青岛大学医学部,山东 青岛;张春玲*:青岛大学第二附属医院呼吸与危重症医学科,山东 青岛
关键词: 肿瘤相关巨噬细胞极化非小细胞肺癌Tumor-Associated Macrophages Polarization Non-Small Cell Lung Cancer
摘要: 作为一种恶性肿瘤,肺癌是癌症相关死亡最常见原因。其主要分小细胞肺癌(small cell lung cancer, SCLC)与非小细胞肺癌(non-small cell lung cancer, NSCLC)两种类型,其中最常见亚型为NSCLC。随着对肿瘤认识的加深,新的治疗手段不仅集中于靶向肿瘤细胞本身,还逐渐认识到破坏肿瘤和其所在微环境中间质细胞之间相互作用的重要性。肿瘤相关巨噬细胞(Tumor-associated macrophages, TAMs)广泛存在于不同肿瘤的肿瘤微环境(tumor microenvironment, TME),是TME中占比最高的细胞成分。证据表明TAMs与NSCLC的发生、发展有密切的联系。因此靶向TAMs有可能成为肺癌治疗的潜在靶点。本文从肿瘤相关巨噬细胞的来源、极化、与肿瘤细胞的相互作用以及靶向肿瘤相关巨噬细胞等多个方面的研究进展进行综述。
Abstract: As a malignant tumor, lung cancer is the most common cause of cancer-related death, which is mainly divided into non-small cell lung cancer (NSCLC), the most common subtype and small cell lung cancer (SCLC). With the deepening understanding of tumor, besides targeting tumor cells, re-searchers gradually realize the significance of destroying the interaction between tumor and its microenvironment intermediate cells. Tumor associated macrophages (TAMs) widely exist in tumor microenvironment (TME), and are the most vital cell component in TME. Evidence shows that TAMs are closely related to the occurrence and development of NSCLC. Therefore, TAMs may become a potential target for the treatment of lung cancer. In this paper, we reviewed the progress of TAMs in the aspects of origin, polarization, interaction with NSCLC tumor cells and targeting TAMs.
文章引用:彭修法, 张春玲. 肿瘤相关巨噬细胞在非小细胞肺癌中的研究进展[J]. 临床医学进展, 2023, 13(4): 5855-5863. https://doi.org/10.12677/ACM.2023.134827

1. NSCLC概述

2020年数据显示,肺癌新发病例及死亡数占所有肿瘤11.4% (220万)和18% (180万),是全球恶性肿瘤之首,作为肺癌大国,我国肺癌上述两项指标分别占全球的37.0%和39.8% [1] 。在所有肺癌亚型中NSCLC占比为85%~90% [2] 。值得注意的是,因其进展迅速,NSCLC患者5年总生存率不足20% [3] [4] [5] 。研究表明TAMs与NSCLC的不良预后相关,且主要是支持免疫抑制、肿瘤生长、血管生成、转移和耐药性的M2表型,因此抗TAMs治疗可能是非小细胞肺癌治疗的潜在靶点 [6] 。

2. TAM概述

2.1. TAM来源

作为一种具有高度异质性的炎症反应细胞,TAMs存在于肿瘤组织中并与癌症患者的不良预后高度相关。普遍认为,TAMs有两个主要来源,大部TAMs从外周血单核细胞(MDMS)经募集到达TME,这些细胞作为未成熟的单核细胞前体从骨髓中释放出来,在血液中循环并迁移到不同的组织中分化;还有很少一部分为TAMs来源于卵黄囊,在胚胎发育期间就定居在发育器官中,组织驻留巨噬细胞(TRMs)。二者在不同肿瘤中比例各不相同,并且在人类癌症和转移性肿瘤的背景下,TAMs的起源愈加复杂 [6] 。最近的研究表明,经募集的巨噬细胞来源于骨髓和脾脏,而脾脏对骨髓来源的TAMs的比例贡献较小 [7] [8] [9] 。单核细胞来源的TAMs和TRMs在肿瘤模型中的相对作用也已被揭示。

值得注意的是,TAMs在不同肿瘤类型的不同起源及其在肿瘤内的不同定位可能会影响这些细胞促进肿瘤进展和调节肿瘤对抗癌剂反应的方式。例如,选择性阻断单核细胞向肿瘤募集的药物在TAMs主要来源于组织内巨噬细胞的情况下可能用处不大 [10] 。人类单核细胞来源的TAMs不同类型与TRMs的比较缺乏特异性标记,导致对它们在不同癌症类型中的功能的不完全了解,需要进一步研究来解决人类可能的不同单核细胞谱系。

2.2. TAM分型、极化

TAMs主要可分为抗肿瘤M1表型(经典激活型)和促肿瘤M2表型(交替激活型),反映了T细胞的Th1~Th2极化 [11] [12] 。一旦来自外周血单核细胞的TAMs被肿瘤分泌的趋化因子募集到TME,就会在各种刺激下被诱导发生M1样或M2样的极化。由干扰素-γ (IFN-γ) [13] 、肿瘤坏死因子-α (TNF-α)和粒细胞–巨噬细胞集落刺激因子(GM-CSF) [14] 诱导,M1样TAMs参与激活Th1型免疫反应。产生一氧化氮(NO)、活性氧(ROS)和白细胞介素(IL)-1β、IL-6、IL-12、IL-23、C-X-C趋化因子(CXCL) 9、CXCL10、TNF-α和主要组织相容性复合体(MHC)分子 [15] [16] [17] [18] 等促炎细胞因子。表达CD68、CD80和CD86等表面标志 [19] 。通过分泌上述因子,M1样TAMs作为先天宿主防御的主要力量并杀死肿瘤细胞,从而抑制肿瘤。相比之下,M2样TAMs是在如白介素-10和转化生长因子(TGF)-β等几种细胞因子的影响下形成,能够激活Th2型免疫反应并促进肿瘤的发生和发展 [20] 。它们可能主要促进抗炎细胞因子和趋化因子的表达上调,包括IL-10、TGF-β、CC趋化因子配体(CCL) 17、CCL18、CCL22和CCL24。这种分泌参与肿瘤的侵袭和转移。表面蛋白表达主要为CD206、CD204和CD163 [21] 。这些M2型TAMs在促进肿瘤细胞侵袭、转移、血管生成和免疫抑制中起着关键作用,导致肿瘤进展和不良预后 [22] [23] 。

在胰腺癌前病变、胃肠道间质瘤和膀胱癌中,TAMs大多属于M1表型,并且在肿瘤进展过程中逐渐向M2表型倾斜 [24] [25] 。在肿瘤晚期,TAMs主要表现为M2表型。同样,在早期肺部肿瘤中,TAMs通常同时具有M1和M2标记,并能够激活T细胞功能,因此具有抗肿瘤作用 [26] 。在生存率较低的非小细胞肺癌患者中,TAMs主要是M2表型,需要更多的研究来确定M1和M2巨噬细胞极化的确切机制,并确定有效的方法来增加M1与M2表型的比例,以防止肿瘤生长和复发。值得注意的是,使用表面标记来简单区分M1和M2表型存在缺陷。首先两种标记可以在单个细胞上共同表达 [27] ,其次在少部分如胃肠道肿瘤中具有的M2样标记的TAMs却发挥着刺激T细胞活性的M1样TAMs功能 [28] 。因此目前定义M1-M2表型的方法无法全面阐释TAMs的复杂性。

3. TAM在NSCLC肿瘤中的作用

在大多数肿瘤类型中,如胰腺导管腺癌(Pancreatic Ductal Adenocarcinoma, PDAC))、胶质母细胞瘤和膀胱癌,TAMs高浸润和肿瘤不良预后之间存在密切关系 [29] 。同时也发现在某些情况下TAMs浸润与良好的预后相关,例如卵巢癌和结肠直肠癌。这种不同的结果不仅可归因于不同的癌症类型,还可归因于一些瘤内因素,例如,一些关于非小细胞肺癌的研究(NSLSC)报告称,肿瘤巢中TAMs浸润增加与预后良好相关,而肿瘤间质中TAMs浸润增加与预后不良相关 [30] 。这些发现可能表明肿瘤细胞的肿瘤间和肿瘤内异质性,这可能与肿瘤细胞在TME的发生、活动状态和定位有关。总体来说,TAMs对肿瘤血管生成、淋巴管形成、免疫抑制微环境的形成及肿瘤细胞迁移、侵袭、转移中发挥重要作用。

3.1. 血管、淋巴管生成

TAMs是肿瘤血管生成的重要调节因子。在许多实体瘤中观察到TAMs、微血管密度和不良预后之间的相关性。肿瘤血管生成与TAMs浸润密切相关,TAMs缺失显著阻碍了血管形成。

TAMs参与肿瘤血管的发育和血管生成的转换 [31] 。TAMs通过血管生成因子分泌、蛋白酶分泌和在称为“血管拟态”的过程中将其自身转分化为血管样结构来促进肿瘤血管生成。TAMs分泌血管内皮生长因子-A (VEGF-A)、TGF-β、成纤维细胞生长因子-2 (FGF-2)、CCL18、semaphorin 4D (Sema4D)、尿激酶型纤溶酶原激活剂(uPA)、肾上腺髓质素(ADM)和胎盘生长因子(Plgf) [32] [33] [34] [35] 等促血管生成因子及组织蛋白酶(S和B)和基质金属蛋白酶(MMPs)来促进血管生成。

在缺氧部位,缺氧诱导因子(HIF-1α)刺激TAMs中VEGF-A分泌来促进血管生成 [36] 。TAMs在IL-4的诱导下促进组织蛋白酶B和S的分泌进而促进PDAC小鼠肿瘤模型的血管生成。在体外,M2样TAMs分泌高水平的MMP-9和低水平的金属蛋白酶组织抑制剂1 (TIMP-1),而M1样TAMs同时分泌MMP-9和TIMP-1 [37] 。因此,M2巨噬细胞以基质金属蛋白酶-9依赖的方式促进体内血管生成因此,癌细胞通过向M2表型倾斜TAMs来促进MMP-9活性。此外M2样TAMs表面血管生成素受体(TIE2)和自身标志蛋白CD206与新生血管密切接触,可能为血管生成提供方向信号 [38] 。

淋巴管生成发生在胚胎发育和肿瘤生长期间,VEGF-C和D通过与内皮细胞上受体结合促进淋巴管生成。在TME中,TAMs是VEGF-C和VEGF-D主要来源 [39] [40] 。最近观察到TAMs衍生的脂质运载蛋白2 (LCN2)诱导淋巴管生成,因为LCN2可诱导VEGFR在淋巴管内皮细胞表达。因此LCN2参与肿瘤淋巴管生成及其相关转移,因为PyMT LCN2 KO小鼠的肺转移和淋巴管密度低于WT小鼠 [41] 。

3.2. 免疫抑制微环境形成

TAMs在肿瘤免疫抑制中的作用是多方面的。TAMs产生IL-10、TGF-β、CCL22等作用于CD8+T、NK细胞直接抑制其肿瘤细胞杀伤能力,使肿瘤细胞逃避机体的免疫监控,招募及诱导免疫抑制性Treg细胞 [42] ;还可诱导TAMs自身表达程序性细胞死亡1 (PD-L1)限制CTL的肿瘤清除功能。TNF-α还可促进肿瘤糖酵解,而且肿瘤细胞的缺氧和糖酵解可干扰T细胞浸润,从而抑制细胞毒性T细胞的功能 [43] 。TAM还能通过激活JAK-STAT3信号通路,提高肿瘤细胞对缺氧环境的耐受 [44] ,同时肿瘤细胞和TAM在缺氧环境中产生的乳酸升高TM中的pH值,也有助于抑制免疫效应细胞发挥杀肿瘤功能 [45] 。

3.3. 促进NSCLC侵袭、转移

TAMs是NSCLC侵袭和转移过程中重要促进因素。Wang等人 [46] 在研究中建立TAMs和肺癌细胞株的共培养体系,证实TAMs有效增强NSCLC细胞的侵袭能力。

TAMs可产生多种蛋白水解酶(如MMPs、组织蛋白酶)降解肿瘤细胞周围基质,发挥促侵袭和迁移功能 [47] 。研究显示STAT3/6信号通路有效促进TAMs蛋白酶的产生,而基因缺失抑制了肿瘤进展 [48] 。

在肿瘤细胞转移到达远处靶器官之前,TAMs就已被募集至远处靶器官,其局部微环境就已发生改变以利于肿瘤细胞在该处存活,称之为“转移前生态位”。肿瘤细胞产生凝血因III、CD142等组织因子募集巨噬细胞刺激肺组织中血凝块形成,提高肿瘤细胞在局部微环境的存活率;而在消除巨噬细胞情况下肿瘤细胞存活显著降低 [49] ,表明上述组织因子具有促进形成转移前生态位的作用。

4. 靶向肿瘤相关巨噬细胞

鉴于TAMs在肿瘤进展中的血管生成、免疫抑制、细胞增殖、迁移、侵袭和转移等重要作用,越来越多的人认识到靶向TAMs是一种有前途的免疫治疗策略并具有极大的临床意义,主要有三种疗法,分别是抑制巨噬细胞的募集、消耗TAM以及促进TAM的表型转化。

4.1. 抑制巨噬细胞来源/募集

许多研究表明,循环炎性Ly6C + CCR2 + 单核细胞被TME中肿瘤细胞或基质细胞产生的趋化因子(如CCL2、CXCL12、C5a和CSF1等) [50] 募集到肿瘤部位。因此,抑制这些趋化因子或阻断其受体以阻止单核细胞募集对肿瘤治疗具有潜在的治疗价值。例如,CXCR4/CXCL12信号轴也参与单核细胞向肿瘤的募集,肿瘤细胞和TAMs分泌CXCL12来募集表达CXCR4的单核细胞进入TME并使其逐渐分化为TAMs,以促进肿瘤的侵袭、生长和转移 [51] 。因此,阻断CXCR4-CXCL12信号轴可能有助于实体瘤的治疗。CXCR4拮抗剂BL-8040已用于治疗胰腺癌的临床试验,其通过增加渗入TME的CD8+T细胞的数量来增强抗肿瘤免疫反应。C5a作为单核细胞的化学引诱剂,能够促进单核细胞向TME募集。与健康者相比,非小细胞肺癌(NSCLC)患者血浆中C5a水平升高。C5aR拮抗剂PMX-53能够阻断C5a/C5aR信号轴,抑制TAMs的募集和功能极化,其联合化疗在鳞状细胞癌的治疗中具有良好的抗肿瘤效应 [52] [53] [54] 。

此类趋化因子拮抗剂/受体阻断剂与化疗、免疫疗法或放射疗法的结合能够发挥叠加效应,提高其癌症治疗效果。在胰腺癌小鼠模型中使用CCR2拮抗剂与抗PD1抗体抑制肿瘤生长,而单用抗PD1抗体不能抑制肿瘤进展 [55] 。类似的,维尼特·库马尔等人 [56] 发现使用CSF1R拮抗剂减少了TAMs负荷,却导致TME中CXCL1产生增加招募了大量的多核型髓源抑制细胞(PMN-MDSC)抑制抗肿瘤免疫,联合使用CSF1R拮抗剂和CXCR2拮抗剂有效抑制了肿瘤进展。

4.2. 消耗TME中的TAMs

唑来膦酸(ZA)是一种用于骨质疏松症治疗的双膦酸盐,也可有效减少骨转移引起的疼痛因而被用作一些实体瘤的辅助治疗。还有研究表明唑来膦酸通过清除TAMs、抑制TAMs的M2极化减少了前列腺癌中巨噬细胞诱导的血管生成和肿瘤细胞侵袭因而具有直接的抗肿瘤作用 [57] 。氯屈膦酸的作用类似唑来膦酸(ZA),使用含氯膦酸盐的脂质体消耗巨噬细胞能够显著降低黑色素瘤荷瘤小鼠模型的肿瘤负荷 [58] 。氯膦酸盐脂质体和索拉非尼联合治疗明显降低了肝细胞癌模型的肿瘤生长、血管生成和转移 [59] 。瘤坏死因子相关凋亡诱导配体受体2 (TRAIL-R2)在单核/吞噬细胞上高度表达,Trabectedin与单核/吞噬细胞上的TRAIL-R2相互作用,导致受体聚集和caspase-8依赖性凋亡 [60] 。因此,trabectedin对单核吞噬细胞具有很高的细胞毒性。trabectedin诱导的TAMs减少导致小鼠肉瘤模型中血管生成的减少 [61] 。

4.3. 重编程/复极化

由于巨噬细胞本身具有抗原呈递和吞噬功能,抑制TAMs募集和消耗肿瘤中TAMs数量的方式消除了巨噬细胞在抗肿瘤免疫中的作用而有其固有缺陷,因此诱导TAMs复极化为抗肿瘤M1样表型可能成为更有前景的靶向TAMs方案。在NSCLC研究中,应用抗MARCO抗体使免疫抑制性巨噬细胞重新编程为免疫刺激表型,进而抑制肿瘤细胞迁移、侵袭能力,降低Treg细胞数目,增强CD8+T细胞功能 [62] 。乳腺癌和黑色素瘤小鼠模型中,肿瘤生长和转移受到MARCO中和抗体显著抑制 [63] ,同时降低了TAMs中白介素-10的表达并同时增加了白介素-1β的表达。TLR激动剂(如LPS)能够促进M2 TAMs向促炎M1表型转变。在临床前研究中,TLR9激动剂单独或与多种药物(如抗PD-1)联合应用于NSCLC、黑色素瘤、乳腺癌小鼠模型均显示出显著疗效 [64] 。尽管单独应用TLR9激动剂或与靶向药物联合治疗晚期实体肿瘤没有显示出显著的疗效,然而其联合ICI在难治黑色素瘤中显示出良好的耐受性与潜在的抗肿瘤作用,目前正在进行临床实验 [65] 。

磷脂酰肌醇3-激酶γ (PI3Kγ)是一种信号转导酶,在多种人类肿瘤类型中过表达,通过调节免疫抑制基因表达来控制骨髓来源细胞的募集和极化。PI3Kγ选择性抑制剂IPI-549通过改变TAMs极化状态及与抗PD-1疗法发挥协同作用,促进人乳头瘤病毒阳性的头颈部鳞状细胞癌(HPV + HNSCC)、肺腺癌和乳腺癌模型中的抗肿瘤治疗 [66] 。如上所述,IL-10,TGF-β等细胞因子在促进募集的单核细胞极化而发挥促瘤作用,因此抑制白细胞介素-10、TGF-β等分泌可能会改变M2样TAMs的极化状态。例如,酪氨酸激酶抑制剂舒尼替尼和索拉非尼通过抑制小鼠巨噬细胞中的STAT3信号来减少白细胞介素-10分泌并恢复白细胞介素-12水平并对M2 TAMs进行重编程,使其趋向于经典激活的M1巨噬细胞 [67] 。外源性IL-37具有抑制人NSCLC A549细胞的增殖、迁移和侵袭,抑制Treg细胞的趋化性,促进A549细胞的凋亡功能 [68] ;还可通过抑制IL-6/STAT3途径抑制TAMs的M2极化进而抑制HCC生长、侵袭、迁移 [69] 。也有研究显示IL-37对NSCLC中的TAMs显示为促M2样极化方向在NSCLC中发挥促肿瘤进展作用 [62] 。此外,羟氯喹、氧化铁纳米粒子、免疫纳米药物等更多分子及化合物被发现具有通过调节M2巨噬细胞极化定肿瘤治疗中发挥作用 [70] 。

5. 展望

NSCLC是一种恶性肿瘤,近年来尽管在放化疗、靶向及免疫治疗上已取得显著进步,但患者5年总生存率仍较差。目前的研究证实TAMs参与了肿瘤血管生成、侵袭、转移、免疫抑制等诸多过程而发挥促肿瘤作用,众多动物研究表明TAMs是提高免疫治疗效果的关键靶点之一。随着研究深入,传统化疗药物、中药成分、小分子药物、纳米粒子载体等逐渐被发现具有抗TAMs作用,多种靶向TAMs及联合化疗/免疫治疗在包括非小细胞肺癌等多种肿瘤类型的研究中显示出令人鼓舞的效果。相比于另外两种靶向TAMs方案存在的固有缺陷,使TAMs复极化逐渐成为更有希望的靶向方案。但是,TAMs极化机制、TAMs在非小细胞肺癌中作用还不是很明晰,有待更加深入研究。白细胞介素家族在肿瘤进展及抗肿瘤中发挥广泛作用,最近研究表明白细胞介素还可能具有影响TAMs极化的功能使其成为抗TAMs的潜在靶点。但相关临床研究也较少,需要进一步探索。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Liu, X.H., Liu, Z.L., Sun, M., et al. (2013) The Long Non-Coding RNA HOTAIR Indicates a Poor Prognosis and Promotes Metastasis in Non-Small Cell Lung Cancer. BMC Cancer, 13, Article No. 464.
https://doi.org/10.1186/1471-2407-13-464
[3] Aberle, D.R., Adams, A.M., Berg, C.D., et al. (2011) Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. The New England Journal of Medicine, 365, 395-409.
https://doi.org/10.1056/NEJMoa1102873
[4] Lee, S.H., Suh, I.B., Lee, E.J., et al. (2013) Relationships of Coagulation Factor XIII Activity with Cell-Type and Stage of Non-Small Cell Lung Cancer. Yonsei Medical Journal, 54, 1394-1399.
https://doi.org/10.3349/ymj.2013.54.6.1394
[5] Song, G., Qin, T., Liu, H., et al. (2010) Quantitative Breath Analysis of Volatile Organic Compounds of Lung Cancer Patients. Lung Cancer (Amsterdam, Netherlands), 67, 227-231.
https://doi.org/10.1016/j.lungcan.2009.03.029
[6] Sedighzadeh, S.S., Khoshbin, A.P., Razi, S., et al. (2021) A Narrative Review of Tumor-Associated Macrophages in Lung Cancer: Regulation of Macrophage Polarization and Therapeutic Implications. Translational Lung Cancer Research, 10, 1889-1916.
https://doi.org/10.21037/tlcr-20-1241
[7] Cortez-Retamozo, V., Etzrodt, M., Newton, A., et al. (2012) Origins of Tumor-Associated Macrophages and Neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 109, 2491-2496.
https://doi.org/10.1073/pnas.1113744109
[8] Shand, F.H.W., Ueha, S., Otsuji, M., et al. (2014) Tracking of inter-tissue migration reveals the origins of tumor-infiltrating monocytes. Proceedings of the National Academy of Sciences of the United States of America, 111, 7771-7776.
https://doi.org/10.1073/pnas.1402914111
[9] Lewis, C.E., Harney, A.S. and Pollard, J.W. (2016) The Multifaceted Role of Perivascular Macrophages in Tumors. Cancer Cell, 30, 365.
https://doi.org/10.1016/j.ccell.2016.07.009
[10] Kowal, J., Kornete, M. and Joyce, J.A. (2019) Re-Education of Macrophages as a Therapeutic Strategy in Cancer. Immunotherapy, 11, 677-689.
https://doi.org/10.2217/imt-2018-0156
[11] Mills, C.D., Kincaid, K., Alt, J.M., et al. (2017) Pillars Article: M-1/M-2 Macrophages and the Th1/Th2 Paradigm. J. Immunol. 2000. 164: 6166-6173. Journal of Immunology (Balti-more, Md: 1950), 199, 2194-2201.
[12] Biswas, S.K. and Mantovani, A. (2010) Macrophage Plasticity and Interaction with Lymphocyte Subsets: Cancer as a Paradigm. Nature Immunology, 11, 889-896.
https://doi.org/10.1038/ni.1937
[13] Duthie, M.S. and Reed, S.G. (2021) Skin Tests for the Detection of Mycobac-terial Infections: Achievements, Current Perspectives, and Implications for Other Diseases. Applied Microbiology and Bi-otechnology, 105, 503-508.
https://doi.org/10.1007/s00253-020-11062-4
[14] Fleetwood, A.J., Lawrence, T., Hamilton, J.A., et al. (2007) Granulocyte-Macrophage Colony-Stimulating Factor (CSF) and Macrophage CSF-Dependent Macrophage Phenotypes Display Differences in Cytokine Profiles and Transcription Factor Activities: Implications for CSF Blockade in Inflam-mation. Journal of Immunology (Baltimore, Md: 1950), 178, 5245-5252.
https://doi.org/10.4049/jimmunol.178.8.5245
[15] Fujiwara, N. and Kobayashi, K. (2005) Macrophages in Inflam-mation. Current Drug Targets Inflammation and Allergy, 4, 281-286.
https://doi.org/10.2174/1568010054022024
[16] Porta, C., Riboldi, E., Ippolito, A., et al. (2015) Molecular and Epigenetic Basis of Macrophage Polarized Activation. Seminars in Immunology, 27, 237-248.
https://doi.org/10.1016/j.smim.2015.10.003
[17] Schultze, J.L. and Schmidt, S.V. (2015) Molecular Features of Macrophage Activation. Seminars in Immunology, 27, 416-423.
https://doi.org/10.1016/j.smim.2016.03.009
[18] Lewis, C.E. and Pollard, J.W. (2006) Distinct Role of Macro-phages in Different Tumor Microenvironments. Cancer Research, 66, 605-612.
https://doi.org/10.1158/0008-5472.CAN-05-4005
[19] De Sousa, J.R., Martins De Sousa, R.P., De Souza Aarao, T.L., et al. (2016) In Situ Expression of M2 Macrophage Subpopulation in Leprosy Skin Lesions. Acta Tropica, 157, 108-114.
https://doi.org/10.1016/j.actatropica.2016.01.008
[20] Griess, B., Mir, S., Datta, K., et al. (2020) Scav-enging Reactive Oxygen Species Selectively Inhibits M2 Macrophage Polarization and Their Pro-Tumorigenic Function in Part, via Stat3 Suppression. Free Radical Biology & Medicine, 147, 48-60.
https://doi.org/10.1016/j.freeradbiomed.2019.12.018
[21] Jayasingam, S.D., Citartan, M., Thang, T.H., et al. (2019) Evaluating the Polarization of Tumor-Associated Macrophages into M1 and M2 Phenotypes in Human Cancer Tissue: Technicalities and Challenges in Routine Clinical Practice. Frontiers in Oncology, 9, 1512.
https://doi.org/10.3389/fonc.2019.01512
[22] Zhang, Q., Huang, F., Yaom Y., et al. (2019) Interaction of Trans-forming Growth Factor-β-Smads/microRNA-362-3p/ CD82 Mediated by M2 Macrophages Promotes the Process of Ep-ithelial-Mesenchymal Transition in Hepatocellular Carcinoma Cells. Cancer Science, 110, 2507-2519.
https://doi.org/10.1111/cas.14101
[23] Denardo, D.G. and Ruffell, B. (2019) Macrophages as Regulators of Tu-mour Immunity and Immunotherapy. Nature Reviews Immunology, 19, 369-382.
https://doi.org/10.1038/s41577-019-0127-6
[24] Zhang, M., He, Y., Sun, X., et al. (2014) A High M1/M2 Ratio of Tumor-Associated Macrophages Is Associated with Extended Survival in Ovarian Cancer Patients. Journal of Ovarian Research, 7, Article No. 19.
https://doi.org/10.1186/1757-2215-7-19
[25] Takeuchi, H., Tanaka, M., Tanaka, A., et al. (2016) Predominance of M2-Polarized Macrophages in Bladder Cancer Affects Angiogenesis, Tumor Grade and Invasiveness. Oncology Letters, 11, 3403-3408.
https://doi.org/10.3892/ol.2016.4392
[26] Singhal, S., Stadanlick, J., Annunziata, M.J., et al. (2019) Human Tu-mor-Associated Monocytes/Macrophages and Their Regulation of T Cell Responses in Early-Stage Lung Cancer. Science Translational Medicine, 11, eaat1500,
https://doi.org/10.1126/scitranslmed.aat1500
[27] Chong, B.F., Tseng, L.C., Hosler, G.A., et al. (2015) A Subset of CD163+ Macrophages Displays Mixed Polarizations in Discoid Lupus Skin. Arthritis Research & Therapy, 17, Arti-cle No. 324.
https://doi.org/10.1186/s13075-015-0839-3
[28] Elliott, L.A., Doherty, G.A., Sheahan, K., et al. (2017) Human Tumor-Infiltrating Myeloid Cells: Phenotypic and Functional Diversity. Frontiers in Immunology, 8, Article No. 86.
https://doi.org/10.3389/fimmu.2017.00086
[29] Zhang, Q.W., Liu, L., Gong, C.Y., et al. (2012) Prognostic Significance of Tumor-Associated Macrophages in Solid Tumor: A Meta-Analysis of the Literature. PLOS ONE, 7, e50946.
https://doi.org/10.1371/journal.pone.0050946
[30] Dai, F., Liu, L., Che, G., et al. (2010) The Number and Microlocalization of Tumor-Associated Immune Cells Are Associated with Patient’s Survival Time in Non-Small Cell Lung Cancer. BMC Cancer, 10, Article No. 220.
https://doi.org/10.1186/1471-2407-10-220
[31] Lin, E.Y., Li, J.F., Gnatovskiy, L., et al. (2006) Macrophages Reg-ulate the Angiogenic Switch in a Mouse Model of Breast Cancer. Cancer Research, 66, 11238-11246.
https://doi.org/10.1158/0008-5472.CAN-06-1278
[32] Sierra, J.R., Corso, S., Caione, L., et al. (2008) Tumor An-giogenesis and Progression Are Enhanced by Sema4D Produced by Tumor-Associated Macrophages. The Journal of Experimental Medicine, 205, 1673-1685.
https://doi.org/10.1084/jem.20072602
[33] Lin, L., Chen, Y.S., Yao, Y.D., et al. (2015) CCL18 from Tu-mor-Associated Macrophages Promotes Angiogenesis in Breast Cancer. Oncotarget, 6, 34758-34773.
https://doi.org/10.18632/oncotarget.5325
[34] Rolny, C,, Mazzone, M., Tugues, S., et al. (2011) HRG Inhibits Tumor Growth and Metastasis by Inducing Macrophage Polarization and Vessel Normalization through Downregulation of PlGF. Cancer Cell, 19, 31-44.
https://doi.org/10.1016/j.ccr.2010.11.009
[35] Chen, P., Huang, Y., Bong, R., et al. (2011) Tumor-Associated Macrophages Promote Angiogenesis and Melanoma Growth via Adrenomedullin in a Paracrine and Autocrine Manner. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 17, 7230-7239.
https://doi.org/10.1158/1078-0432.CCR-11-1354
[36] Guruvayoorappan, C. (2008) Tumor versus Tu-mor-Associated Macrophages: How Hot Is the Link? Integrative Cancer Therapies, 7, 90-95.
https://doi.org/10.1177/1534735408319060
[37] Deryugina, E.I., Zajac, E., Juncker-Jensen, A., et al. (2014) Tis-sue-Infiltrating Neutrophils Constitute the Major in Vivo Source of Angiogenesis-Inducing MMP-9 in the Tumor Micro-environment. Neoplasia (New York, NY), 16, 771-788.
https://doi.org/10.1016/j.neo.2014.08.013
[38] Lewis, C.E., Harney, A.S. and Pollard, J.W. (2016) The Multifac-eted Role of Perivascular Macrophages in Tumors. Cancer Cell, 30, 18-25.
https://doi.org/10.1016/j.ccell.2016.05.017
[39] Schoppmann, S.F., Birner, P., Stöckl, J., et al. (2002) Tu-mor-Associated Macrophages Express Lymphatic Endothelial Growth Factors and Are Related to Peritumoral Lymphan-giogenesis. The American Journal of Pathology, 161, 947-956.
https://doi.org/10.1016/S0002-9440(10)64255-1
[40] Ji, R.C. (2012) Macrophages Are Important Mediators of ei-ther Tumor- or Inflammation-Induced Lymphangiogenesis. Cellular and Molecular Life Sciences: CMLS, 69, 897-914.
https://doi.org/10.1007/s00018-011-0848-6
[41] Jung, M., Ören, B., Mora, J., et al. (2016) Lipocalin 2 from Mac-rophages Stimulated by Tumor Cell-Derived Sphingosine 1-Phosphate Promotes Lymphangiogenesis and Tumor Metas-tasis. Science Signaling, 9, ra64.
https://doi.org/10.1126/scisignal.aaf3241
[42] Cannarile, M.A., Weisser, M., Jacob, W., et al. (2017) Colo-ny-Stimulating Factor 1 Receptor (CSF1R) Inhibitors in Cancer Therapy. Journal for Immunotherapy of Cancer, 5, 53.
https://doi.org/10.1186/s40425-017-0257-y
[43] Jeong, H., Kim, S., Hong, B.J., et al. (2019) Tumor-Associated Macrophages Enhance Tumor Hypoxia and Aerobic Glycolysis. Cancer Research, 79, 795-806.
https://doi.org/10.1158/0008-5472.CAN-18-2545
[44] Jeong, S.K., Kim, J.S., Lee, C.G., et al. (2017) Tumor As-sociated Macrophages Provide the Survival Resistance of Tumor Cells to Hypoxic Microenvironmental Condition through IL-6 Receptor-Mediated Signals. Immunobiology, 222, 55-65.
https://doi.org/10.1016/j.imbio.2015.11.010
[45] Moisan, F., Francisco, E.B., Brozovic, A., et al. (2014) En-hancement of Paclitaxel and Carboplatin Therapies by CCL2 Blockade in Ovarian Cancers. Molecular Oncology, 8, 1231-1239.
https://doi.org/10.1016/j.molonc.2014.03.016
[46] Wang, R., Zhang, J., Chen, S., et al. (2011) Tu-mor-Associated Macrophages Provide a Suitable Microenvironment for Non-Small Lung Cancer Invasion and Progres-sion. Lung Cancer (Amsterdam, Netherlands), 74, 188-196.
https://doi.org/10.1016/j.lungcan.2011.04.009
[47] Almholt, K., Lund, L.R., Rygaard, J., et al. (2005) Reduced Metastasis of Transgenic Mammary Cancer in Urokinase-Deficient Mice. International Journal of Cancer, 113, 525-532.
https://doi.org/10.1002/ijc.20631
[48] Yan, D., Wang, H.W., Bowman, R.L., et al. (2016) STAT3 and STAT6 Signaling Pathways Synergize to Promote Cathepsin Secretion from Macrophages via IRE1α Activation. Cell Reports, 16, 2914-2927.
https://doi.org/10.1016/j.celrep.2016.08.035
[49] Gil-Bernabé, A.M., Ferjancic, S., Tlalka, M., et al. (2012) Re-cruitment of Monocytes/Macrophages by Tissue Factor-Mediated Coagulation Is Essential for Metastatic Cell Survival and Premetastatic Niche Establishment in Mice. Blood, 119, 3164-3175.
https://doi.org/10.1182/blood-2011-08-376426
[50] Sanford, D.E., Belt, B.A., Panni, R.Z., et al. (2013) Inflam-matory Monocyte Mobilization Decreases Patient Survival in Pancreatic Cancer: A Role for Targeting the CCL2/CCR2 Axis. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 19, 3404-3415.
https://doi.org/10.1158/1078-0432.CCR-13-0525
[51] Bockorny, B., Semenisty, V., Macarulla, T., et al. (2020) BL-8040, a CXCR4 Antagonist, in Combination with Pembrolizumab and Chemotherapy for Pancreatic Cancer: The COMBAT Trial. Nature Medicine, 26, 878-885.
https://doi.org/10.1038/s41591-020-0880-x
[52] Markiewski, M.M., Deangelis, R.A., Benencia, F., et al. (2008) Modulation of the Antitumor Immune Response by Complement. Nature Immunology, 9, 1225-1235.
https://doi.org/10.1038/ni.1655
[53] Yancey, K.B., Lawley, T.J., Dersookian, M., et al. (1989) Analysis of the In-teraction of Human C5a and C5a des Arg with Human Monocytes and Neutrophils: Flow Cytometric and Chemotaxis Studies. The Journal of Investigative Dermatology, 92, 184-189.
https://doi.org/10.1111/1523-1747.ep12276710
[54] Corrales, L., Ajona, D., Rafail, S., et al. (2012) Anaphylatoxin C5a Creates a Favorable Microenvironment for Lung Cancer Progression. Journal of Immunology (Baltimore, Md: 1950), 189, 4674-4683.
https://doi.org/10.4049/jimmunol.1201654
[55] Janson, C., Jung, H., Ertl, L., et al. (2017) Inhibition of CCR2 Po-tentiates Checkpoint Inhibitor Immunotherapy in Murine Model of Pancreatic Cancer. Cancer Research, 77.
https://doi.org/10.1158/1538-7445.AM2017-5655
[56] Kumar, V., Donthireddy, L., Marvel, D., et al. (2017) Cancer-Associated Fibroblasts Neutralize the Anti-Tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors. Cancer Cell, 32, 654-668.e5.
https://doi.org/10.1016/j.ccell.2017.10.005
[57] Comito, G., Pons Segura, C., Taddei, M.L., et al. (2017) Zoledronic Acid Impairs Stromal Reactivity by Inhibiting M2-Macrophages Polarization and Prostate Cancer-Associated Fibroblasts. Oncotarget, 8, 118-132.
https://doi.org/10.18632/oncotarget.9497
[58] Wu, X., Schulte, B.C., Zhou, Y., et al. (2014) Depletion of M2-Like Tumor-Associated Macrophages Delays Cutaneous T-Cell Lymphoma Development in Vivo. The Journal of Investigative Dermatology, 134, 2814-2822.
https://doi.org/10.1038/jid.2014.206
[59] Zhang, W., Zhu, X.D., Sun, H.C., et al. (2010) Depletion of Tu-mor-Associated Macrophages Enhances the Effect of Sorafenib in Metastatic Liver Cancer Models by Antimetastatic and Antiangiogenic Effects. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 16, 3420-3430.
https://doi.org/10.1158/1078-0432.CCR-09-2904
[60] Germano, G., Frapolli, R., Belgiovine, C., et al. (2013) Role of Macrophage Targeting in the Antitumor Activity of Trabectedin. Cancer Cell, 23, 249-262.
https://doi.org/10.1016/j.ccr.2013.01.008
[61] Liguori, M., Buracchi, C., Pasqualini, F., et al. (2016) Functional TRAIL Receptors in Monocytes and Tumor-Associated Macrophages: A Possible Targeting Pathway in the Tumor Mi-croenvironment. Oncotarget, 7, 41662-41676.
https://doi.org/10.18632/oncotarget.9340
[62] La Fleur, L., Botling, J., He, F., et al. (2021) Targeting MARCO and IL37R on Immunosuppressive Macrophages in Lung Cancer Blocks Regulatory T Cells and Supports Cytotoxic Lym-phocyte Function. Cancer Research, 81, 956-967.
https://doi.org/10.1158/0008-5472.CAN-20-1885
[63] Mantovani, A., Marchesi, F., Malesci, A., et al. (2017) Tumour-Associated Macrophages as Treatment Targets in Oncology. Nature Reviews Clinical Oncology, 14, 399-416.
https://doi.org/10.1038/nrclinonc.2016.217
[64] Gallotta, M., Assi, H., Degagné, É., et al. (2018) Inhaled TLR9 Agonist Renders Lung Tumors Permissive to PD-1 Blockade by Promoting Optimal CD4 and CD8 T-Cell Interplay. Cancer Research, 78, 4943-4956.
https://doi.org/10.1158/0008-5472.CAN-18-0729
[65] Karapetyan, L., Luke, J.J. and Davar, D. (2020) Toll-Like Receptor 9 Agonists in Cancer. OncoTargets and Therapy, 2020, 10039-10061.
https://doi.org/10.2147/OTT.S247050
[66] Kaneda, M.M., Messer, K.S., Ralainirina, N., et al. (2017) Corrigen-dum: PI3Kγ Is a Molecular Switch That Controls Immune Suppression. Nature, 542, 124.
https://doi.org/10.1038/nature21026
[67] Mirzaei, S., Gholami, M.H., Mahabady, M.K., et al. (2021) Pre-Clinical Investigation of STAT3 Pathway in Bladder Cancer: Paving the Way for Clinical Translation. Biomedicine & Pharma-cotherapy, 133, Article ID: 111077.
https://doi.org/10.1016/j.biopha.2020.111077
[68] Chen, Y.H., Zhou, B.Y., Wu, G.C., et al. (2018) Effects of Ex-ogenous IL-37 on the Biological Characteristics of Human Lung Adenocarcinoma A549 Cells and the Chemotaxis of Regulatory T Cells. Cancer Biomarkers: Section A of Disease Markers, 21, 661-673.
https://doi.org/10.3233/CBM-170732
[69] Zhang, Z., Zhang, J., He, P., et al. (2020) Interleukin-37 Suppresses Hepatocellular Carcinoma Growth through Inhibiting M2 Polarization of Tumor-Associated Macrophages. Molecular Immunology, 122, 13-20.
https://doi.org/10.1016/j.molimm.2020.03.012
[70] Chen, Y., Jin, H., Song, Y., et al. (2021) Targeting Tu-mor-Associated Macrophages: A Potential Treatment for Solid Tumors. Journal of Cellular Physiology, 236, 3445-3465.
https://doi.org/10.1002/jcp.30139