生物标志物在心力衰竭中的应用与进展
Application and Progress of Biomarkers in Heart Failure
DOI: 10.12677/ACM.2023.1351004, PDF, HTML, XML, 下载: 209  浏览: 399  科研立项经费支持
作者: 周雅倩, 吕晋琳*:大理大学第一附属医院,云南 大理
关键词: 心力衰竭生物标志物综述Heart Failure Biomarkers Review
摘要: 心力衰竭(HF)是心脏疾病终末期最常见的一种临床综合征。在多种致病因素作用下,心脏结构或功能改变引起射血分数降低、心室收缩功能受损,心输出量减少或相对不足无法供应机体自身代谢的需求,导致体循环、肺循环淤血,主要临床表现为呼吸困难、水肿、乏力、纳差、日常体力活动受限。HF可发生于各种年龄段,是一种严重的进展性疾病,是世界范围内发病率和死亡率的重要原因。循环生物标志物可以反映心衰发生和进展的病理生理途径,能够帮助临床对心衰患者进行早期诊断以及更好地治疗,有助于完善心衰患者的管理,进一步改善其预后,提高病人的生活质量。本文就心衰生物标志物的应用与发展展开综述。
Abstract: Heart failure (HF) is one of the most common clinical syndromes in the end-stage stage of heart dis-ease. Under the action of a variety of pathogenic factors, changes in cardiac structure or function cause a decrease in ejection fraction, impaired ventricular systolic function, reduced cardiac output or relatively insufficient to supply the body’s own metabolic needs, resulting in systemic circulation and pulmonary circulation congestion, and the main clinical manifestations are dyspnea, edema, fa-tigue, poor appetite, and limited daily physical activity. HF can occur at all ages, is a serious pro-gressive disease, and is an important cause of morbidity and mortality worldwide. Circulating bi-omarkers can reflect the pathophysiological pathways of heart failure occurrence and progression, which can help clinical early diagnosis and better treatment of heart failure patients, help improve the management of heart failure patients, further improve their prognosis, and improve the quality of life of patients. This article reviews the application and development of heart failure biomarkers.
文章引用:周雅倩, 吕晋琳. 生物标志物在心力衰竭中的应用与进展[J]. 临床医学进展, 2023, 13(5): 7183-7190. https://doi.org/10.12677/ACM.2023.1351004

1. 心肌损伤生物标志物——胰岛素样生长因子结合蛋白7 (IGFBP7)

IGF-1 (胰岛素样生长因子-1)是一种合成代谢生长激素,负责细胞生长、分化、增殖和存活,是细胞生长的主要调节剂 [1] 。IGF-1以多种方式影响血管功能和动脉粥样硬化,可以促进心肌细胞和心肌纤维细胞增殖,通过抗炎、抗细胞凋亡以及刺激血管生成的方式,改善心肌缺血的状况 [2] [3] 。IGF-1受体(IGF1R),具有酪氨酸激酶活性,由其所引起的细胞信号途径能够产生分解、转运、抗细胞凋亡等各种功能。而大多数循环IGF-1分子与IGF结合蛋白(IGFBP)结合,这会影响IGF-1与IGF1R的结合。如果该通路被阻断,进一步会发生动脉粥样硬化、肿瘤、糖尿病等代谢相关疾病 [4] 。胰岛素样生长因子结合蛋白7 (IGFBP7)是胰岛素样生长因子系统的一部分,由衰老细胞分泌,是一种30-kDa模块化分泌蛋白,也称为血管调节素、mac25、肿瘤粘附因子(TAF)、前列环素刺激因子(PSF)等。IGFBP7通过阻滞细胞周期G1期来参与细胞生长、增殖、分化、血管生成等多个过程 [5] [6] 。IGFBP7与胰岛素样生长因子(IGF)结合力比IGF与受体结合高,拮抗该途径发挥作用 [7] [8] 。后续的研究证据表明,胰岛素样生长因子系统与动脉粥样硬化发病机制相关。研究显示,在正常人可以检测较低浓度的IGFBP7,而当IGFBP7达到一定浓度的时候可以通过血管内皮细胞产生活性氧,从而导致炎症级联反应,潜在的加速心肌老化,参与心室重塑、重构、纤维化等生理病理过程。随着疾病的进展,心肌舒张功能下降,甚至心力衰竭的发生 [8] [9] 。有研究显示,在心力衰竭患者中也发现IGFBP7水平升高 [10] 。IGFBP7是心衰的预后影响因素 [11] ,IGFBP7血清浓度水平与心脏彩超中左心室舒张功能不全的指标高度关联。IGFBP7近来已经被明确为心肌肥大和心力衰竭的新型生物标志物,是心血管系统中一个有发展的新标志物 [12] [13] 。Valentina等人监测了2250名心力衰竭的患者血浆IGFBP7浓度并进行了随访研究,发现IGFPB7在射血分数降低和保留的HF患者中呈现为独立且稳定的预后生物标志物,研究中将心力衰竭与衰老通路联系起来,发现IGFBP7通路参与免疫系统调节的不同阶段 [14] 。而炎症通路是心力衰竭发生发展的一部分。所以IGFBP7无论是在心血管疾病中表达,还是在心室功能异常与心力衰竭等方面,其功能及应用应该进一步深入研究。

2. 心肌重构的生物标志物——可溶性肿瘤抑制因子-2 (sST2)

IL-33/ST2信号通路是治疗心血管疾病以及评估预后的新策略,在心血管疾病中起着重要的作用。ST2主要表达在心肌细胞中,有可溶性ST2 (sST2)和跨膜ST2 (ST2L)两个亚型。能够反映心室壁的应力,与免疫以及炎症反应相关 [15] 。IL-33/ST2信号通路通过ST2L受体发挥心脏保护作用,抑制心肌细胞肥大,减少心肌纤维化,改善心功能 [16] 。心力衰竭期间,室壁压力增加,过度牵张刺激心肌产生过量的sST2可与IL-33竞争性结合,IL-33/ST2信号通路对心脏的保护作用被消除,导致心肌细胞肥大、纤维化和凋亡,加重心衰进程,心功能进一步恶化 [17] 。sST2是一种与心肌细胞牵引相关的标志物,是心肌肥大和心肌纤维化的潜在病理生理介质,可以单独或与利钠肽一起使用,预测心力衰竭患者的病情严重程度 [18] 。心衰时,sST2浓度升高,特别是在诊断治疗后 [19] 。sST2的表达与心肌缺血或机械应激呈正相关,其在缺血损伤后的心肌重构中起重要作用。它是一种很有前途的预后生物标志物,可用于预测心肌缺血患者未来的临床心力衰竭和死亡,并与已建立的心脏生物标志物在预测价值方面具有协同作用。sST2 (反映心肌纤维化和重塑指标)、hsTnT (指示心肌坏死)和NT-proBNP (识别心肌牵张)一起使用时,可以为心衰患者进一步提供更好的风险分层。sST2也是慢性心力衰竭(CHF)患者预后评估的有力生物标志物,临床医师进行有效的随访及预后评估,有可能提高患者的生活质量。sST2与NT-proBNP之间联合使用可以帮助临床医师更好的评估患者病情 [20] 。

3. 心肌重构的生物标志物——半乳糖凝集素3 (Gal-3)

Galectin-3 (Gal-3)是一种β-半乳糖苷结合蛋白,是凝集素家族的一员,对β-半乳糖苷具有高亲和力,具有多种调节活性以及生理细胞功能,例如细胞生长、增殖、凋亡、分化、细胞粘附和组织修复。炎症、组织纤维化和血管生成是Gal-3参与的主要过程 [21] 。研究表明,gal-3与多种疾病的发病机制有关,包括心力衰竭(HF)、心肌纤维化、急性冠脉综合征(ACS)、急性缺血性卒中(AIS)等心脑血管疾病,gal-3在这些疾病中表达异常升高,发挥重要作用 [22] 。心脏纤维化由损伤、炎症刺激细胞外基质逐渐积累引起,是一种组织修复机制。Gal-3与心肌纤维化密切相关,在心肌成纤维细胞中高表达,可作为心肌纤维化的独立预测指标 [23] [24] 。如果心肌纤维化过程受阻,将会影响组织修复,导致组织、器官瘢痕形成、损伤以及功能降低或丧失。活化的巨噬细胞和病理损伤的心肌细胞是血清gal-3的主要来源,gal-3是心肌重塑(包括心肌纤维化)和HF发展的积极因素 [25] [26] [27] ,有研究 [28] 对35例左心室射血分数保留的HF患者和43例健康人同时进行了gal-3和BNP监测,结果显示HF患者gal-3水平较健康人明显升高,这表明gal-3对心力衰竭的诊断具有一定的价值,研究还显示其灵敏度高于BNP。Brouwers等人研究中表明Gal-3可预测高风险的HF新发患者 [29] 。在之后的研究中,gal-3被证明与NT-proBNP或BNP联合使用预测HF预后比任何单一标志物对更有价值 [30] [31] [32] 。在一项关于gal-3在射血分数保留型心力衰竭(HFpEF)的临床意义荟萃分析中发现血浆Gal-3可能被用作新发HFpEF患者不良预后的额外预测因子,而且还与HFpEF患者心脏彩超中LVDD的严重程度相关 [33] 。gal-3水平不仅对HF患者具有一定的预后价值作用,同时对伴有急性呼吸困难考虑HF患者的预后也有重要预测价值。

4. 心肌牵张相关的生物标志物——B型利钠肽(BNP)/血浆N末端B型利钠肽 (NT-proBNP)

心衰是由于心脏泵功能衰竭,引起心输出量减少,不无法满足全身组织代谢需求的一种病理过程,是一种血液动力学障碍。神经体液激活在HF诊断和预后中扮演着重要的角色,其中最敏感的是BNP以及NT-proBNP [34] 。BNP由左心室中的心肌细胞合成和分泌,心室容积扩张或压力过大,心肌细胞被牵拉刺激产生BNP [35] 。血浆N末端B型利钠肽(NT-proBNP)是心室容量超负荷或牵引力过大而分泌的一种多肽,其半衰期较长,血清水平能够反映心肌细胞损伤的严重程度 [36] 。BNP、NT-proBNP和中区proANP (MR-proANP)浓度是血液动力学中心脏受损和HF的发生以及评估严重程度的生物标志物,心内充盈压、舒张末期室壁应力和心内容积是主要的触发因素 [37] 。美国心脏病学会基金会/美国心脏协会(ACCF/AHA)和欧洲心脏病学会(ESC)的指南指出,BNP和NT-proBNP是诊断HF和心脏疾病最有价值以及最可靠的生物标志物。同时还可以确定HF严重程度、指导相关治疗策略以及评估心脏病的预后 [38] 。2016年ESC急慢性心衰诊治指南中提出建议,临床诊断怀疑急性HF患者都应该检测血浆BNP和NT-proBNP水平,来帮助我们诊断以及鉴别急性心衰。指南指出在非急性情况下,NT-proBNP的正常临界值为125 pg/mL,BNP的正常临界值为35 pg/mL,心力衰竭急性发作时,BNP的临界值可上升为100 pg/mL,NT-proBNP的临界值上升为300 pg/ml [38] 。在慢性 HF中,BNP和NT-proBNP都是重要预测因子。在一项缬沙坦心力衰竭试验研究的子分析中,NT-proBNP在预测HF死亡率或住院率方面较BNP高 [39] 。中国是一个人口大国,随着人口老龄化,心力衰竭患者日益增加,中国心力衰竭诊断和治疗指南2018中将BNP、NT-proBNP临界值纳入心衰诊断标准。一项基于纽约心脏协会(NYHA)分类系统的设计试验中观察到被认为具有心功能不全的HF患者血浆BNP浓度随着心衰等级的增加而逐渐增加,这表明血浆BNP浓度随着HF的严重程度而增加 [40] 。这表明,BNP和NT-proBNP可以对心衰的诊断提供帮助,在评估心衰的严重程度和预后方面也有一定的辅助价值。

5. 炎症相关的生物标志物——C-反应蛋白(CRP)、纤维蛋白原

HF的发病机制比较复杂而且容易受到多种因素的影响,心肌重塑和心脏纤维化都是HF发展的主要机制,其中炎症起着核心作用。在HF期间,炎症因子水平升高可以来源于心肌,还可以被循环中白细胞、巨噬细胞和单核细胞刺激产生。HF是炎症因子产生的关键前提,但是炎症反应也会加剧其他组织器官损伤 [41] 。HF时全身炎症激活被广泛报道为各种标志物水平升高,比如C-反应蛋白(CRP)和纤维蛋白原 [42] 。炎症通路被激活后与脉管系统、调节肌细胞功能、细胞外基质等通路来相互作用,共同参与HF的发病机制 [43] 。C-反应蛋白(CRP)是常见的非特异性炎症反应因子之一,CRP水平在深静脉血栓形成、心肌梗塞、器质性感染和外伤等情况下显着升高,并与炎症严重程度呈正相关。当CRP大量产生时,可以诱导单核细胞释放细胞因子,能够显着损伤血管内皮,引起心肌缺氧缺血,激活凝血系统,降低心功能,因此被认为是心血管事件的独立危险因素 [44] [45] 。CRP水平与心肌细胞坏死数量密切相关,同时也可以反应急性冠脉综合征患者的疾病严重程度 [46] [47] 。来自观察性队列研究的证据表明,CRP和纤维蛋白原增加是HF的独立危险因素,因此我们可以推测炎症CRP和纤维蛋白原在心衰的发生发展中起着重要的作用 [47] 。一项关于韩国的3831名急性心力衰竭的研究中发现,CRP是心力衰竭的极好预后标志物,并且CRP和利钠肽之间的相关性非常弱。研究中还观察到随着CRP水平的增加,住院和出院后死亡率逐渐增加 [48] 。Alonso等人 [45] 发现较高的NYHA类别的HF中可以检测到较高的CRP水平。这提示CRP水平升高与HF死亡率和再住院率息息相关。因此CRP也可作为评估心衰严重程度的一个独立指标。

6. 神经激素激活的生物标志物——肾上腺髓质素(adrenomedullin, ADM)

肾上腺髓质素(ADM)是一种可以在所有组织合成的激素,主要由肾上腺髓质、心脏、肺和肾脏合成,具有扩张血管、促进尿钠排泄以及正性肌力和心脏保护作用,能够反应容量变化或压力负荷是否过载 [49] 。研究表明,升高的ADM与HF诊断密切相关,但其诊断性能不如NT-proBNP精确,然而,ADM与HF不良结果相关,独立于NT-proBNP,并且可以在指导心力衰竭患者治疗和风险评估的多标志物方法中发挥重要作用 [50] 。血清ADM浓度在HF中增加,但是由于半衰期较短,导致与相应的载体蛋白结合而变得复杂化。其中前体的一个片段,即中区pro-ADM (MR-proADM),对比ADM更容易给药,已经在HF的预后标志物进行测试研究 [51] 。Bach等人研究发现,MR-proADM在急性心衰中预测90的生存率较BNP特异性高 [52] [53] 。这一结论被证实在Prede研究分析中,MR-proADM是HF患者1年内生存率的最佳预测因子,MR-proANP和NT-proBNP联合作用在诊断急性心衰1年后较常规的检测指标,表现出更好的预后结果 [54] 。由于MR-proADM可以在身体的多个部位表达,不是心脏特异性生物标志物,虽然这些数据支持使用MR-proADM作为预后标志物,至少对于短期风险分层而言,可能影响其解释的因素尚未完全表征,所以仍有一些限制阻止其在临床实践中使用。

7. 神经激素激活的生物标志物——加压素

加压素是下丘脑感应到高渗透压或者血容量降低时释放的激素,具有抗利尿和血管收缩活性的作用 [55] 。在HF中,由于心输出量降低,外周循环血量减少,导致压力感受器刺激增加,从而引起加压素不成比例地增加 [55] 。慢性HF患者的加压素浓度比健康人高出两到三倍,较高的加压素水平与晚期HF相关,表明加压素可能导致疾病进展 [56] 。和肽素是加压素的C末端片段,与加压素相比更加容易给药 [57] 。一项研究显示,和肽素升高的患者中肺部和外周充血更严重,伴有低钠血症的患者,3个月死亡率更高 [57] 。有一项关于4473名急性和慢性心衰患者进行的荟萃分析,提示和肽素是HF全因死亡的良好预测因子,其性能与NT-proBNP相似 [58] 。

8. 总结

HF是多种心血管疾病的终末期最常见的心脏改变结果。心衰的发生机制比较复杂,包括神经激素激活、心肌损伤、心脏重塑、心肌纤维化、炎症/氧化应激等多种因素,以及相关生物标志物水平的变化。心脏超负荷和心肌细胞损伤可导致心功能下降、心室肥大、心室扩大等代偿性改变。从而引起心肌细胞、细胞外基质以及胶原纤维网发生相应变化,导致心室重塑,进一步恶化心脏功能。生物标志物在心衰的发生发展扮演着不同的角色,反映不同心衰途径的生物标志物可以更好地了解每个患者的疾病发展,并可能设计出个体化的治疗方案。越来越多的研究集中在探索生物标志物的独立价值或协同价值,多项生物标志物联合检测体系是今后的发展趋势,联合应用可以及时准确地诊断疾病,同时对患者预后进行更好地评估,有助于判断疾病的危险分层,从而改善患者的生活质量,降低心衰的死亡率及再入院率。

基金项目

云南省医学学科后备人才培养项目编号H-2018082。

NOTES

*通讯作者。

参考文献

[1] Obradovic, M., et al. (2019) Effects of IGF-1 on the Cardiovascular System. Current Pharmaceutical Design, 25, 3715-3725.
https://doi.org/10.2174/1381612825666191106091507
[2] Higashi, Y., Gautam, S., Delafontaine, P. and Sukhanov, S. (2019) IGF-1 and Cardiovascular Disease. Growth Hormone & IGF Research, 45, 6-16.
https://doi.org/10.1016/j.ghir.2019.01.002
[3] Springer, J., Springer, J.I. and Anker, S.D. (2017) Muscle Wasting and Sarcopenia in Heart Failure and Beyond: Update 2017. ESC Heart Failure, 4, 492-498.
https://doi.org/10.1002/ehf2.12237
[4] Oldham, S. and Hafen, E. (2003) Insulin/IGF and Target of Rapamycin Signaling: A TOR de Force in Growth Control. Trends in Cell Biology, 13, 79-85.
https://doi.org/10.1016/S0962-8924(02)00042-9
[5] Lisowska, A., et al. (2019) Insulin-Like Growth Fac-tor-Binding Protein 7 (IGFBP 7) as a New Biomarker in Coronary Heart Disease. Advances in Medical Sciences, 64, 195-201.
https://doi.org/10.1016/j.advms.2018.08.017
[6] Chen, D., et al. (2011) Insulin-Like Growth Fac-tor-Binding Protein-7 Functions as a Potential Tumor Suppressor in Hepatocellular Carcinoma. Clinical Cancer Research, 17, 6693-6701.
https://doi.org/10.1158/1078-0432.CCR-10-2774
[7] 王燕, 等, 胰岛素样生长因子结合蛋白-7在射血分数保留心衰病人中的表达及临床意义[J]. 实用老年医学, 2018, 32(12): 1129-1133.
[8] 乐建华, 等, 血清IGFBP7水平对射血分数中间范围型心力衰竭患者心脏舒张功能障碍的评估价值[J]. 广东医科大学学报, 2018, 36(6): 668-670.
[9] Gandhi, P.U., et al. (2017) Prognostic Value of Insulin-Like Growth Factor-Binding Protein 7 in Patients with Heart Failure and Preserved Ejection Fraction. Journal of Cardiac Failure, 23, 20-28.
https://doi.org/10.1016/j.cardfail.2016.06.006
[10] Kalayci, A., et al. (2020) Echocardiographic Assessment of In-sulin-Like Growth Factor Binding Protein-7 and Early Identification of Acute Heart Failure. ESC Heart Failure, 7, 1664-1675.
https://doi.org/10.1002/ehf2.12722
[11] Gandhi, P.U., et al. (2016) Insulin-Like Growth Fac-tor-Binding Protein-7 as a Biomarker of Diastolic Dysfunction and Functional Capacity in Heart Failure with Preserved Ejection Fraction: Results From the RELAX Trial. JACC: Heart Fail, 4, 860-869.
https://doi.org/10.1016/j.jchf.2016.08.002
[12] Januzzi, J.J., et al. (2018) IGFBP7 (Insulin-Like Growth Fac-tor-Binding Protein-7) and Neprilysin Inhibition in Patients with Heart Failure. Circulation: Heart Failure, 11, e005133.
https://doi.org/10.1161/CIRCHEARTFAILURE.118.005133
[13] Ruan, W., et al. (2017) Serum Levels of IGFBP7 Are Elevated during Acute Exacerbation in COPD Patients. International Journal of Chronic Obstructive Pul-monary Disease, 12, 1775-1780.
https://doi.org/10.2147/COPD.S132652
[14] Bracun, V., et al. (2022) Insu-lin-Like Growth Factor Binding Protein 7 (IGFBP7), a Link between Heart Failure and Senescence. ESC Heart Failure, 9, 4167-4176.
https://doi.org/10.1002/ehf2.14120
[15] Iwahana, H., et al. (1999) Different Promoter Usage and Multiple Transcription Initiation Sites of the Interleukin-1 Receptor-Related Human ST2 Gene in UT-7 and TM12 Cells. European Journal of Biochemistry, 264, 397-406.
https://doi.org/10.1046/j.1432-1327.1999.00615.x
[16] Xiang, N., et al. (2021) Expression and Significance of In-flammatory Reactions Mediated by the IL-33/ST2 Signaling Pathway in the Serum of Heart Failure Patients. American Journal of Translational Research, 13, 8247-8252.
[17] Yang, C., et al. (2021) The Diagnostic Value of Soluble ST2 in Heart Failure: A Meta-Analysis. Frontiers in Cardiovascular Medicine, 8, Article 685904.
https://doi.org/10.3389/fcvm.2021.685904
[18] Lotierzo, M., Dupuy, A.M., Kalmanovich, E., Roubille, F. and Cristol, J.P. (2020) sST2 as a Value-Added Biomarker in Heart Failure. Clinica Chimica Acta, 501, 120-130.
https://doi.org/10.1016/j.cca.2019.10.029
[19] Li, J., et al. (2021) A Review of Novel Cardiac Biomarkers in Acute or Chronic Cardiovascular Diseases: The Role of Soluble ST2 (sST2), Lipoprotein-Associated Phospholipase A2 (Lp-PLA2), Myeloperoxidase (MPO) and Procalcitonin (PCT). Disease Markers, 2021, Article ID: 6258865.
https://doi.org/10.1155/2021/6258865
[20] Ky, B., et al. (2011) High-Sensitivity ST2 for Prediction of Adverse Outcomes in Chronic Heart Failure. Circulation: Heart Failure, 4, 180-187.
https://doi.org/10.1161/CIRCHEARTFAILURE.110.958223
[21] Dings, R., et al. (2018) Galectins as Molecular Targets for Therapeutic Intervention. International Journal of Molecular Sciences, 19, Article 905.
https://doi.org/10.3390/ijms19030905
[22] Blanda, V., et al. (2020) Galectin-3 in Cardiovascular Diseases. Inter-national Journal of Molecular Sciences, 21, Article 9232.
https://doi.org/10.3390/ijms21239232
[23] Sharma, U.C., et al. (2004) Galectin-3 Marks Activated Macrophages in Failure-Prone Hypertrophied Hearts and Contributes to Cardiac Dysfunction. Circulation, 110, 3121-3128.
https://doi.org/10.1161/01.CIR.0000147181.65298.4D
[24] Ho, J.E., et al. (2012) Galectin-3, a Marker of Cardiac Fibrosis, Predicts Incident Heart Failure in the Community. Journal of the American College of Cardiology, 60, 1249-1256.
https://doi.org/10.1016/j.jacc.2012.04.053
[25] Li, P., et al. (2016) Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell, 167, 973-984.
https://doi.org/10.1016/j.cell.2016.10.025
[26] Yu, L., et al. (2013) Genetic and Pharmacological Inhibition of Ga-lectin-3 Prevents Cardiac Remodeling by Interfering with Myocardial Fibrogenesis. Circulation: Heart Failure, 6, 107-117.
https://doi.org/10.1161/CIRCHEARTFAILURE.112.971168
[27] Ueland, T., et al. (2011) Galectin-3 in Heart Failure: High Levels Are Associated with All-Cause Mortality. International Journal of Cardiology, 150, 361-364.
[28] Yin, Q.-S., Shi, B., Dong, L. and Bi, L. (2014) Comparative Study of Galectin-3 and B-Type Natriuretic Peptide as Biomarkers for the Diagnosis of Heart Failure. Journal of Geriatric Cardiology, 11, 79-82.
[29] Trippel, T.D., et al. (2021) The Diagnostic and Prognostic Value of Galectin-3 in Patients at Risk for Heart Failure with Preserved Ejec-tion Fraction: Results from the DIAST-CHF Study. ESC Heart Failure, 8, 829-841.
https://doi.org/10.1002/ehf2.13174
[30] Lok, D.J., Lok, S.I., de la Porte, P.W.B.-A., Badings, E., Lipsic, E., van Wijngaarden, J., de Boer, R.A., van Veldhuisen, D.J. and van der Meer, P. (2013) Galectin-3 Is an Independent Marker for Ventricular Remodeling and Mortality in Patients with Chronic Heart Failure. Clinical Research in Cardiology, 102, 103-110.
https://doi.org/10.1007/s00392-012-0500-y
[31] Grandin, E.W., et al. (2012) Galectin-3 and the Development of Heart Failure after Acute Coronary Syndrome: Pilot Experience from PROVE IT-TIMI 22. Clinical Chemistry, 58, 267-273.
https://doi.org/10.1373/clinchem.2011.174359
[32] Fermann, G.J., et al. (2012) Galectin 3 Complements BNP in Risk Stratification in Acute Heart Failure. Biomarkers, 17, 706-713.
https://doi.org/10.3109/1354750X.2012.719037
[33] Shi, Y., et al. (2022) Clinical Implications of Plasma Galec-tin-3 in Heart Failure with Preserved Ejection Fraction: A Meta-Analysis. Frontiers in Cardiovascular Medicine, 9, Arti-cle 854501.
https://doi.org/10.3389/fcvm.2022.854501
[34] Špinar, J., Špinarová, L. and Vítovec, J. (2018) Path-ophysiology, Causes and Epidemiology of Chronic Heart Failure. Vnitrní Lékarství, 64, 834-838.
https://doi.org/10.36290/vnl.2018.114
[35] Maalouf, R. and Bailey, S. (2016) A Review on B-Type Natriuretic Peptide Monitoring: Assays and Biosensors. Heart Failure Reviews, 21, 567-578.
https://doi.org/10.1007/s10741-016-9544-9
[36] Kurmani, S. and Squire, I. (2017) Acute Heart Failure: Definition, Classification and Epidemiology. Current Heart Failure Reports, 14, 385-392.
https://doi.org/10.1007/s11897-017-0351-y
[37] Mueller, C., et al. (2019) Heart Failure Association of the Euro-pean Society of Cardiology Practical Guidance on the Use of Natriuretic Peptide Concentrations. European Journal of Heart Failure, 21, 715-731.
https://doi.org/10.1002/ejhf.1494
[38] Ponikowski, P., et al. (2016) 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC). Developed with the Special Contribution of the Heart Failure Association (HFA) of the ESC. European Journal of Heart Failure, 18, 891-975.
https://doi.org/10.1002/ejhf.592
[39] Castiglione, V., Aimo, A., Vergaro, G., Saccaro, L., Passino, C. and Emdin, M. (2022) Biomarkers for the Diagnosis and Management of Heart Failure. Heart Failure Reviews, 27, 625-643.
https://doi.org/10.1007/s10741-021-10105-w
[40] Wieczorek, S.J., et al. (2002) A Rapid B-Type Natriuretic Pep-tide Assay Accurately Diagnoses Left Ventricular Dysfunction and Heart Failure: A Multicenter Evaluation. American Heart Journal, 144, 834-839.
https://doi.org/10.1067/mhj.2002.125623
[41] Masarone, D., et al. (2017) Pediatric Heart Failure: A Practical Guide to Diagnosis and Management. Pediatrics and Neonatology, 58, 303-312.
https://doi.org/10.1016/j.pedneo.2017.01.001
[42] Redfield, M.M., et al. (2013) Effect of Phosphodiesterase-5 In-hibition on Exercise Capacity and Clinical Status in Heart Failure with Preserved Ejection Fraction: A Randomized Clini-cal Trial. JAMA, 309, 1268-1277.
https://doi.org/10.1001/jama.2013.2024
[43] Olsen, M.B., et al. (2022) Targeting the Inflammasome in Cardiovas-cular Disease. JACC: Basic to Translational Science, 7, 84-98.
https://doi.org/10.1016/j.jacbts.2021.08.006
[44] Crespo-Leiro, M.G., et al. (2018) Advanced Heart Failure: A Po-sition Statement of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 20, 1505-1535.
https://doi.org/10.1002/ejhf.1236
[45] Alonso-Martínez, J.L., Llorente-Diez, B., Eche-garay-Agara, M., Olaz-Preciado, F., Urbieta-Echezarreta, M. and González-Arencibia, C. (2002) C-Reactive Protein as a Predictor of Improvement and Readmission in Heart Failure. European Journal of Heart Failure, 4, 331-336.
https://doi.org/10.1016/S1388-9842(02)00021-1
[46] Parikh, K.S., et al. (2018) Heart Failure with Preserved Ejec-tion Fraction Expert Panel Report: Current Controversies and Implications for Clinical Trials. JACC: Basic to Transla-tional Science, 6, 619-632.
https://doi.org/10.1016/j.jchf.2018.06.008
[47] Nakayama, H. and Otsu, K. (2013) Translation of Hemodynamic Stress to Sterile Inflammation in the Heart. Trends in Endocrinology & Metabolism, 24, 546-553.
https://doi.org/10.1016/j.tem.2013.06.004
[48] Park, J.J., et al. (2022) C-Reactive Protein and Statins in Heart Fail-ure with Reduced and Preserved Ejection Fraction. Frontiers in Cardiovascular Medicine, 9, Article 1064967.
https://doi.org/10.3389/fcvm.2022.1064967
[49] Røsjø, H., Husberg, C., Dahl, M.B., Stridsberg, M., Sjaastad, I., Finsen, A.V., Carlson, C.R., Øie, E., Omland, T. and Christensen, G. (2010) Chromogranin B in Heart Failure: A Puta-tive Cardiac Biomarker Expressed in the Failing Myocardium. Circulation: Heart Failure, 3, 503-511.
https://doi.org/10.1161/CIRCHEARTFAILURE.109.867747
[50] Egerstedt, A., et al. (2022) Bioactive Adreno-medullin for Assessment of venous Congestion in Heart Failure. ESC Heart Failure, 9, 3543-3555.
https://doi.org/10.1002/ehf2.14018
[51] Voors, A.A., et al. (2019) Adrenomedullin in Heart Failure: Pathophysi-ology and Therapeutic Application. European Journal of Heart Failure, 21, 163-171.
https://doi.org/10.1002/ejhf.1366
[52] Maisel, A., et al. (2010) Mid-Region Pro-Hormone Markers for Diagnosis and Prognosis in Acute Dyspnea: Results from the BACH (Biomarkers in Acute Heart Failure) Trial. Journal of the American College of Cardiology, 55, 2062-2076.
https://doi.org/10.1016/j.jacc.2010.02.025
[53] Bronton, K., Wessman, T., Gränsbo, K., Schulte, J., Hartmann, O. and Melander, O. (2022) Bioactive Adrenomedullin a Prognostic Biomarker in Patients with Mild to Moderate Dyspnea at the Emergency Department: An Observational Study. Internal and Emergency Medicine, 17, 541-550.
https://doi.org/10.1007/s11739-021-02776-y
[54] Shah, R.V., Truong, Q.A., Gaggin, H.K., Pfannkuche, J., Hartmann, O. and Januzzi, J.L. (2012) Mid-Regional Pro-Atrial Natriuretic Peptide and Pro-Adrenomedullin Testing for the Diagnostic and Prognostic Evaluation of Patients with Acute Dyspnoea. Euro-pean Heart Journal, 33, 2197-2205.
https://doi.org/10.1093/eurheartj/ehs136
[55] Chatterjee, K. (2005) Neuro-hormonal Activation in Congestive Heart Failure and the Role of Vasopressin. The American Journal of Cardiology, 95, 8-13.
https://doi.org/10.1016/j.amjcard.2005.03.003
[56] Sparapani, S., et al. (2021) The Biology of Vasopressin. Biomedicines, 9, Article 89.
[57] Maisel, A., et al. (2011) Increased 90-Day Mortality in Patients with Acute Heart Fail-ure with Elevated Copeptin: Secondary Results from the Biomarkers in Acute Heart Failure (BACH) Study. Circulation: Heart Failure, 4, 613-620.
https://doi.org/10.1161/CIRCHEARTFAILURE.110.960096
[58] Zhong, Y., Wang, R., Yan, L., Lin, M., Liu, X. and You, T. (2017) Copeptin in Heart Failure: Review and Meta-Analysis. Clinica Chimica Acta, 475, 36-43.
https://doi.org/10.1016/j.cca.2017.10.001