NLRP3炎症小体在辐射损伤中的研究进展
Research Progress of NLRP3 Inflammasome in Radiation Damage
DOI: 10.12677/ACM.2023.134871, PDF, HTML, XML, 下载: 225  浏览: 408 
作者: 姜佳辰, 张 毅, 徐韦玮, 苏 苗, 马若飞:甘肃中医药大学中医临床学院,甘肃 兰州;李金田*:甘肃中医药大学中医临床学院,甘肃 兰州;敦煌医学与转化教育部重点实验室,甘肃 兰州;梁建庆:敦煌医学与转化教育部重点实验室,甘肃 兰州;甘肃中医药大学基础医学院,甘肃 兰州;甘肃中医药大学附属医院肿瘤科,甘肃 兰州
关键词: NLRP3炎症小体辐射辐射损伤研究进展NLRP3 Inflammasomes Radiation Radiation Damage Research Progress
摘要: NLRP3是核苷酸结合寡聚结构域(NOD)样受体(NLR)的一员,是由NOD、LRR和pyrin结构域组成的一种多蛋白复合物,其导致caspase-1的自身蛋白水解激活,随后引发促炎细胞因子IL-1β和IL-18释放,导致细胞焦亡。放射疗法(RT)是恶性肿瘤的主要治疗方式之一,但其引起的损伤极大影响着患者的预后,极大限制RT的应用。因此探寻辐射损伤的有效防护及缓解方式迫在眉睫。有研究指出NLRP3炎症小体在辐射损伤中发挥着重要作用,并已有大量研究探讨NLRP3在辐射所造成损伤产生的作用及其机制。本文将阐述NLRP3炎症小体对辐射引起多种损伤的影响及其激活机制,以寻找预防或抵抗辐射损伤的潜在作用路径。
Abstract: NLRP3 is a member of nucleotide binding oligomeric domain (NOD)-like receptors (NLR), a mul-ti-protein complex composed of NOD, LRR, and pyrin domains, which leads to autoproteolytic ac-tivation of caspase-1, followed by the release of pro-inflammatory cytokines IL-1β and IL-18, leading to pyrosis. Radiation therapy (RT) is one of the main treatment modalities for malignant tumors, but the damage caused by it greatly affects the prognosis of patients and greatly limits the use of RT. Therefore, it is urgent to explore effective protection and mitigation methods for radiation damage. Studies have pointed out that NLRP3 inflammasomes play an important role in radiation damage, and a large number of studies have explored the role and mechanism of NLRP3 in radia-tion-induced damage. This article will describe the effects of NLRP3 inflammasomes on various radiation-induced injuries and their activation mechanisms to find potential pathways to prevent or resist radiation damage.
文章引用:姜佳辰, 李金田, 梁建庆, 张毅, 徐韦玮, 苏苗, 马若飞. NLRP3炎症小体在辐射损伤中的研究进展[J]. 临床医学进展, 2023, 13(4): 6182-6191. https://doi.org/10.12677/ACM.2023.134871

1. 引言

随着社会的发展,癌症的发病率逐年升高,放射疗法(Radio Therapy, RT)作为肿瘤等恶性复发性疾病的主要治疗方式 [1] [2] ,显著延长患者寿命的同时也无法避免地对正常生物组织的非特异性损伤,这是影响治疗的疗效和患者的生活质量的重要因素 [3] 。辐射损伤主要包括辐射致心血管损伤、认知障碍、辐射致肺损伤、辐射致肠损伤(RIII)和辐射致其他系统变化。辐射损伤的发生机制涉及炎症,氧化应激,DNA损伤,细胞凋亡以及多种细胞因子作用等。对正常组织损伤机制的评估表明,炎症反应在早期和晚期IR引起的损伤中起着重要作用 [4] 。

NOD样受体3 (NOD-like receptor thermal protein domain associated protein 3, NLRP3)作为一类模式识别受体(PRR),可通过识别病原体相关分子模式(pathogen-related molecular patterns, PAMPs)和损伤相关分子模式(Damage-related molecular patterns, DAMPs),与中间接头蛋白结合,激活转录因子,参与组织的急慢性炎症反应。辐射作为一种外源性为先信号分子可以激活NLRP3炎症小体,一旦被激活,其可以触发caspase-1依赖的gasderminD (GSDMD)介导的细胞焦亡,释放促炎因子IL-1β和IL-18,促使辐射周围组织发生炎症性损伤。

对于RT引起的损伤,目前还缺乏十分有效的治疗方法。在这篇文章中,回顾了NLRP3炎症小体在辐射损伤中的作用及激活机制,以探索可能的辐射损伤治疗策略。

2. NLRP3概述

炎症是由先天免疫系统产生的一系列保护性反应,通过消除病原体和恢复细胞有机体的稳态来使宿主受益 [5] 。炎症小体是炎症发生发展的关键因素,其是存在于细胞质中的炎症信号复合物,内含表达模式识别受体(PRR),包括黑色素瘤2 (AIM2)样受体(ALRs)、核苷酸结合寡聚结构域(NOD)样受体(NOD-like receptor, NLR)和Pyrin中缺失的受体,可以在感受到病原体相关分子模式(PAMP)和损伤相关分子模式(DAMP)后导致炎性小体的激活 [6] [7] 。目前被人们发现的炎症小体均含有1个蛋白酶(Caspase)、ASC蛋白(apoptosis-associated speck-like protein containing CARD)和一种HIN200或者NLR家族蛋白 [8] 。NLRP3作为NLR家族的一员,由氨基末端pyrin结构域(PYD)、中心NACHT域和羧基末端富含亮氨酸重复序列(LRR)结构域组成 [9] 。经刺激后,NLRP3会暴露其pyrin结构域,该结构域与ASC结合,ASC通过CARD-CARD相互作用募集效应分子pro-caspase-1,形成一个大的大蛋白复合体——NLRP3炎性小体 [10] 。NLRP3炎症小体的激活导致caspase-1的自切割和激活,一方面caspase1的激活作用于GSDMD,随后在细胞膜上形成孔状结构,过度的孔隙形成可破坏细胞结构而引起Pyroptosis (一种炎性形式的细胞程序性死亡) [11] ,另一方面caspase-1将IL-1β和IL-18转化为它们的成熟形式分泌到细胞外,从而激活炎症反应 [12] [13] 。

3. 辐射与NLRP3炎性小体激活

研究者们发现NLRP3炎症小体在辐射损伤中起着重要作用,辐射诱导的组织损伤导致了系统免疫反应和免疫细胞中的NLRP3炎症小体激活 [14] ,炎症小体的激活是一个两步的“启动和激活”过程,启动的特征是上调炎性小体核心成分的表达和诱导翻译后修饰(PTMs) [12] ,如宿主体内的微生物分子脂多糖(LPS)或细胞因子TNF-α可以作为“启动信号”激活核因子(NF-κB),并上调NLRP3和Pro-IL-1β的表达。启动后NLRP3可以被多种外源性和内源性刺激激活 [15] 。

Liu等 [16] 研究表明,辐射可诱导小鼠骨髓巨噬细胞产生NLRP3炎症小体。Wu等 [17] 在感染烟曲霉的辐射小鼠的支气管上皮细胞中发现NLRP3的上调和NLRP3-ASC炎性体的激活,表明NLRP3炎症小体在辐射介导的肺上皮细胞屏障发生的焦亡诱导损伤中发挥关键作用。同时在体内,为了确定NLRP3在辐射诱导的BMDM焦亡中的作用,实验者从NLRP3敲除小鼠中分离出NLRP3敲除骨髓来源巨噬细胞(bone marrow-derived macrophages, BMDM),培养后暴露于10 Gy辐射中发现,敲除NLRP3可将10 Gy诱导的细胞死亡从25.98%恢复到5.45%。流式显示的辐射诱导细胞焦亡比例也从31.47%显著降低到16.83%。在WB实验中表明,暴露于10Gy的正常BMDM中比敲除NLRP3炎症小体的BMDM中Caspase-1表达升高,同时还发现敲除NLRP3抑制辐射诱导的IL-1β产生 [16] 。这一实验表明敲除NLRP3可以显著降低辐射引起的细胞凋亡比例,同时减少细胞焦亡的发生。实际NLRP3激活的上游信号通常是相互关联和重叠的,包括离子内化和外排、溶酶体破坏、线粒体疾病、代谢功能障碍和鞘脂代谢改变等 [18] 。NLRP3炎症小体激活的分子机制尚未完全阐明,但近几年研究表明,辐射损伤中辐射导致的线粒体功能障碍与NLRP3炎性体的激活关系最为密切 [12] ,下面将对几种NLRP3炎症小体的几种激活机制进行详细介绍。

线粒体功能障碍与NLRP3激活

NLRP3炎症小体的激活方式多种多样,具体机制可能与细胞类型、压力类型和应激大小有关 [19] 。线粒体功能障碍可能被认为是NLRP3炎性小体不同激活模式的中心环节 [20] ,可导致线粒体内膜电位的改变、ROS的产生、钙内流、mtDNA的释放等不同情况的发生 [21] [22] 。多项研究报道辐射可导致线粒体损伤,这与细胞凋亡、Ca2+稳态、氧化还原调节以及ATP合成密切相关 [23] ,辐射诱导线粒体功能障碍,导致线粒体膜电位和复合体相关亚基的表达量下降,产生mtROS释放,mtDNA转位到细胞质,激活caspase-1,诱导IL-1β产生 [24] ,同时激活了TGF-β1的表达 [25] ;在直接或间接IR对生精细胞损伤的观察中发现线粒体超微结构的严重损伤,IR诱导氧化损伤和炎症因子的释放导致线粒体结构受损及代谢紊乱 [26] ;α2-巨球蛋白通过减轻线粒体功能障碍改善辐射诱导的成纤维细胞损伤 [27] 。同时,线粒体膜电位的丧失以及线粒体膜通透性转换孔结构的形成介导了细胞凋亡的过程 [28] 。线粒体功能障碍过度产生的mtROS、mtDNA的过胞质易位或通过诱导α-微管蛋白乙酰化将线粒体重新定位到NLRP3附近,是NLRP3炎性体复合物激活的关键因素 [29] 。事实上,外部NLRP3激活剂诱导caspase-1和NLRP3非依赖性线粒体损伤会导致或直接激活NLRP3炎性体的分子释放,包括mROS、线粒体DNA (mtDNA)和心磷脂 [30] [31] 。辐射旁观者效应(RIBE)导致炎症反应的相关研究表明,线粒体功能障碍及过度产生ROS和mtDNA在其中占有重要的地位。Zhou等 [32] 发现在辐射导致线粒体功能失调的过程中ROS的产生会触发NLRP3炎性体的激活。上述研究揭示了线粒体损伤和感知释放的mtDNA 在NLRP3炎症小体激活中的重要性 [33] [34] 。

综上所述,辐射导致线粒体功能障碍在NLRP3炎症小体激活中占据重要地位,但具体机制仍需探索研究。

1) mtDNA与NLRP3炎症小体激活

线粒体DNA (mtDNA)是唯一的非核基因组,与核DNA (nDNA)相比,mtDNA由于靠近线粒体活性氧(mtROS),且缺乏修复机制,因此更不稳定,更容易受到氧化应激的影响 [35] 。越来越多的证据表明,当mtDNA泄漏到细胞质中时,它会成为炎症的重要驱动因素 [21] [36] 。mtDNA是一种线粒体危险相关分子模式(mtDAMPs),可以与各种模式识别受体(PRRs)结合,激活先天免疫系统。研究结果表明,线粒体功能障碍导致mtDNA泄漏,会导致NLRP3炎症小体的激活 [37] 。2011年,Nakahira等 [34] 首次提出mtDNA参与NLRP3炎症小体的激活。在LPS或ATP的作用下,功能障碍的线粒体导致ROS过度产生,并促进线粒体通透性过渡通道(mPTP)形成,从而促进mtDNA向细胞质的转移。之后在对顺铂的研究中发现,顺铂诱导线粒体功能障碍,导致mtDNA泄漏到细胞质中激活cGAS-STING信号传导,导致NLRP3炎症小体的激活 [38] ;李宁等 [39] 发现细胞质中mtDNA的水平可以通过LPS处理而升高,进而引起cGAS的上调和STING的激活;显著促进mtDNA转染后NLRP3介导的细胞焦亡;在PINK1缺陷小鼠中发现mtDNA释放导致NLRP3炎症小体活化 [40] 。多项研究报导,辐射诱导线粒体功能障碍导致mtDNA泄漏到细胞质中与NLRP3炎症小体结合,引起NLRP3炎症小体激活 [41] ;同时在对重复照射EA-R细胞的研究中发现,线粒体功能障碍导致TDP-43以线粒体膜电位依赖性方式易位至线粒体,从而进一步促进mtDNA进入细胞质。细胞质中的mtDNA不断刺激DNA感受器cGAS,进而激活cGAS-STING-NF-κB信号,增加NLRP3的表达 [38] [42] [43] 。杨艳敏等 [44] 用荜茇宁和胡椒碱对非酒精性脂肪性肝病大鼠进行干预,发现大鼠肝脏与肌肉mtDNA拷贝数增加,改善IR导致的线粒体损伤,提示从线粒体损伤以及mtDNA入手,减少NLRP3炎症小体激活从而改善辐射损伤可能是可行的研究方向。

2) ROS和NLRP3炎症小体激活

ROS是辐射引起的生物系统损害的主要介质之一,辐射后产生过量ROS会导致氧化应激并扰乱细胞内的氧化还原平衡 [45] 。辐射暴露后ROS的持续形成可能是T淋巴细胞和其他细胞放射敏感性的来源 [46] ,线粒体功能障碍可导致ROS的释放,进而损害线粒体及其mtDNA,从而增强相关的炎症反应。多个实验表明,许多触发因子对NLRP3炎症小体的激活都依赖于ROS的产生 [47] [48] [49] 。丁艳平等 [50] 在辐射导致的小鼠肝损伤模型发现,辐射导致的线粒体损伤释放ROS,进而激活NLRP3炎症小体通路,使得炎性细胞因子在体内聚集,引起肝功能损伤。Li等 [51] 在实验中发现,与对照THP-1细胞组相比,低剂量辐射处理的THP-1细胞组ROS产生显著增加。NLRP3的激活增加了IL-1β和IL-18的产生,而ROS 特异性抑制剂治疗则降低了这些细胞因子的产生。这些结果表明ROS介导低剂量辐射诱导的NLRP3炎性体激活。基于这些发现,有实验者 [52] 测试ROS或组织蛋白酶B抑制的效果,发现它们都完全减弱了NLRP3的表达,同时线粒体ROS的特异性抑制被证明可以防止NLRP3炎性体的激活 [53] 。

3) Ca2+信号传导和NLRP3炎性体激活

Ca2+稳态在NLRP3的激活中起着重要作用,作为NLRP3激活的重要上游信号 [54] ,Ca2+信号传导可以控制不同的细胞过程,包括细胞转录、分化、迁移、增殖、细胞代谢和细胞死亡等 [55] 。过往研究表明,辐射细胞内细胞内钙的升高可导致线粒体中Ca2+过载,导致线粒体功能受损,产生mtROS,释放mtDNA,心磷脂从内膜向外膜转移,从而激活NLRP3炎性小体 [56] [57] 。除此之外,Lee等 [54] 提出的一种可能性是,Ca2+可以促进NLRP3和适配器ASC (包含CARD的凋亡相关斑点样蛋白)的相互作用从而激活,尽管尚不清楚其作用靶点。Murakami等 [58] 的研究表明,Ca2+信号传导对线粒体起关键的促进作用,阻断Ca2+通道可以抑制NLRP3炎症小体激活;同时通过阻断NLRP3激活剂诱导的Ca2+流动,观察到mtROS和mtDNA的释放也受到抑制,这说明Ca2+是造成线粒体损伤和NLRP3炎症小体激活的一个原因 [59] 。在细胞中,Ca2+的作用取决于其位置和浓度。Ca2+水平的短暂升高会导致生理变化,而Ca2+水平的持续升高会对细胞产生一些负面影响,许多疾病的病因都与Ca2+通量的缺陷相关 [60] 。辐射可以通过下调内质网Ca2+-ATP酶的表达来阻断Ca2+的流动,从而经NLRP3炎性体的激活导致辐射损伤 [61] 。Ca2+作为上游NLRP3信号在辐射损伤中的作用仍有待进一步研究。

4. 辐射损伤

4.1. 放射性肺损伤

RT被认为是肺癌包括小细胞肺癌(SCLC)和非小细胞肺癌(NSCLC)的标准治疗方案。然而,30%或更多接受放疗的肺部恶性肿瘤患者和约10%~15%的其他胸部恶性肿瘤患者发生临床显著肺损伤 [62] [63] 。辐射引起的肺损伤包括肺炎和肺纤维化。辐射诱发的肺炎是导致发病率和死亡率增加的原因 [64] 。研究表明,NLRP3炎性小体在哮喘、特发性肺病、放射性肺炎等多种炎性疾病的发生发展中起关键作用 [65] [66] 。NLRP3介导的细胞焦亡参与了辐射和免疫损伤的修复 [16] 。Wu等 [17] 研究发现,辐射通过NLRP3介导的细胞焦亡导致肺上皮细胞屏障的破坏,进而增加对烟曲霉的易感性并加速肺损伤。李晓宇等 [67] 实验表明,低剂量辐射激活NLRP3炎性体并增加IL-1β和IL-18的分泌。低剂量照射时这些变化会在肺组织中引起超敏反应,并在用外源性试剂(例如LPS))刺激后加剧肺炎症状。

4.2. 辐射导致的肠损伤

小肠对辐射高度敏感。放射诱发的肠损伤(RIII)是腹部和盆腔肿瘤治疗中最常见和最严重的并发症。导致黏膜屏障破坏、电解质紊乱、细菌感染、败血症等并发症,严重影响患者治疗,降低患者生活质量 [68] [69] ,目前尚无有效干预措施。辐射诱发的肠病其病理生理过程非常复杂。辐射诱发的急性肠损伤是由炎症引起的隐窝上皮细胞凋亡引起的,导致绒毛上皮细胞的替代不足和持续的粘膜屏障断裂 [70] 。虽然肠道辐射损伤通常取决于肠隐窝细胞死亡的程度,但辐射也会引起细胞功能改变和免疫系统激活,导致黏膜破裂 [71] 。辐射诱导的线粒体呼吸链复合物抑制以及随后由线粒体功能障碍引起的一系列反应也有助于肠上皮细胞的凋亡 [72] 。

据报道NLRP3炎症小体介导的细胞焦亡与加剧辐射引起的肠道损伤和心血管损伤有关 [73] [74] 。Ala等 [75] 通过实验证明,在辐射诱导的肠损伤小鼠模型和细胞培养模型中NLRP3、caspase-1和IL-1β被激活。并发现西格列汀通过抑制NLRP3炎性体激活来减轻辐射引起的肠道损伤并减少下游促炎细胞因子的分泌。Hu等 [76] 研究表明,罗格列酮治疗可显着改善黏膜绒毛和隐窝的结构损伤以及放射后炎症细胞浸润。其主要机制为通过抑制巨噬细胞中NFRP3炎性体和TNF-α的表达来减轻辐射引起的肠损伤中的炎症。Sun等 [77] 证实白藜芦醇通过抑制小鼠NLRP-3炎症小体来对抗辐射诱导的炎症性肠病,并支持Sirt1作为肠道辐射保护的潜在生物标志物和治疗靶点。综上所述,NLRP3作为RIII防治的重要靶点,已渐渐被大家所重视。

4.3. 放射性心血管损伤

癌症患者的慢性健康问题包括心血管疾病(CVD),这是该人群发病和死亡的主要原因。心血管疾病风险增加与胸部照射之间存在显著相关性,这会导致癌症幸存者出现短期和长期心血管并发症 [78] 。虽然急性心包炎可由高剂量辐射引起,但辐射诱发的心脏损伤可能需要数十年才能出现症状 [79] 。常见的心血管疾病包括加速动脉粥样硬化、心肌重塑、纤维化和心脏瓣膜损伤。最近的流行病学、临床和临床前研究表明,电离辐射会导致心血管损伤,炎症变化以及活性氧(ROS)的产生似乎是早期辐射诱导的心脏组织损伤的主要原因。另一方面,这种持续存在的炎症和氧化应激状态会导致组织的持续受损 [80] [81] 。

研究发现NF-κB激活是辐射诱导的心脏效应的早期反应。核因子-κB (NF-κB)是一种多亚基转录因子,可调节多个基因的表达并参与免疫应答、炎症应答和细胞凋亡等各种生物学过程 [82] 。NF-κB激活是诱导NLRP3表达起始信号。越来越多的证据表明NLRP3炎症小体与辐射导致的心血管疾病有关。最近的研究表明,在C57BL/6小鼠进行胸部照射后NLRP3炎症小体被激活 [83] 。THP-1单核细胞的照射导致类似的炎症小体活化,导致白细胞介素−1β(IL-1β)和IL-18的表达增加 [73] 。这一点尤其重要,因为IL-1β分泌被认为参与辐射诱导的CVD的发展。在直接照射2周后给予IL-1β受体阻滞剂可改善辐射诱导的小鼠炎症介质的持续表达 [84] 。

4.4. 放射性认知障碍

放射性认知障碍是放疗后的严重并发症,其特征是神经炎症,这与其进展密切相关 [85] 。NLRP3炎症小体与创伤性脑损伤诱导的神经炎症的发生和进展以及神经退行性疾病的生长有关 [86] [87] 。此外,NLRP3炎症小体存在于小胶质细胞中,并在神经炎症过程中发挥作用 [88] 。Liu等 [89] 研究发现阿魏酸可以增强受照射小鼠的学习记忆能力,改善海马组织的病理变化。靶向NLRP3炎性体的阿魏酸对辐射诱发的神经损伤具有神经保护作用。抑制NLRP3炎性体活性可能是放射认知障碍的一种可能的治疗方法。

5. 小结与展望

NLRP3炎症小体作为炎症反应中最重要的关键因子之一,在辐射损伤的防治方面具有重要意义,过去几年,NLRP3炎症小体的激活机制及其分子机制的研究都取得了巨大进展,线粒体被认为是其中的关键点,这与线粒体功能障碍以及炎症的反应密切相关。由于线粒体功能障碍释放的各种线粒体成分或产物引起的炎症反应失调已被证明会导致许多人类疾病,从过度炎症驱动的疾病到低效炎症反应导致的疾病 [90] 。在辐射诱导的炎性反应中也不例外,辐射诱导的线粒体功能障碍被发现是诱导NLRP3炎症小体激活的关键机制,而近几年的研究中虽然详细揭示了NLRP3对IL-1β和IL-18的影响机制,并证明当前IL-1β和IL-18受体拮抗剂治疗可作为临床潜在治疗方案 [91] ,但很少关注到线粒体靶向药物调节炎症的可能性,日后针对线粒体功能障碍以及mtDNA,mtROS相关的靶向药物可能是临床治疗的新方向,同时中药对于NLRP3炎症小体所致相关疾病的治疗也是未来研究的大方向。尽管目前研究表明NLRP3炎症小体是辐射损伤防治的关键靶点,但NLRP3炎症小体在肿瘤中的作用仍未完全阐明,需要进行更多的研究以阐明NLRP3炎症小体的激活及分子机制以及辐射损伤中基于抗NLRP3治疗策略的优势和副作用。

NOTES

*通讯作者。

参考文献

[1] Xia, C., Dong, X., Li, H., et al. (2022) Cancer Statistics in China and United States, 2022: Profiles, Trends, and Deter-minants. Chinese Medical Journal, 135, 584-590.
https://doi.org/10.1097/CM9.0000000000002108
[2] Brown, P., Ahluwalia, M., Khan, O., et al. (2018) Whole-Brain Radiotherapy for Brain Metastases: Evolution or Revolution? Clinical Oncology, 36, 483-491.
https://doi.org/10.1200/JCO.2017.75.9589
[3] Turnquist, C., Harris, B.T. and Harris, C.C. (2020) Radiation-Induced Brain Injury: Current Concepts and Therapeutic Strategies Targeting Neuroinflammation. Neuro-Oncology Advances, 2, vdaa057.
https://doi.org/10.1093/noajnl/vdaa057
[4] Han, R., Wu, D., Deng, S., et al. (2017) NLRP3 Inflammasome In-duces Pyroptosis in Lung Tissues of Radiation-Induced Lung Injury in Mice. Chinese Journal of Cellular and Molecular Immunology, 33, 1206-1211.
[5] Karin, M. and Clevers, H. (2016) Reparative Inflammation Takes Charge of Tissue Regeneration. Nature, 529, 307- 315.
https://doi.org/10.1038/nature17039
[6] Gong, T., Liu, L., Jiang, W., et al. (2020) DAMP-Sensing Receptors in Sterile Inflammation and Inflammatory Diseases. Nature Reviews Immunology, 20, 95-112.
https://doi.org/10.1038/s41577-019-0215-7
[7] Guo, H., Callaway, J.B. and Ting, J.P. (2015) Inflammasomes: Mechanism of Action, Role in Disease, and Therapeutics. Nature Medicine, 21, 677-687.
https://doi.org/10.1038/nm.3893
[8] Sharma, M. and de Alba, E. (2021) Structure, Activation and Regulation of NLRP3 and AIM2 Inflammasomes. International Journal of Molecular Sciences, 22, 872.
https://doi.org/10.3390/ijms22020872
[9] Jounai, N., Kobiyama, K., Takeshita, F., et al. (2013) Recognition of Damage-Associated Molecular Patterns Related to Nucleic Acids during Inflammation and Vaccination. Frontiers in Cellular and Infection Microbiology, 2, 168.
https://doi.org/10.3389/fcimb.2012.00168
[10] Lu, A., Magupalli, V.G., Ruan, J., et al. (2014) Unified Polymeriza-tion Mechanism for the Assembly of ASC-Dependent Inflammasomes. Cell, 156, 1193-1206.
https://doi.org/10.1016/j.cell.2014.02.008
[11] 吴玉琪, 黄桂林. NLRP3在口腔颌面部放射性组织损伤中的研究进展[J]. 口腔医学研究, 2022, 38(9): 815-818.
[12] Swanson, K.V., Deng, M. and Ting, J.P. (2019) The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nature Reviews Immunology, 19, 477-489.
https://doi.org/10.1038/s41577-019-0165-0
[13] Orning, P., Lien, E. and Fitzgerald, K.A. (2019) Gasdermins and Their Role in Immunity and Inflammation. The Journal of Experimental Medicine, 216, 2453-2465.
https://doi.org/10.1084/jem.20190545
[14] Stoecklein, V.M., Osuka, A., Ishikawa, S., et al. (2015) Radiation Exposure Induces Inflammasome Pathway Activation in Immune Cells. Journal of Immunology (Baltimore, Md.: 1950), 194, 1178-1189.
https://doi.org/10.4049/jimmunol.1303051
[15] Zhong, F., Liang, S. and Zhong, Z. (2019) Emerging Role of Mitochondrial DNA as a Major Driver of Inflammation and Disease Progression. Trends in Immunology, 40, 1120-1133.
https://doi.org/10.1016/j.it.2019.10.008
[16] Liu, Y.G., Chen, J.K., Zhang, Z.T., et al. (2017) NLRP3 Inflammasome Activation Mediates Radiation-Induced Pyroptosis in Bone Marrow-Derived Macrophages. Cell Death & Disease, 8, e2579.
https://doi.org/10.1038/cddis.2016.460
[17] Wu, D.M., He, M., Zhao, Y.Y., et al. (2022) Increased Susceptibility of Irradiated Mice to Aspergillus fumigatus Infection via NLRP3/GSDMD Pathway in Pulmonary Bronchial Epithelia. Cell Communication & Signaling, 20, 98.
https://doi.org/10.1186/s12964-022-00907-2
[18] Latz, E., Xiao, T.S. and Stutz, A. (2013) Activation and Regu-lation of the Inflammasomes. Nature Reviews Immunology, 13, 397-411.
https://doi.org/10.1038/nri3452
[19] Paik, S., Kim, J.K., Silwal, P., et al. (2021) An Update on the Regulatory Mechanisms of NLRP3 Inflammasome Activation. Cellular & Molecular Immunology, 18, 1141-1160.
https://doi.org/10.1038/s41423-021-00670-3
[20] Qiu, Y., Huang, Y., Chen, M., et al. (2022) Mitochondrial DNA in NLRP3 Inflammasome Activation. International Immunopharmacology, 108, Article ID: 108719.
https://doi.org/10.1016/j.intimp.2022.108719
[21] Riley, J.S. and Tait, S.W. (2020) Mitochondrial DNA in Inflammation and Immunity. EMBO Reports, 21, e49799.
https://doi.org/10.15252/embr.201949799
[22] Chan, D.C. (2020) Mitochondrial Dynamics and Its Involvement in Disease. Annual Review of Pathology, 15, 235-259.
https://doi.org/10.1146/annurev-pathmechdis-012419-032711
[23] Wang, Q., Stringer, J.M., Liu, J., et al. (2019) Evaluation of Mitochondria in Oocytes Following Gamma-Irradiation. Scientific Reports, 9, 19941.
https://doi.org/10.1038/s41598-019-56423-w
[24] Kumar, M., Shelly, A., Dahiya, P., et al. (2022) Aeromonas Hydrophila Inhibits Autophagy Triggering Cytosolic Translocation of mtDNA Which Activates the Pro-Apoptotic Caspase-1/IL-1β-nitric Oxide Axis in Head Kidney Macrophages. Virulence, 13, 60-76.
https://doi.org/10.1080/21505594.2021.2018767
[25] 肖国辉, 厉娜, 魏艳, 等. 辐射诱导线粒体功能障碍激活转化生长因子β1通路促进胰腺癌细胞上皮间质转化[J]. 中华放射医学与防护杂志, 2021, 41(6): 407-412.
[26] Xie, L.L., Shi, F., Tan, Z., et al. (2018) Mitochondrial Network Structure Homeostasis and Cell Death. Cancer Science, 109, 3686-3694.
https://doi.org/10.1111/cas.13830
[27] Huangfu, C., Tang, N., Yang, X., et al. (2022) Improvement of Irradiation-Induced Fibroblast Damage by α 2-Macro- globulin through Alleviating Mitochon-drial Dysfunction. Pharmaceutical Biology, 60, 1365-1373.
https://doi.org/10.1080/13880209.2022.2096077
[28] Ortega, M.A., Fraile-Martínez, O., Guijarro, L.G., et al. (2020) The Regulatory Role of Mitochondrial MicroRNAs (MitomiRs) in Breast Cancer: Translational Implications Present and Future. Cancers (Basel), 12, 2443.
https://doi.org/10.3390/cancers12092443
[29] Kelley, N., Jeltema, D., Duan, Y., et al. (2019) The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. International Journal of Molecular Sciences, 20, 3328.
https://doi.org/10.3390/ijms20133328
[30] Liu, Q., Zhang, D., Hu, D., et al. (2018) The Role of Mitochondria in NLRP3 Inflammasome Activation. Molecular Immunology, 103, 115-124.
https://doi.org/10.1016/j.molimm.2018.09.010
[31] Yabal, M., Calleja, D.J., Simpson, D.S., et al. (2019) Stressing out the Mitochondria: Mechanistic Insights into NLRP3 Inflammasome Activation. Journal of Leukocyte Biology, 105, 377-399.
https://doi.org/10.1002/JLB.MR0318-124R
[32] Zhou, R., Yazdi, A.S., Menu, P., et al. (2011) A Role for Mitochondria in NLRP3 Inflammasome Activation. Nature, 469, 221-225.
https://doi.org/10.1038/nature09663
[33] Shimada, K., Crother, T.R., Karlin, J., et al. (2012) Oxidized Mito-chondrial DNA Activates the NLRP3 Inflammasome during Apoptosis. Immunity, 36, 401-414.
https://doi.org/10.1016/j.immuni.2012.01.009
[34] Nakahira, K., Haspel, J.A., Rathinam, V.A., et al. (2011) Au-tophagy Proteins Regulate Innate Immune Responses by Inhibiting the Release of Mitochondrial DNA Mediated by the NALP3 Inflammasome. Nature Immunology, 12, 222- 230.
https://doi.org/10.1038/ni.1980
[35] Shadel, G.S. and Horvath, T.L. (2015) Mitochondrial ROS Signaling in Organismal Homeostasis. Cell, 163, 560-569.
https://doi.org/10.1016/j.cell.2015.10.001
[36] West, A.P. and Shadel, G.S. (2017) Mitochondrial DNA in Innate Immune Responses and Inflammatory Pathology. Nature Reviews Immunology, 17, 363-375.
https://doi.org/10.1038/nri.2017.21
[37] Zhong, Z., Liang, S., Sanchez-Lopez, E., et al. (2018) New Mitochondrial DNA Synthesis Enables NLRP3 Inflammasome Activation. Nature, 560, 198-203.
https://doi.org/10.1038/s41586-018-0372-z
[38] Maekawa, H., Inoue, T., Ouchi, H., et al. (2019) Mitochondrial Damage Causes Inflammation via cGAS-STING Signaling in Acute Kidney Injury. Cell Reports, 29, 1261-1273.e6.
https://doi.org/10.1016/j.celrep.2019.09.050
[39] Li, N., et al. (2020) Cytosolic DNA-STING-NLRP3 Axis Is Involved in Murine Acute Lung Injury Induced by Lipopolysaccharide. Clinical and Translational Medicine, 10, e228.
https://doi.org/10.1002/ctm2.228
[40] Sliter, D.A., Martinez, J., Hao, L., et al. (2018) Parkin and PINK1 Mitigate STING-Induced Inflammation. Nature, 561, 258-262.
https://doi.org/10.1038/s41586-018-0448-9
[41] Allam, R., Lawlor, K.E., Yu, E.C., et al. (2014) Mitochondrial Apoptosis Is Dispensable for NLRP3 Inflammasome Activation but Non-Apoptotic Caspase-8 Is Required for Inflammasome Priming. EMBO Reports, 15, 982-990.
https://doi.org/10.15252/embr.201438463
[42] 肖国辉. 线粒体DNA释放激活cGAS-STING-NFκB-TGFβ1通路在放射反应中的作用[D]: [博士学位论文]. 武汉: 武汉大学, 2021.
https://doi.org/10.27379/d.cnki.gwhdu.2021.000818
[43] 姜硕, 王梦楠, 赵慧颖, 等. cGAS/STING通过NLRP3炎性小体调控人肺微血管内皮细胞炎症的作用机制[J]. 中华重症医学电子杂志(网络版), 2021, 7(3): 233-240.
[44] 杨艳敏, 张克交, 张彦栋, 徐美玲, 周建玲, 庄馨瑛. 胡椒碱和荜茇宁对胰岛素抵抗大鼠糖脂代谢及线粒体DNA拷贝数的影响[J]. 中华中医药杂志, 2021, 36(5): 2508-2514.
[45] Liu, Z., Li, T., Zhu, F., et al. (2019) Regulatory Roles of miR-22/Redd1-Mediated Mitochondrial ROS and Cellular Autophagy in Ionizing Radia-tion-Induced BMSC Injury. Cell Death & Disease, 10, 227.
https://doi.org/10.1038/s41419-019-1373-z
[46] Ogawa, Y., Kobayashi, T., Nishioka, A., et al. (2003) Radia-tion-Induced Reactive Oxygen Species Formation Prior to Oxidative DNA Damage in Human Peripheral T Cells. In-ternational Journal of Molecular Medicine, 11, 149-152.
https://doi.org/10.3892/ijmm.11.2.149
[47] Katzen, J. and and Beers, M.F. (2020) Contributions of Alveolar Epi-thelial Cell Quality Control to Pulmonary Fibrosis. The Journal of Clinical Investigation, 130, 5088-5099.
https://doi.org/10.1172/JCI139519
[48] Bueno, M., Lai, Y.-C., Romero, Y., et al. (2015) PINK1 Deficiency Im-pairs Mitochondrial Homeostasis and Promotes Lung Fibrosis. The Journal of Clinical Investigation, 125, 521-538.
https://doi.org/10.1172/JCI74942
[49] Araya, J., Kojima, J., Takasaka, N., et al. (2013) Insufficient Autophagy in Idiopathic Pulmonary Fibrosis. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 304, L56-L69.
https://doi.org/10.1152/ajplung.00213.2012
[50] 丁艳平, 张培怡, 董晓庆, 等. NLRP3炎性小体在辐射诱导肝损伤中的作用[J]. 西北师范大学学报(自然科学版), 2022, 58(3): 85-90.
[51] Li, X., Gong, Y., Li, D., et al. (2021) Low-Dose Radiation Therapy Promotes Radiation Pneumonitis by Activating NLRP3 Inflammasome. International Journal of Radiation Oncology, Biology, Physics, 109, 837.
https://doi.org/10.1016/j.ijrobp.2020.10.023
[52] Jäger, B., Seeliger, B., Terwolbeck, O., et al. (2021) The NLRP3-Inflammasome-Caspase-1 Pathway Is Upregulated in Idiopathic Pulmonary Fibrosis and Acute Exacerbations and Is Inducible by Apoptotic A549 Cells. Frontiers in Immunology, 12, Article ID: 642855.
https://doi.org/10.3389/fimmu.2021.642855
[53] Chen, Y., Zhou, Z. and Min, W. (2018) Mitochondria, Oxidative Stress and Innate Immunity. Frontiers in Physiology, 9, 1487.
https://doi.org/10.3389/fphys.2018.01487
[54] Lee, G.S., Subramanian, N., Kim, A.I., et al. (2012) The Calcium-Sensing Receptor Regulates the NLRP3 Inflammasome through Ca2+ and cAMP. Nature, 492, 123-127.
https://doi.org/10.1038/nature11588
[55] Wu, L., Lian, W. and Zhao, L. (2021) Calcium Signaling in Cancer Progression and Therapy. FEBS, 288, 6187-6205.
https://doi.org/10.1111/febs.16133
[56] Lyng, F.M., Howe, O.L. and McClean, B. (2011) Reactive Oxygen Spe-cies-Induced Release of Signalling Factors in Irradiated Cells Triggers Membrane Signalling and Calcium Influx in Bystander Cells. International Journal of Radiation Biology, 87, 683-695.
https://doi.org/10.3109/09553002.2010.549533
[57] Horng, T. (2014) Calcium Signaling and Mitochondrial De-stabilization in the Triggering of the NLRP3 Inflammasome. Trends in Immunology, 35, 253-261.
https://doi.org/10.1016/j.it.2014.02.007
[58] Murakami, T., Ockinger, J., Yu, J., et al. (2012) Critical Role for Calcium Mobilization in Activation of the NLRP3 Inflammasome. Proceedings of the National Academy of Sciences of the United States of America, 109, 11282-11287.
https://doi.org/10.1073/pnas.1117765109
[59] Li, C., Chen, M., He, X. and Ouyang, D. (2021) A Mini-Review on Ion Fluxes That Regulate NLRP3 Inflammasome Activation. Acta Biochimica et Biophysica Sinica (Shanghai), 53, 131-139.
https://doi.org/10.1093/abbs/gmaa155
[60] Marchi, S. and Galluzzi, L. (2021) Ca2+ in Health and Dis-ease. International Review of Cell and Molecular Biology, 363, 9-15.
https://doi.org/10.1016/S1937-6448(21)00101-5
[61] Ahmad, I., Muneer, K.M., Chang, M.E., et al. (2017) Ul-traviolet Radiation-Induced Downregulation of SERCA2 Mediates Activation of NLRP3 Inflammasome in Basal Cell Carcinoma. Photochemistry and Photobiology, 93, 1025- 1033.
https://doi.org/10.1111/php.12725
[62] Kelly, P., Balter, P.A., Rebueno, N., et al. (2010) Stereotactic Body Radiation Therapy for Patients with Lung Cancer Previously Treated with Thoracic Radiation. International Journal of Radiation Oncology, Biology, Physics, 78, 1387- 1393.
https://doi.org/10.1016/j.ijrobp.2009.09.070
[63] Lee, J.C., Kinniry, P.A., Arguiri, E., et al. (2010) Dietary Curcumin Increases Antioxidant Defenses in Lung, Ameliorates Radiation-Induced Pulmonary Fibrosis, and Improves Survival in Mice. Radiation Research, 173, 590-601.
https://doi.org/10.1667/RR1522.1
[64] Kong, F.M., Ten Haken, R., Eisbruch, A., et al. (2005) Non-Small Cell Lung Cancer Therapy-Related Pulmonary Toxicity: An Update on Radiation Pneumonitis and Fibrosis. Seminars in Oncology, 32, S42-S54.
https://doi.org/10.1053/j.seminoncol.2005.03.009
[65] Kim, R.Y., Pinkerton, J.W., Essilfie, A.T., et al. (2017) Role for NLRP3 Inflammasome-Mediated, IL-1β-Dependent Responses in Severe, Steroid-Resistant Asthma. American Journal of Respiratory and Critical Care Medicine, 196, 283-297.
https://doi.org/10.1164/rccm.201609-1830OC
[66] Lasithiotaki, I., Giannarakis, I., Tsitoura, E., et al. (2016) NLRP3 Inflammasome Expression in Idiopathic Pulmonary Fibrosis and Rheumatoid Lung. European Respiratory Journal, 47, 910-918.
https://doi.org/10.1183/13993003.00564-2015
[67] Li, X.Y., Gong, Y.L., Li, D., et al. (2020) Low-Dose Radiation Therapy Promotes Radiation Pneumonitis by Activating NLRP3 Inflammasome. International Journal of Radiation Oncology, Biology, Physics, 107, 804-814.
https://doi.org/10.1016/j.ijrobp.2020.02.643
[68] Sipaviciute, A., Sileika, E., Burneckis, A., et al. (2020) Late Gastrointestinal Toxicity after Radiotherapy for Rectal Cancer: A Systematic Review. International Journal of Colorectal Disease, 35, 977-983.
https://doi.org/10.1007/s00384-020-03595-x
[69] Miccio, J.A., Oladeru, O.T., Jun Ma, S., et al. (2020) Radiation Therapy for Patients with Advanced Renal Cell Carcinoma. Urologic Clinics of North America, 47, 399-411.
https://doi.org/10.1016/j.ucl.2020.04.011
[70] Maj, J.G., Paris, F., Haimovitz-Friedman, A., et al. (2003) Microvascular Function Regulates Intestinal Crypt Response to Radiation. Cancer Research, 63, 4338-4341.
[71] Wang, J., Boerma, M., Fu, Q., et al. (2007) Significance of Endothelial Dysfunction in the Patho-genesis of Early and Delayed Radiation Enteropathy. World Journal of Gastroenterology, 13, 3047-3055.
https://doi.org/10.3748/wjg.v13.i22.3047
[72] Wang, Y.J., Liu, W., Chen, C., et al. (2013) Irradiation Induced Injury Reduces Energy Metabolism in Small Intestine of Tibet Minipigs. PLOS ONE, 8, e58970.
https://doi.org/10.1371/journal.pone.0058970
[73] Huang, S., Che, J., Chu, Q., et al. (2020) The Role of NLRP3 Inflammasome in Radiation-Induced Cardiovascular Injury. Frontiers in Cell and Developmental Biology, 8, 140.
https://doi.org/10.3389/fcell.2020.00140
[74] Liu, T., Wu, D.M., Zhang, F., et al. (2022) miR-142a-3p Enhances FlaA N/C Protection against Radiation-Mediated Intestinal Injury by Modulating the IRAK1/NF-κB Signaling Pathway. International Journal of Radiation Oncology, Biology, Physics, 112, 1256-1268.
https://doi.org/10.1016/j.ijrobp.2021.12.003
[75] Ala, M., Mohammad Jafari, R., Ala, M., et al. (2022) Sildenafil Improves Radiation-Induced Oral Mucositis by Attenuating Oxidative Stress, NF-κB, ERK and JNK Signalling Path-ways. Journal of Cellular and Molecular Medicine, 26, 4556-4565.
https://doi.org/10.1111/jcmm.17480
[76] Hu, L., Chen, H., Zhang, X., et al. (2020) Rosiglitazone Ameliorates Radiation-Induced Intestinal Inflammation in Rats by Inhibiting NLRP3 Inflammasome and TNF-α Production. Journal of Radiation Research, 61, 842-850.
https://doi.org/10.1093/jrr/rraa062
[77] Sun, H., Cai, H., Fu, Y., et al. (2020) The Protection Effect of Resveratrol against Radiation-Induced Inflammatory Bowel Disease via NLRP-3 Inflammasome Repression in Mice. Dose Response, 18.
https://doi.org/10.1177/1559325820931292
[78] Abe, J., Martin, J.F. and Yeh, E.T. (2016) The Future of Onco-Cardiology: We Are Not Just “Side Effect Hunters”. Circulation Research, 119, 896-899.
https://doi.org/10.1161/CIRCRESAHA.116.309573
[79] Nielsen, K.M., Offersen, B.V., Nielsen, H.M., et al. (2017) Short and Long Term Radiation Induced Cardiovascular Disease in Patients with Cancer. Clinical Cardiology, 40, 255-261.
https://doi.org/10.1002/clc.22634
[80] Wang, H., Wei, J., Zheng, Q., et al. (2019) Radiation-Induced Heart Disease: A Review of Classification, Mechanism and Prevention. International Journal of Biological Sciences, 15, 2128-2138.
https://doi.org/10.7150/ijbs.35460
[81] Lee Chuy, K., Nahhas, O., Dominic, P., et al. (2019) Cardiovascular Complications Associated with Mediastinal Radiation. Current Treatment Options in Cardiovascular Medicine, 21, 1-20.
https://doi.org/10.1007/s11936-019-0737-0
[82] Sies, H., Berndt, C. and Jones, D.P. (2017) Oxidative Stress. Annual Review of Biochemistry, 86, 715-748.
https://doi.org/10.1146/annurev-biochem-061516-045037
[83] Li, X., Gong, Y., Li, D., et al. (2020) Low-Dose Radiation Therapy Promotes Radiation Pneumonitis by Activating NLRP3 Inflammasome. International Journal of Radiation Oncology, Biology, Physics, 107, 804-814.
https://doi.org/10.1016/j.ijrobp.2020.02.643
[84] Christersdottir, T., Pirault, J., Gisterå, A., et al. (2019) Prevention of Radiotherapy-Induced Arterial Inflammation by Interleukin-1 Blockade. European Heart Journal, 40, 2495-2503.
https://doi.org/10.1093/eurheartj/ehz206
[85] Cascella, M., Di Napoli, R., Carbone, D., et al. (2018) Chemotherapy-Related Cognitive Impairment: Mechanisms, Clinical Features and Research Perspectives. Recenti Progressi in Medicina, 109, 523-530.
[86] Gugliandolo, A., Giacoppo, S., Bramanti, P., et al. (2018) NLRP3 Inflammasome Activation in a Transgenic Amyotrophic Lateral Sclerosis Model. Inflammation, 41, 93-103.
https://doi.org/10.1007/s10753-017-0667-5
[87] O’Brien, W., Pham, L., Symons, G., et al. (2020) The NLRP3 Inflammasome in Traumatic Brain Injury: Potential as a Biomarker and Therapeutic Target. Journal of Neuroinflammation, 17, 104.
https://doi.org/10.1186/s12974-020-01778-5
[88] Heneka, M., Kummer, M., Stutz, A., et al. (2013) NLRP3 Is Activated in Alzheimer’s Disease and Contributes to Pathology in APP/PS1 Mice. Nature, 493, 674-678.
https://doi.org/10.1038/nature11729
[89] Liu, G., Nie, Y., Huang, C., et al. (2022) Ferulic Acid Produces Neuroprotection against Radiation-Induced Neuroinflammation by Affecting NLRP3 Inflammasome Activation. Inter-national Journal of Radiation Biology, 98, 1442-1451.
https://doi.org/10.1080/09553002.2022.2055798
[90] Yamazaki, T., Kirchmair, A., Sato, A., et al. (2020) Mito-chondrial DNA Drives Abscopal Responses to Radiation That Are Inhibited by Autophagy. Nature Immunology, 21, 1160-1171.
https://doi.org/10.1038/s41590-020-0751-0
[91] Perera, A.P., Kunde, D. and Eri, R. (2017) NLRP3 Inhibitors as Potential Therapeutic Agents for Treatment of Inflammatory Bowel Disease. Current Pharmaceutical Design, 23, 2321-2327.
https://doi.org/10.2174/1381612823666170201162414