噪音和警报对重症监护病房的影响及干预研究进展
Research Progress on the Impact and Intervention of Noise and Alarms on Intensive Care Units
DOI: 10.12677/ACM.2023.1351171, PDF, HTML, XML, 下载: 218  浏览: 352 
作者: 王 晗, 谭利平*:重庆医科大学附属儿童医院急诊科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿科学重庆市重点实验室,重庆
关键词: 噪音警报重症监护病房Noise Alarm Intensive Care Units
摘要: 噪音问题一直是伴随重症监护病房发展的一大问题,而其中相当一部分是机器发出的警报,目前ICU的噪音水平普遍高于WHO建议的水平,并对患者和医护人员产生了不良影响,众多研究致力于探索新方法以减少ICU的噪音水平和对患者以及医护人员的影响,本文就目前对ICU噪音的现状、对患者和医护人员的影响以及对其的干预措施的研究进展进行综述。
Abstract: The issue of noise has always been a major issue accompanying the development of intensive care units, and a considerable part of it is caused by machine alarms. Currently, the noise level in ICUs is generally higher than the recommended level by WHO, and has had adverse effects on patients and medical staff. Numerous studies are dedicated to exploring new methods to reduce the noise level in ICUs and its impact on patients and medical staff. This article reviews the current status of ICU noise, its impact on patients and medical staff, and the research progress of intervention measures.
文章引用:王晗, 谭利平. 噪音和警报对重症监护病房的影响及干预研究进展[J]. 临床医学进展, 2023, 13(5): 8373-8378. https://doi.org/10.12677/ACM.2023.1351171

1. 引言

重症监护病房(Intensive Care Unit, ICU)至今已成立约70年,处理危重疾病和损伤、临时支持并在某些情况下取代多器官系统功能是ICU的核心能力之一。因此ICU的医疗干预及监护措施比普通病房更多,侵入性更强 [1] 。由于监测患者病情变化及治疗的需要,24小时生命体征监护、机械通气、输液泵、连续肾脏替代治疗及其他设备等产生了大量的警报声,同时护理活动、对话、电话、开关门等也产生了部分噪音 [2] 。声光刺激不可避免,世界卫生组织建议医院的声压级应不超过35 dB,美国儿科学会建议NICU声压级上限为45 dB,并限制短暂的响亮声音。本文就噪音和警报对ICU患者及医护人员影响及干预的研究进展进行综述。

2. ICU噪音的现状

ICU作为医院的最高级生命支持部分,高级的生命体征监测及其他有创、无创监测、各种器官功能支持及替代疗法是挽救生命的强力武器,但监护仪及各种机器产生的警报、闪烁灯光和噪音也远高于医院其他部分。Drew BJ等人 [3] 开展了为期31天的多中心研究,记录了461名在ICU接受治疗的患者的监测数据,结果出现惊人的2,558,760次警报,平均声音警报负担为187个/床/天。NICU的各时段最大声级均超过80 dB [4] 。Darbyshire JL等人 [5] 在5个英国ICU使用麦克风检测2周的声音水平,结果提示任何时间患者附近的平均声音水平均未降至50 dBA以下,相当于一家热闹的餐厅,远高于WHO建议的35 dB,唯一能达到WHO标准的房间是关闭所有监测设备的封闭侧室。除了警报以外,交谈、操作和移动设备、使用电话以及开关门和容器等也产生了部分背景噪音。其另一项研究 [6] 在所在的ICU一个四张病床的单间安装了16个麦克风组成的阵列,连续监测约1年环境声音的具体位置、声压水平和加权响度值(响度值是对声音的主观感知),描绘的噪音热图显示大多数高水平的噪音来自极其有限的区域,除了护士站和医护人员经常交流的区域外,许多响亮的声音来自位于患者耳朵附近的监护仪和呼吸机,尤其是机器发出的警报声,其频率范围(2.5~3.15 kHz)类似于人类的尖叫和婴儿的哭声。虽然这可能是吸引医护人员注意力的理想选择,但远非患者休息和感到舒适的理想选择。

3. 噪音和警报对患者的影响

噪音在日常生活中已对健康人群产生认知、决策和情绪影响 [7] ,道路交通噪音与抑郁情绪正相关 [8] ,并可能与心血管和代谢系统疾病有关 [9] 。ICU患者处在危重状态中更是易收到影响,Boyacioglu等人 [10] 构建了ICU噪音环境模型,测量5组暴露于不同时间噪音模型的大鼠氧化应激水平标志物,结果发现随着暴露于噪音的持续时间增加,血清、脑组织、脾脏中的超氧化物歧化酶(SOD)活性显著降低(血清P = 0.005,脑组织P = 0.001,脾脏P = 0.027)、丙二醛(MDA)水平显著升高(血清P = 0.003,脑组织P = 0.001,脾脏P = 0.001),血浆总蛋白显著降低(P = 0.049),提示随着暴露于ICU噪音的时间增加,大鼠的氧化应激水平也在增加。睡眠障碍是ICU患者住院期间及出院后长期的并发症之一,疼痛、镇静、约束、机械通气、光照、焦虑等多种因素导致了ICU患者昼夜节律被打断并出现睡眠障碍 [11] ,多达一半的睡眠发生在白天,不稳定的N1和N2期睡眠比例更大,出现频繁的觉醒。噪音也是影响ICU患者睡眠的一大因素,Saylan等人的研究 [12] 纳入了130个ICU患者,评估噪音水平和疼痛、焦虑水平、睡眠质量的关系,结果提示噪音水平与SAI (状态焦虑评分)、RCSQ (Richards-Campbell睡眠质量评分)显著相关。Elbaz M等人 [13] 使用多导睡眠图设备收集了11个接受机械通气的患者的24小时睡眠图,并对监测的声音进行定性和定位,结果提示声音水平与清醒、觉醒显著相关,所有的声源都对睡眠阶段的过渡和唤醒有显著影响,其中呼吸机警报的影响最大。Weatherhead JR等人进行了长达83周的研究 [14] ,在PICU病房中监测声级,并使用康奈尔儿童谵妄评分(CAPD)对患儿进行谵妄筛查,结果提示每周夜间噪声水平和CAPD评分中位数成中度相关性(r = 0.6, P < 0.001),提示PICU存在显著的噪声污染,噪音污染可能是谵妄发展的危险因素。

4. 噪音和警报对医护人员的影响以及警报疲劳

虽然处理警报是医疗护理工作的一个重要部分,并且理论上它们是为了保障患者安全而设计的,可如今的护理人员比以往任何时候都更需要将注意力分散在照顾患者和处理医疗设备之间,大多数ICU护士都被同时发出的不同种类和设备的警报所淹没,且其中大多数警报缺乏临床相关性,被认为是假警报或对临床评估和护理没有帮助 [15] [16] 。过多的警报造成的感官负担可能会导致对警报的反应延迟或完全忽略警报 [17] ,产生“狼来了”效应,出现警报疲劳(Alarm Fatigue),造成ICU护士的感觉超负荷,影响身心健康以及提供护理的能力,甚至对患者的生命安全造成影响 [18] 。许多监测设备会产生不同优先级的警报,Wung SF等人的研究 [19] 发现监护仪、输液泵和呼吸机对ICU护士的感觉超负荷影响最大,ICU护士将他们的沮丧归因于警报,即使是较新的设备,也被认为“非常复杂,不便于使用”。McCullagh等人对3818位护士参与的问卷调查的分析 [20] 提示暴露在高噪音水平下的护士更有可能报告疾病(高血压、心脏病、抑郁、焦虑)、更高的倦怠分数、更高的工作压力等,且高噪音水平与较低的职业生活质量显著相关。Bi J [21] 等人基于计划行为理论进行研究,对实验组护士进行了为期12周的报警管理培训课程,结果提示实验组护士警报疲劳评分显著低于对照组,且记录的调整后的警报总数明显低于对照组。Asadi N等人 [22] 的研究同样提示COVID-19流行期间接受过呼吸机培训和警报设置培训的护士警报疲劳明显低于其他护士,2项研究均建议将警报管理实践培训纳入ICU护士课程。

5. 噪音的干预和警报改进

如何减少噪声及警报对患者和医护人员的危害是目前临床亟需解决的问题和研究热点之一。Guisasola等人 [23] 评估了视觉噪音预警系统在实施前后对外科重症监护室(SICU)噪音水平的影响,在SICU安装了视觉噪音警报系统(SoundEar II),通过颜色改变来提醒工作人员保持安静,结果显示使用SoundEar II系统期间,患者比其他阶段接受的催眠药物更少,平均声压级较基线水平下降约1.35 dBA。设立“安静时间”也是降低噪音的方法之一,根据对患者的调查,最烦人的噪音是医护人员在早上换班时的谈话,Danielle G等人 [24] 在神经外科ICU (NSCU)通过向NSCU团队及其他辅助职能部门所有成员提供关于噪音的有害影响、安静时间好处的教育的小册子,约定从凌晨3点到5点、下午3点到5点为安静时间,在安静时间中,护士站的灯会关闭、病房所有工作人员均被强烈建议低声说话并互相监督,调暗灯光是提醒医护人员保持安静的有效的视觉提示,结果提示安静时间的噪音水平比基线平均水平降低约10~15 dB,但仍然没有达到WHO建议的水平。Zhang SW等人 [25] 对所在NICU医护人员进行了关于安静时间的半结构化访谈,NICU的医护人员普遍表示有必要在NICU设置安静时间,可以减少早产儿的能量消耗,保护神经发育,以及改善预后,同时一部分医护人员认为设置安静时间在可以一定程度上缓解临床工作的压力,让他们有一个明确的休息和放松的时间,安静的环境使用更加柔和的声音说话改善了医护人员的情绪,但护理人员的缺乏、婴儿病情的严重性等都会使安静时间难以实施。但Crawford KJ等人的研究 [26] 发现供暖、通风和空调系统导致了高基线噪音,而高流量呼吸机(>10 L/min)进一步产生了额外的高噪音,其认为工程控制(如通气改进、在患者和设备之间放置隔板等)可能比行为干预更加有效。Jung S等人的研究 [27] 发现呼吸机、血液透析机等大量医疗设备连续使用产生了大量低频噪音,通过加装吸音板及使用橡胶轮、更换噪音吸收软管、将医疗设备从墙上取下等措施也可以降低噪音。减少患者对噪音和警报的主观感觉也是简便有效的方法之一,多项研究评估了ICU患者使用耳塞和眼罩来减少噪音和光照对患者的刺激,结果提示使用耳塞和眼罩可有效改善ICU患者的睡眠质量 [28] 、降低谵妄评分 [29] 、增加N3期睡眠时长 [30] 等等,Warjri E等人 [31] 使用耳机给ICU患者播放白噪音也同样提高了睡眠质量,Le Guen M等人在麻醉后监护室(PACU)使用耳塞和眼罩不仅保持了睡眠质量,还减少了吗啡的使用量 [32] 。Gallacher S等人 [33] 建立了ICU环境的主动降噪耳机模型,结果提示主动降噪耳机更加优于耳塞,但并没有进一步研究主动降噪耳机的实际应用效果。

6. 总结与展望

噪音和警报仍然是ICU十分显著的问题,对医护人员及患者均造成了不良的影响,随着ICU技术的进步和规模的扩大,噪音水平不断提高,WHO建议的35 dB标准几乎无法实现,且ICU医护人员对噪音的理论认识水平仍较低 [34] 。虽然警报管理实践培训降低了警报疲劳,但并没有彻底解决这个问题。视觉噪音反馈系统、设置安静时间等虽然起到了降低噪音水平的结果,但相比于目前的绝对高噪音水平仍十分有限,且长期持续性仍需评估 [35] 。目前大部分ICU的医疗设备警报仍是单设备模式,每个医疗设备独立生成警报,未来的进一步研究方向可能会集中于ICU患者对噪音和警报的主观感受、改变监护仪及其他机器发出警报的声源位置、降低基线噪音水平、整合多设备警报以提高警报质量并减少警报数量 [36] 等方面。值得注意的是,噪音和警报的干预此时对于患者和医护人员来说已经出现了分水岭,随着主动降噪技术的发展,ICU患者主观感受到的声压级可能在可见的未来会降低到35 dB以下,但医护人员必须及时获知监护仪和其他机器发出的报警,如何在让警报发挥理论的用途和减少对医护人员的危害之间取得平衡,仍然是需要进一步研究的一大难题。

NOTES

*通讯作者。

参考文献

[1] Kelly, F.E., Fong, K., Hirsch, N. and Nolan, J.P. (2014) Intensive Care Medicine is 60 Years Old: The History and Fu-ture of the Intensive Care Unit. Clinical Medicine Journal, 14, 376-379.
https://doi.org/10.7861/clinmedicine.14-4-376
[2] Konkani, A. and Oakley, B. (2012) Noise in Hospital Intensive Care Units—A Critical Review of a Critical Topic. Journal of Critical Care, 27, 522.e1-522.e9.
https://doi.org/10.1016/j.jcrc.2011.09.003
[3] Drew, B.J., Harris, P., Zègre-Hemsey, J.K., et al. (2014) Insights into the Problem of Alarm Fatigue with Physiologic Monitor Devices: A Comprehensive Observational Study of Con-secutive Intensive Care Unit Patients. PLOS ONE, 9, e110274.
https://doi.org/10.1371/journal.pone.0110274
[4] Mayhew, K.J., Lawrence, S.L., Squires, J.E. and Denise, H. (2022) Elevated Sound Levels in the Neonatal Intensive Care Unit: What Is Causing the Problem? Advances in Neonatal Care, 22, E207-E216.
https://doi.org/10.1097/ANC.0000000000000996
[5] Darbyshire, J.L. and Young, J.D. (2013) An Investigation of Sound Levels on Intensive Care Units with Reference to the WHO Guidelines. Critical Care, 17, Article No. R18.
https://doi.org/10.1186/cc12870
[6] Darbyshire, J.L., Müller-Trapet, M., Cheer, J., Fazi, F.M. and Young, J.D. (2019) Mapping Sources of Noise in an Intensive Care Unit. Anaesthesia, 74, 1018-1025.
https://doi.org/10.1111/anae.14690
[7] Sheng, Y.Y., Dong, D., He, G. and Zhang, J.Y. (2022) How Noise Can Influence Experience-Based Decision-Making under Different Types of the Provided Information. International Journal of Environmental Research and Public Health, 19, Article 10445.
https://doi.org/10.3390/ijerph191610445
[8] Leijssen, J.B., Snijder, M.B., Timmermans, E.J., et al. (2019) The Association between Road Traffic Noise and Depressed Mood among Different Ethnic and Socioeconomic Groups. The HELIUS Study. International Journal of Hygiene and Environmental Health, 222, 221-229.
https://doi.org/10.1016/j.ijheh.2018.10.002
[9] Van Kempen, E., Casas, M., Pershagen, G. and Foraster, M. (2018) WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Cardiovascular and Metabolic Effects: A Summary. International Journal of Environmental Research & Public Health, 15, Article 379.
https://doi.org/10.3390/ijerph15020379
[10] Boyacioglu, N. and Ozkan, S. (2020) The Effect of Noise in the Inten-sive Care Unit on the Oxidative Stress Response in Rats. Biological Research for Nursing, 22, 397-402.
https://doi.org/10.1177/1099800420923397
[11] Telias, I. and Wilcox, M.E. (2019) Sleep and Circadian Rhythm in Critical Illness. Critical Care, 23, Article No. 82.
https://doi.org/10.1186/s13054-019-2366-0
[12] Saylan, A.A., Kulaka, N. and Saylan, S. (220) The Effects of Noise Levels on Pain, Anxiety, and Sleep in Patients. Nursing in Critical Care, 26, 79-85.
[13] Elbaz, M., Léger, D., Sauvet, F., et al. (2017) Sound Level Intensity Severely Disrupts Sleep in Ventilated ICU Patients throughout a 24-h Pe-riod: A Preliminary 24-h Study of Sleep Stages and Associated Sound Levels. Annals of Intensive Care, 7, Article No. 25.
https://doi.org/10.1186/s13613-017-0248-7
[14] Weatherhead, J., Niedner, M., Dahmer, M., et al. (2022) Pat-terns of Delirium in a Pediatric Intensive Care Unit and Associations with Noise Pollution. Journal of Intensive Care Medicine, 37, 946-953.
https://doi.org/10.1177/08850666211055649
[15] Min, C.O., Hwasoon, K., Whee, L.Y., et al. (2016) Clinical Alarms in Intensive Care Units: Perceived Obstacles of Alarm Management and Alarm Fatigue in Nurses. Healthcare Informatics Research, 22, 46-53.
https://doi.org/10.4258/hir.2016.22.1.46
[16] Simpson, R. (2019) False Alarms and Overmonitoring Major Factors in Alarm Fatigue among Labor Nurses. Journal of Nursing Care Quality, 34, 66-72.
https://doi.org/10.1097/NCQ.0000000000000335
[17] Lewis, C.L. and Oster, C.A. (2019) Research Outcomes of Implementing CEASE: An Innovative, Nurse-Driven, Evidence-Based, Patient-Customized Monitoring Bundle to De-crease Alarm Fatigue in the Intensive Care Unit/Step-down Unit. Dimensions of Critical Care Nursing, 38, 160-173.
[18] Ruppel, H., Funk, M., Clark, J.T., et al. (2018) Attitudes and Practices Related to Clinical Alarms: A Follow-up Survey. American Journal of Critical Care, 27, 114-123.
https://doi.org/10.4037/ajcc2018185
[19] Wung, S.F., Malone, D.C. and Szalacha, L. (2018) Sensory Overload and Technology in Critical Care. Critical Care Nursing Clinics of North America, 30, 179-190.
https://doi.org/10.1016/j.cnc.2018.02.001
[20] Mccullagh, M.C., Xu, J., Dickson, V.V., et al. (2022) Noise Expo-sure and Quality of Life among Nurses. Workplace Health & Safety, 70, 207-219.
https://doi.org/10.1177/21650799211044365
[21] Bi, J., Yin, X., Li, H., et al. (2020) Effects of Monitor Alarm Management Training on Nurses’ Alarm Fatigue: A Randomised Controlled Trial. Journal of Clinical Nursing, 29, 4203-4216.
https://doi.org/10.1111/jocn.15452
[22] Asadi, N., Salmani, F., Asgari, N. and Salmani, M. (2022) Alarm Fatigue and Moral Distress in ICU Nurses in COVID-19 Pandemic. BMC Nursing, 21, Article No. 125.
https://doi.org/10.1186/s12912-022-00909-y
[23] Guisasola-Rabes, M., Solà-Enriquez, B., Vélez-Pereira, A.M. and de Nadal, M. (2019) Effectiveness of a Visual Noise Warning System on Noise Levels in a Surgical ICU: A Quality Improvement Programme. European Journal of Anaesthesiology, 36, 857-862.
https://doi.org/10.1097/EJA.0000000000001038
[24] Danielle, G., Sherley, J., Katie, M., et al. (2018) Quiet Time: A Noise Reduction Initiative in a Neurosurgical Intensive Care Unit. Critical Care Nurse, 38, 38-44.
https://doi.org/10.4037/ccn2018219
[25] Zhang, S.W., Hua, W., Li, L.L., Cao, Y. and Hu, X.J. (2022) Medical staff’s Sentiments on the Establishment of Quiet Time in the NICU. Journal of Nursing Management, 30, 599-3607.
https://doi.org/10.1111/jonm.13794
[26] Crawford, K.J., Barnes, L.A., Peters, T.M., Falk, J. and Gehlbach, B.K. (2018) Identifying Determinants of Noise in a Medical Intensive Care Unit. Journal of Occupational and Environmental Hygiene, 15, 810-817.
https://doi.org/10.1080/15459624.2018.1515491
[27] Jung, S., Kim, J., Lee, J., et al. (2020) Assessment of Noise Exposure and Its Characteristics in the Intensive Care Unit of a Tertiary Hospital. International Journal of Environmental Research and Public Health, 17, Article 4670.
https://doi.org/10.3390/ijerph17134670
[28] Obanor, O.O., Mcbroom, M.M., Elia, J.M., et al. (2021) The Impact of Earplugs and Eye Masks on Sleep Quality in Surgical ICU Patients at Risk for Frequent Awakenings. Critical Care Medicine, 49, e822-e832.
https://doi.org/10.1097/CCM.0000000000005031
[29] Akpinar, R.B., Aksoy, M. and Kant, E. (2022) Effect of Earplug/Eye Mask on Sleep and Delirium in Intensive Care Patients. Nursing in Critical Care, 27, 537-545.
https://doi.org/10.1111/nicc.12741
[30] Demoul, A., Carreira, S., et al. (2017) Impact of Earplugs and Eye Mask on Sleep in Critically Ill Patients: A Prospective Randomized Study. Critical Care, 21, Article No. 284.
https://doi.org/10.1186/s13054-017-1865-0
[31] Warjri, E., Dsilva, F., Sanal, T.S. and Kumar, A. (2021) Impact of a White Noise App on Sleep Quality among Critically Ill Patients. Nursing in Critical Care, 27, 815-823.
https://doi.org/10.1111/nicc.12742
[32] Le Guen, M., Nicolas-Robin, A., Lebard, C., Arnulf, I. and Langeron, O. (2014) Earplugs and Eye Masks vs Routine care Prevent Sleep Impairment in Post-Anaesthesia Care Unit: A Random-ized Study. British Journal of Anaesthesia, 112, 89-95.
https://doi.org/10.1093/bja/aet304
[33] Gallacher, S., Enki, D., Stevens, S. and Bennett, M.J. (2017) An Experimental Model to Measure the Ability of Headphones with Active Noise Control to Reduce Patient’s Exposure to Noise in an Intensive Care Unit. Intensive Care Medicine Experimental, 5, Article No. 47.
https://doi.org/10.1186/s40635-017-0162-1
[34] Johansson, L., Knutsson, S., Bergbom, I. and Lindahl, B. (2016) Noise in the ICU Patient Room—Staff Knowledge and Clinical Improvements. Intensive & Critical Care Nursing, 35, 1-9.
https://doi.org/10.1016/j.iccn.2016.02.005
[35] Casey, L., Fucile, S., Flavin, M. and Dow, K. (2020) A Two-Pronged Approach to Reduce Noise Levels in the Neonatal Intensive Care Unit. Early Human Devel-opment, 146, Article ID: 105073.
https://doi.org/10.1016/j.earlhumdev.2020.105073
[36] Koomen, E., Webster, C.S., Konrad, D., et al. (2021) Re-ducing Medical Device Alarms by an Order of Magnitude: A Human Factors Approach. Anaesthesia and Intensive Care, 49, 52-61.
https://doi.org/10.1177/0310057X20968840