炎性指标联合TILs与乳腺癌新辅助疗效关系
Relationship between Inflammatory Markers Combined with TILs and Neoadjuvant Efficacy in Breast Cancer
DOI: 10.12677/ACM.2023.134879, PDF, HTML, XML, 下载: 176  浏览: 276 
作者: 傅腾超:青岛大学医学部,山东 青岛;赵晓辉, 吴 琍:青岛大学附属医院乳腺病诊疗中心,山东 青岛;曹明珠, 张小沙:青岛大学附属医院关节外科,山东 青岛
关键词: 炎性TILs新辅助化疗疗效Inflammatory TILs Neoadjuvant Chemotherapy Effective
摘要: 目的:乳腺癌已经成为女性最常见的恶性肿瘤,新辅助化疗在乳腺癌中占有重要地位,本研究主要探讨炎性指标如中性粒细胞淋巴细胞比例(Neutrophil lymphocyte ratio, NLR)、血小板淋巴细胞比(Platelet lymphocyte ratio, PLR)、淋巴细胞单核细胞比(Lymphocyte monocyte ratio, LMR),肿瘤浸润淋巴细胞(Tumor infiltrates lymphocytes, TILs)对新辅助化疗疗效产生预测作用。方法:回顾性分析青岛大学附属医院2017年6月~2020年6月就诊的乳腺癌患者,收集相关的病理资料,对TILs及化疗前后的NLR进行分析。结果:140例患者中,有21例达到了病理完全缓解,单因素分析显示:新辅助化疗疗效与年龄(P = 0.033)、淋巴结情况(P < 0.01)、激素受体(P < 0.001)、HER-2 (P = 0.024)、Kit-67 (P = 0.016)、分子分型(P = 0.007)、TILs (P = 0.002)、Pre-NLR (P = 0.001)、Delta-NLR (P ≤ 0.001)、Post-NLR (P ≤ 0.001)存在统计学差异,其余因素无明显相关。多因素分析显示:年龄(P = 0.044, 95%CI: 0.851~0.998)、TILs (P = 0.019, 95%CI: 0.031~0.728)与新辅助化疗疗效相关。结论:化疗前后的NLR及前后的差值新辅助疗效相关,TILs能够对疗效单独起到预测作用。
Abstract: Purpose: Breast cancer has become the most common malignant tumor in women, and neoadjuvant chemotherapy plays an important role in breast cancer. In this study, inflammatory indicators such as Neutrophil lymphocyte ratio (NLR), Platelet lymphocyte ratio (PLR), Lymphocyte monocyte ratio (LMR), Tumor infiltrates lymphocytes (TILs) to predict the efficacy of neoadjuvant chemotherapy. Methods: The patients with breast cancer admitted to the Affiliated Hospital of Qingdao University from June 2017 to June 2020 were retrospectively analyzed, and relevant pathological data were collected to analyze TILs and NLR before and after chemotherapy. Results: Among 140 patients, 21 achieved pathological complete response. Univariate analysis showed: The effect of neoadjuvant chemotherapy was correlated with age (P = 0.033), lymph node status (P < 0.01), hormone receptor (P < 0.001), HER-2 (P = 0.024), Kit-67 (P = 0.016), molecular typing (P = 0.007), TILs (P = 0.002), Pre-NLR (P = 0.001), Delta-NLR (P ≤ 0.001), Post-NLR (P ≤ 0.001) had statistical differences, and other factors were not significantly correlated. Multivariate analysis showed that age (P = 0.044, 95%CI: 0.851~0.998) and TILs (P = 0.019, 95%CI: 0.031~0.728) were correlated with the efficacy of neoadjuvant chemotherapy. Conclusion: The NLR before and after chemotherapy and the difference before and after chemotherapy are related to the neoadjuvant efficacy, and TILs can independently predict the efficacy.
文章引用:傅腾超, 赵晓辉, 吴琍, 曹明珠, 张小沙. 炎性指标联合TILs与乳腺癌新辅助疗效关系[J]. 临床医学进展, 2023, 13(4): 6242-6251. https://doi.org/10.12677/ACM.2023.134879

1. 引言

乳腺癌已经成为全球最常见的恶性肿瘤,也是引起女性死亡的主要原因 [1] 。新辅助化疗(Neoadjuvant chemotherapy, NAC)的出现不仅能够为无法进行手术的患者提供手术机会,而且能够提供药物的药敏信息,为后续治疗提供依据,在近些年的研究中逐渐成为重点 [2] 。研究证明,肿瘤微环境中的不同基质细胞、免疫细胞和调节细胞可刺激或抑制肿瘤生长,与乳腺癌的治疗密切相关 [3] [4] [5] ,TILs能够预测新辅助化疗的疗效及预后,然而不仅免疫与癌症的关系越来越密切,炎性指标与癌症的也存在着某些关联,目前常用的炎症指标主要包括:NLR、PLR、LMR等 [6] ,本研究主要通过探讨炎性指标和TILs共同对新辅助化疗疗效对预测作用。

2. 实验设计

2.1. 入组人群

我们回顾性收集了青岛大学附属医院140名患者,接受了全程的新辅助治疗,且存在完整的资料,本研究经过青岛大学附属医院伦理委员会批准(伦理批件号:QYFYWZLL27458),相关操作及手术均经过患者同意并签署知情同意书。

纳入标准:

① 于我院接受系统、完整的新辅助治疗,临床病历及影像学资料完整。

② 患者经穿刺活检显示乳腺癌,未发生全身转移的。

③ 有保存完整的新辅助化疗前的穿刺标本及术后完整的病理标本用于免疫组化。

④ 接受新辅助治疗之前未接受过其他的抗肿瘤治疗,包括手术治疗、中药治疗、放射治疗、内分泌治疗、免疫治疗等,化疗后均行手术治疗。

排除标准:

① 新辅助治疗前穿刺标本及术后标本未能满足免疫组化要求的。

② 接受NAC前有合并其他血液系统疾病、肾脏疾病及近期有感染性疾病等血常规明显异常的。

③ 未全程于我院行完整的化疗方案的患者,或是临床资料不完善者。

2.2. 新辅助治疗

化疗方案可大致分为蒽环类和去蒽环类,每个化疗周期均控制为21天,化疗期间予以止吐、抑酸等相关对症处理。蒽环类主要包括蒽环联合紫杉类或是蒽环联合环磷酰胺序贯紫杉类。蒽环联合紫杉类采用6周期多柔比星(50 mg/m2) + 白蛋白紫杉醇(125 mg/m2) + 环磷酰胺(500 mg/m2);蒽环联合环磷酰胺序贯紫杉类采用4周期多柔比星(50 mg/m2) + 环磷酰胺(500 mg/m2)序贯4周期白蛋白紫杉醇(125 mg/m2)。去蒽环采用紫杉醇联合铂类或是紫杉醇 + 环磷酰胺。紫杉醇联合铂类采用白蛋白紫杉醇(125 mg/m2) + 卡铂(AUC = 6)。紫杉醇联合环磷酰胺采用白蛋白紫杉醇(125 mg/m2) + 环磷酰胺(500 mg/m2),HER-2过表达患者均使用曲妥珠单抗(首剂8 mg/kg,之后6 mg/kg) + 帕妥珠单抗(首剂840 mg,之后420 mg)联合治疗。

2.3. 血液学指标

所有患者在确诊乳腺癌后立即进行外周血静脉血常规检查,用以计算化疗前NLR,化疗结束后3周即术前性外周静脉血常规检查,用以计算化疗后的NLR。NLR为该血液样本中绝对中性粒细胞计数与绝对淋巴细胞计数之比,以Pre-NLR代表化疗前的中性粒细胞与淋巴细胞比,以Post-NLR代表化疗后中性粒细胞与淋巴细胞比,以Delta-NLR代表Post-NLR与Pre-NLR的差值。所有的血细胞评估都是在我们的机构实验室按照标准化的操作程序进行的。

2.4. 病理学指标

在乳腺癌组织中,肿瘤间质及其内的免疫细胞是肿瘤微环境的组成部分,大多数TILs位于肿瘤间质中,只有少数淋巴细胞与肿瘤细胞直接接触。根据国际指南将基质TILs作为主要观察指标 [7] ,即TILs为肿瘤边界内单核免疫细胞覆盖的面积占总的基质面积的百分比。应注意排除正常小叶周围、穿刺活检部位或挤压伪影区域的淋巴细胞浸润 [8] 。

所有乳腺癌标本均进行免疫组化(immunohistochemistry, IHC)处理,用以评估ER、PR、HER-2、Kit67。HER-2无法通过免疫组化方法确定可采用荧光原位杂交(Fluorescence in situ hybridization, FISH)评估HER-2状态,根据ER、PR、HER2和Ki-67免疫组化将乳腺癌定义标准分为4组:Luminal A型、Luminal B型、HER-2过表达型、三阴型乳腺癌 [9] 。

2.5. 新辅助疗效评估

病理指标的评估主要采用Miller-Payne (MP)评估系统。MP评估系统分为5级,G1为浸润癌细胞无改变,或仅个别癌细胞发生改变;G2为浸润癌细胞轻度减少,癌细胞减少不超过30%;G3为浸润癌细胞减少为30%~90%;G4为浸润癌细胞显著减少超过90%;G5为原肿瘤瘤床部位未发现浸润癌细胞。国际指南将病理完全缓解(Pathological complete response, pCR)定义位乳腺原发灶无浸润性癌,且区域淋巴结位阴性,即原发病灶MP分级为5级且淋巴结阴性,本研究将pCR定义为MP分级G5期,即G5为原肿瘤瘤床部位未发现浸润癌细胞。

3. 统计分析数据

用SPSS进行统计分析,正态分布的计量数据用均数标准差表示,采用t检验。计数数据以病例数(N)和成分比(%)表示,采用卡方检验。等级资料采用秩和检验。采用受试者操作特征曲线计算各个指标的截断值,Logistic回归分析为用于分析影响患者疗效的独立危险因素。差异有统计学意义(P ≤ 0.05)。

4. 研究结果

4.1. 基线资料

本研究共纳入有140例符合条件的患者,年龄范围为27岁至74岁,平均年龄为50.36 ± 10.55岁,在140例患者中,共有21名患者(15%)达到Miller-Payne分级标准中的5级,见表1

Table 1. Baseline data of patients

表1. 患者基线资料

4.2. 截断值获取

Pre-NLR、Post-NLR、TILs在既往研究表明未有明确的分界值,绘制出ROC曲线,选取AUC面积最大的点作为最佳截断值,根据截断值将上述指标分为高表达组和低表达组,将Pre-NLR分为高表达组(>2.59)和低表达组(≤2.59);Post-NLR分为高表达组(>1.69)和低表达组(≤1.69);TILs分为高表达组(>25)和低表达组(≤25),用于进一步研究,见表2

Table 2. ROC curve analysis of neoadjuvant efficacy in breast cancer patients

表2. 乳腺癌患者新辅助疗效ROC曲线分析

4.3. 乳腺癌NAC疗效影响因素单因素分析

在纳入研究的140名患者中,共有21名患者到达Miller-Payne分级标准中的5级,将其分为即pCR组和非pCR组,结果所示:新辅助化疗疗效与年龄(P = 0.033)、淋巴结情况(P < 0.01)、激素受体(P < 0.001)、HER-2 (P = 0.024)、Kit-67 (P = 0.016)、分子分型(P = 0.007)、TILs (P = 0.002)、Pre-NLR (P = 0.001)、Delta-NLR (P ≤ 0.001)、Post-NLR (P ≤ 0.001)存在统计学差异,其余因素无明显相关。在低表达的Pre-NLR中,有21.4%的患者能够能够达到5级,较高表达组(3.3%)能够获得更好的化疗效果。对于Post-NLR,低表达组中,有17名(40.5%)患者的新辅助化疗后反应良好,同样较高表达组的反应高。在Delta-NLR的分析中,负向组新辅助化疗效果较正向组好(26.4% VS 2.9%),对于TILs的分析中,发现高表达的TILs能够明显达到比较高的良好反应,见表3

Table 3. Relationship between clinicopathologic features and NAC efficacy

表3. 临床病理特征与NAC疗效关系

4.4. 乳腺癌NAC疗效影响因素多因素分析

Table 4. Multifactor analysis of neoadjuvant chemotherapy

表4. 新辅助化疗疗效多因素分析

将年龄、淋巴结情况、激素受体情况、HER-2受体、Kit-67、分子分型、Pre-NLR、Post-NLR、Delta-NLR、TILs进一步纳入二元logistic回归分析,结果显示TILs为新辅助化疗反应良好的独立预测因子(OR = 0.150, 95%CI: 0.031~0.728, P = 0.019),而年龄、淋巴结情况、激素受体情况、HER-2受体、Kit-67、分子分型、Pre-NLR、Post-NLR、Delta-NLR不在作为独立因素,未见明显相关。见表4

5. 讨论

肿瘤细胞生活在复杂的环境当中,称为肿瘤微环境(tumor microenvironment),肿瘤微环境主要包括免疫细胞、基质细胞和细胞外基质 [10] 。肿瘤细胞与肿瘤微环境之间相互协调,共同影响肿瘤的发展。炎症是机体免疫系统对外部或内部刺激做出反应,清除外界干扰,恢复稳态的一种自我保护机制 [11] 。乳腺癌的进展需要免疫细胞、促炎细胞因子和生长因子的支持 [12] [13] 。从病理生理学的角度来看,全身炎症反应与肿瘤侵袭性有关,这主要是由于炎症反应引起的促血管生成氧化状态有利于干细胞状态的获得以及DNA修复机制的损伤 [14] 。

血液中的中性粒细胞(neutrophile)、淋巴细胞(lymphocyte)、单核细胞(mononuclear)和血小板(platelet)在炎症反应的作用不尽相同。中性粒细胞作为炎症免疫的重要因子,能够缩短增殖周期,通过释放一系列炎症和免疫因子,有利于侵袭和分泌促进肿瘤生长的因子,促进肿瘤的生长和转移;单核细胞能够分化为肿瘤相关的巨噬细胞,促进肿瘤细胞增殖、侵袭、转移、新生血管的生成;血小板能够释放相关因子促进血管生成,刺激肿瘤进展;淋巴细胞作为免疫监测的重要成员,通常情况下在肿瘤增殖转移中起抑制作用,尤其是细胞毒性T细胞具有抗肿瘤免疫反应,可刺激肿瘤细胞凋亡,抑制肿瘤细胞生长 [15] [16] ,在乳腺癌中,细胞毒性CD8+ T细胞的广泛肿瘤浸润与患者对治疗的反应程度及远期预后密切相关。最近的Yam等研究表明,CD4+调节性T细胞的存在与预后的好坏有关,更多克隆性T细胞群体与NAC后pCR和三阴性乳腺癌免疫活性激活相关 [17] [18] ,这些功能为研究NLR、LMR和PLR能够对新辅助化疗中肿瘤反应的起到预测作用提供了理论基础。

已有研究表明,NLR在疾病较晚期的患者中较高,并与许多癌症的生存率较差相关。在既往的研究中,胃癌 [19] 、食管癌 [20] 、结肠癌 [21] 等已经证明化疗前NLR与化疗反应或预后预测相关。另有多项研究表明,较高的NLR与转移性乳腺癌较差的生存率相关 [22] [23] ,最近的一项Meta分析强调,较高的NLR与较差的DFS和总生存率相关 [24] 。先前的几项研究报告称,较高的NLR也与更晚期和侵袭性乳腺有关。在接受治疗的乳腺癌患者中,淋巴细胞浸润增加与更高的pCR率和更好的预后相关。

越来越多的研究表明,炎症在调节肿瘤的发生发展中起着重要作用,肿瘤淋巴细胞浸润是改善患者预后的重要标志,外周血淋巴细胞的增加也表明患者预后较好。中性粒细胞淋巴细胞比率(NLR)和血小板淋巴细胞比率(PLR)是炎症免疫反应的重要指标,已被证实与各种肿瘤的预后密切相关 [20] [21] [25] 。

本研究发现TILs有望成为乳腺癌NAC疗效的独立预后指标,TILs表达越高,新辅助化疗疗效越好。化疗前后的NLR及其差值虽然未能成为NAC的独立预测因子,但仍对预后的判断具有价值。低表达的PreNLR、Post-NLR、Delta-NLR ≤ 0将会获得更好的疗效。然而,本研究仍存在一定的局限性。首先,本研究收集的样本量相对较少,容易存在抽样误差。其次,由于样本量小,我们无法按照乳腺癌各种分子分型进行分析。第三,NLR可能受到各种共病的影响,这些数据我们没有包括在我们的分析中,期待将来的研究能够继续深入研究。

参考文献

[1] Katsura, C., et al. (2022) Breast Cancer: Presentation, Investigation and Management. British Journal of Hospital Medi-cine (London), 83, 1-7.
https://doi.org/10.12968/hmed.2021.0459
[2] Dan, J., et al. (2020) The Dynamic Change of Neutrophil to Lymphocyte Ratio Is Predictive of Pathological Complete Response after Neoadjuvant Chemotherapy in Breast Cancer Patients. Breast Cancer, 27, 982-988.
https://doi.org/10.1007/s12282-020-01096-x
[3] Deepak, K.G.K., et al. (2020) Tumor Microenvironment: Challenges and Opportunities in Targeting Metastasis of Triple Negative Breast Cancer. Pharmacological Research, 153, Article ID: 104683.
https://doi.org/10.1016/j.phrs.2020.104683
[4] Lei, X., et al. (2020) Immune Cells within the Tumor Microen-vironment: Biological Functions and Roles in Cancer Immunotherapy. Cancer Letters, 470, 126-133.
https://doi.org/10.1016/j.canlet.2019.11.009
[5] Salemme, V., et al. (2021) The Crosstalk between Tumor Cells and the Immune Microenvironment in Breast Cancer: Implications for Immunotherapy. Frontiers in Oncology, 11, Article ID: 610303.
https://doi.org/10.3389/fonc.2021.610303
[6] Graziano, V., et al. (2019) Combination of Peripheral Neutro-phil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio Is Predictive of Pathological Complete Response after Neoadjuvant Chemotherapy in Breast Cancer Patients. Breast, 44, 33-38.
https://doi.org/10.1016/j.breast.2018.12.014
[7] Savas, P., et al. (2016) Clinical Relevance of Host Immunity in Breast Cancer: From TILs to the Clinic. Nature Reviews Clinical Oncology, 13, 228-241.
https://doi.org/10.1038/nrclinonc.2015.215
[8] Hendry, S., et al. (2017) Assessing Tumor-Infiltrating Lympho-cytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the Interna-tional Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors. Advances in Anatomic Pathology, 24, 311-335.
https://doi.org/10.1097/PAP.0000000000000161
[9] Goldhirsch, A., et al. (2011) Strategies for Sub-types—Dealing with the Diversity of Breast Cancer: Highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Annals of Oncology, 22, 1736-1747.
https://doi.org/10.1093/annonc/mdr304
[10] Tan, Z., et al. (2022) Mapping Breast Cancer Microenvironment through Single-Cell Omics. Frontiers in Immunology, 13, Article ID: 868813.
https://doi.org/10.3389/fimmu.2022.868813
[11] Villarreal-García, V., et al. (2022) A Vicious Circle in Breast Cancer: The Interplay between Inflammation, Reactive Oxygen Species, and microRNAs. Frontiers in Oncology, 12, Article ID: 980694.
https://doi.org/10.3389/fonc.2022.980694
[12] Allen, M.D. and Jones, L.J. (2015) The Role of Inflammation in Progression of Breast Cancer: Friend or Foe? (Review). International Journal of Oncology, 47, 797-805.
https://doi.org/10.3892/ijo.2015.3075
[13] Bahiraee, A., et al. (2019) The Role of Inflammation and Its Related microRNAs in Breast Cancer: A Narrative Review. Journal of Cellular Physiology, 234, 19480-19493.
https://doi.org/10.1002/jcp.28742
[14] Truffi, M., et al. (2021) Preoperative Systemic Inflammatory Biomarkers Are Independent Predictors of Disease Recurrence in ER + HER2-Early Breast Cancer. Frontiers in Oncology, 11, Ar-ticle ID: 773078.
https://doi.org/10.3389/fonc.2021.773078
[15] Cuello-López, J., et al. (2018) Platelet-to-Lymphocyte Ratio as a Predictive Factor of Complete Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer. PLOS ONE, 13, e0207224.
https://doi.org/10.1371/journal.pone.0207224
[16] Caziuc, A., et al. (2020) Neutrophils-to-Lymphocytes, Lym-phocytes-to-Monocytes and Platelets-to-Lymphocytes Ratios—Predictive Biomarkers for Response to Neoadjuvant Chemotherapy in Breast Cancer. Journal of BUON, 25, 182- 187.
[17] Lin, N.U., et al. (2012) Clinicopathologic Fea-tures, Patterns of Recurrence, and Survival among Women with Triple- Negative Breast Cancer in the National Com-prehensive Cancer Network. Cancer, 118, 5463-5472.
https://doi.org/10.1002/cncr.27581
[18] Zhou, Y., et al. (2021) The Prognostic Significance of TILs as a Biomarker in Triple-Negative Breast Cancer: What Is the Role of TILs in TME of TNBC? European Review for Medical and Pharmacological Sciences, 25, 2885-2897.
[19] Wang, F., et al. (2015) Changes in Neutrophil/Lymphocyte and Platelet/Lymphocyte Ratios after Chemotherapy Correlate with Chemotherapy Response and Prediction of Prognosis in Patients with Unresectable Gastric Cancer. Oncology Letters, 10, 3411-3418.
https://doi.org/10.3892/ol.2015.3783
[20] Hyder, J., et al. (2016) Changes in Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios during Chemoradiation Predict for Survival and Pathologic Complete Response in Trimodality Esophageal Cancer Patients. Journal of Gastrointestinal Oncology, 7, 189-195.
[21] Li, Z., et al. (2018) The Dynamic Change of Neutrophil to Lymphocyte Ratio Can Predict Clinical Outcome in Stage I-III Colon Cancer. Scientific Reports, 8, 9453.
https://doi.org/10.1038/s41598-018-27896-y
[22] Mouchemore, K.A., Anderson, R.L. and Hamilton, J.A. (2018) Neutrophils, G-CSF and Their Contribution to Breast Cancer Metastasis. The FEBS Journal, 285, 665-679.
https://doi.org/10.1111/febs.14206
[23] Xue, L.B., et al. (2019) Prognostic Role of High Neutro-phil-to-Lymphocyte Ratio in Breast Cancer Patients Receiving Neoadjuvant Chemotherapy: Meta-Analysis. Medicine (Baltimore), 98, e13842.
https://doi.org/10.1097/MD.0000000000013842
[24] Ren, K., et al. (2018) Prognostic Role of Derived Neutro-phil-to-Lymphocyte Ratio in Surgical Triple-Negative Breast Cancer. Cancer Management and Research, 10, 4891-4898.
https://doi.org/10.2147/CMAR.S180695
[25] Dan, J.Q., et al. (2013) Hepatitis B Virus Reactivation after Radiofrequency Ablation or Hepatic Resection for HBV- Related Small Hepatocellular Carcinoma: A Retrospective Study. European Journal of Surgical Oncology, 39, 865- 872.
https://doi.org/10.1016/j.ejso.2013.03.020