高血压患者脑微出血与血压变异性的研究进展
Research Progress of Cerebral Microhemorrhage and Blood Pressure Variability in Hypertensive Patients
DOI: 10.12677/ACM.2023.1361367, PDF, HTML, XML, 下载: 150  浏览: 284 
作者: 郭正歌:青海大学研究生院,青海 西宁;冶学兰*:青海大学附属医院神经内科,青海 西宁
关键词: 脑微出血高血压动态血压血压变异性Cerebral Microhemorrhage Hypertension Ambulatory Blood Pressure Blood Pressure Variability
摘要: 脑微出血(CMBs)是脑小血管病的一种类型,可能会进展为症状性脑出血及缺血性卒中,同时会导致患者的认知功能障碍、痴呆等。高血压作为CMBs的发病机制之一,影响CMBs的发生发展,血压变异性可以预测CMBs的发展,本文探讨高血压患者CMBs与血压变异性(BPV)的研究进展,以期对CMBs的预防及治疗提供临床依据。
Abstract: Cerebral microhemorrhage (CMBs) is a type of small cerebral vascular disease, which may progress to symptomatic cerebral hemorrhage and ischemic stroke, and lead to cognitive dysfunction and dementia in patients. Hypertension, as one of the pathogenesis of CMBs, affects the occurrence and development of CMBs, and blood pressure variability can predict the development of CMBs. This paper discusses the research progress of CMBs and blood pressure variability (BPV) in hypertensive patients, in order to provide clinical basis for the prevention and treatment of CMBs.
文章引用:郭正歌, 冶学兰. 高血压患者脑微出血与血压变异性的研究进展[J]. 临床医学进展, 2023, 13(6): 9766-9773. https://doi.org/10.12677/ACM.2023.1361367

1. 引言

高血压是目前全球最常见的中老年慢性病之一,其发病率逐年增加。高血压不仅会引起多种疾病,还会增加心脑血管疾病的风险。脑微出血是高血压患者常见的临床表现之一,它对患者的神经系统有不良影响。血压变异性是血压波动的一种量化指标,可以评估血压昼夜节律 [1] ,目前得到越来越多的重视。血压变异性已经被证明与心脑血管事件的发生率有关,但其与高血压患者脑微出血的关系尚未完全明确。因此,本文旨在综述高血压患者脑微出血与血压变异性的相关性,为该领域的研究和临床实践提供基础。

2. 脑微出血

脑微出血(cerebral microbleeds, CMBs)是脑小血管病(cerebral small vessel disease, CSVD)常见的一种影像学表现 [2] ,临床未表现出明显的症状和体征。CMBs是脑小血管内红细胞的含铁血红素经血管壁漏出后被巨噬细胞隔离储存,巨噬细胞吞噬含铁血黄素后在脑小血管周围空间局灶性积聚 [3] ,提示既往血液的外渗 [4] 。

有文献提出CMBs可能是脑小血管长期暴露在危险因素中的结果 [5] 。CMBs与认知能力下降、痴呆、脑出血、脑梗死或短暂性脑缺血发作复发的风险增加和死亡率相关 [6] 。不同部位及不同数量的脑CMBs与认知功能恶化和痴呆的风险增加有关 [7] ,Yakushiji 等的研究表明CMBs发生在额叶和基底神经节可能导致执行功能障碍,丘脑微出血也被发现可能与认知功能障碍的发展有关 [8] 。可能在血管性认知障碍中起着关键作用。目前CMBs对认知功能损害的机制尚不明确,CMBs可能破坏与认知功能相关的白质束,导致神经网络损伤,并且与频发的脑白质病变和腔隙性梗死共同叠加作用的影响,进而导致多个认知领域受损其引起的认知损害 [7] ,CMBs导致的认知功能障碍已引起了人们的广泛关注。国内外有多数研究显示,CMBs可以增加出血性卒中发生的几率 [9] [10] [11] ,JS Lee发现CMB计数 ≥ 9与ICH的存在独立相关 [12] 。有研究发现CMBs也是TIA后早期卒中复发 [13] 和腔隙性脑梗死神经功能恶化的独立危险因素 [14] [15] 。研究CMBs可以为一些疾病如脑出血,老年人痴呆的发展做预测,为临床医师诊疗疾病提供一些帮助。

2.1. 影像学检查

我们对于CMBs的诊断多依赖影像学检查,当脑磁共振(Magnetic Resonance Imaging, MRI)在20世纪90年代中期开始应用高磁化率技术时,CMBs开始逐渐为人所知 [16] 。并且随着磁共振技术的进步,CMBs的发现也变得容易,CMBs在影像学检查中表现出局部信号丢失的一种脑实质的无症状性损害,数年来多名国内外学者研究将CMBs定义为在MRI T2*加权序列成像后,显示为直径2~5 mm的圆形或卵圆形小区域信号空洞,最大尺寸不超过10 mm [16] [17] ,并伴有晕染效应。与T2/加权GRE序列相比,磁敏感加权成像(susceptibility weighted imaging, SWI)对具有不同顺磁性的材料提供了更高的图像对比度。由于其对出血性病理(含有脱氧血红蛋白和含铁血黄素)的高敏感性,它是诊断微小出血的脑血管疾病的理想选择,这些微小出血灶无法通过计算机断层扫描(CT)或其他MRI序列显示 [9] 。因此SWI扫描序列对于CMBs的诊出比T2 * WI序列更为敏感,SWI对CMBs的诊断具有高度敏感性和特异性 [18] [19] ,SWI是对CMBs进行分析和诊断的准确有效的方法。

2.2. 病因

CMBs发病原因尚不明确,CMBs发生与高龄、高血压、糖尿病、低胆固醇、吸烟、长期使用抗血栓药物等危险因素密切相关 [6] 。CMBs发病可能是因为高血压、淀粉样蛋白沉积、慢性肾脏疾病和周围胶质细胞增生、梗死甚至坏死而广泛损伤小血管,导致周围白质的结构损伤 [20] 。有关于大叶性脑出血的研究显示CMBs的发生机制与较大的症状性出血相同:这两种类型的出血表现出相似的血管病理,有相似的分布和对载脂蛋白E (APOE)基因型的依赖 [21] 。大脑中的微小病变的出现可能是由于中风、神经退行性疾病、脑外伤,或者是淀粉样血管病变 [22] 。CMBs的发病机制可能因位置差异而不同。有研究在出血性卒中患者脑中对与CMBs相关的血管进行组织病理学分析,已确定脑CMBs两种类型的血管病理变化:高血压血管病变和脑淀粉样血管病变 [16] 。

2.2.1. 高龄

高龄是脑CMBs的危险因素之一,脑CMBs的发病率随年龄的增长而增加,学者Yubi等一项关于日本普通老年社区脑CMBs患病率及危险因素的论文结果显示,1281例受试人群脑CMBs的患病率65~69岁为11.8%,70~74岁为17.3%,75~79岁为21.3%,80~84岁为23.9%,85岁及以上为29.2% [23] 。和2008年一项鹿特丹扫描研究结果基本一致,1062例受试人群发病率60~69岁为17.8%,80岁以上为38.3% [24] 。

2.2.2. 高血压

CMBs一直被认为是慢性高血压引起的器官损害类型之一,这意味着控制高血压可以减少CMBs的形成和认知功能障碍 [25] 。很多研究表明高血压和CMBs有很强的相关性,高血压也是CMBs的独立危险因素 [20] [26] [27] ,根据Yiwei Xia等的研究结果显示在老年健康人群中高血压人群患CMBs的可能性,约为正常血压的3倍,较高的收缩压与CMBs的发生有关 [28] 。与高血压血管病相关的CMBs病变往往局限于基底神经节、内囊、脑干和小脑 [29] 。还有研究表明CMB与高血压相关的MRI标志物(如融合性白质病变、白质疏松和腔隙)有很强的相关性 [30] 。因此猜测积极的抗高血压治疗,将收缩压长期严格控制在130 mmHg以下,可能会缓解一般人群CMBs的进展。

2.2.3. 脑淀粉样血管病病理生理(CAA)

脑淀粉样血管病(CAA)是一种以淀粉样蛋白沉积于轻脑膜和皮质血管为特征的疾病,主要是中小动脉受累,淀粉样蛋白(Aβ)是CAA中最常见的蛋白质 [31] 。伴有淀粉样血管病变的CMBs主要位于脑叶区 [23] 。载脂蛋白e(APOE)是大脑中一种主要的载脂蛋白和胆固醇载体,在人体内,APOE基因存在3个不同的多态性等位基因(ε2、ε3和ε4),ApoE基因编码一种参与脂质和胆固醇代谢的蛋白质,并在β-淀粉样蛋白(Aβ)沉积和清除中发挥重要作用 [32] 。参考国内外很多研究发现APOE基因型与脑叶CMBs的发生有很强的关联性。根据CMB分布分组的鹿特丹扫描研究个体的APOE基因型分析显示,APOE ε4等位基因是大叶性脑出血(不伴有深半球或幕下CMBs)的已知危险因素 [24] ,APOE也是脑淀粉样血管病(CAA)和CAA相关的脑出血的发病危险因素 [24] [32] [33] 。Hong-Qi Li等的研究数据也表明APOE ε4等位基因与CMBs的存在和发生独立相关,特别是与脑叶微出血有关 [34] 。但是针对APOE和CMBs部位相关性的研究存在差异,在国内一项关于社区的研究,通过脂质代谢和炎症(系统或血管)来解释APOE ε4和深层/混合CMBs相关 [35] 。

2.3. 发病机制

CMBs在预测缺血性和出血性中风方面的双重作用为原发性和继发性CMBs的概念提供了强有力的间接支持。原发性CMBs是血管系统最初直接破坏的结果,而继发性CMBs是缺血性损伤的结果。

CMBs的血管表现出与CAA相关的病理,包括血管壁增厚、血管平滑肌b-淀粉样蛋白置换、微动脉瘤和最常见的直接出血。体外研究表明b-淀粉样蛋白对血管平滑肌细胞特别有毒,这可能解释了受累性小动脉中肌层的相对脱细胞性。补体激活也被认为是输精管病理的重要组成部分,并且可能是血管壁b-淀粉样蛋白毒性的机制或促成因素 [29] 。随着Aβ的积累,脑血管平滑肌细胞逐渐退化和丧失,导致脑血管中膜被Aβ取代,最终沉积会逐渐延伸并取代外膜 [36] ,脑血管平滑肌在维持脑血管壁的强度和完整性,以及控制脑血流方面起着至关重要的作用,脑血管平滑肌细胞的受损可能与血管壁破裂引起出血有关。病理研究表明ε2等位基因有助于血管破裂 [37] ,ε4等位基因有助于血管中Aβ沉积增加或Aβ清除减少 [36] 。

小动脉平滑肌细胞是CMBs的4个主要危险因素的靶点:高血压、脑淀粉样血管病变 [12] 、慢性肾脏疾病和CADASIL [20] 。平滑肌细胞丧失是高血压小动脉疾病的特征,β-淀粉样蛋白已被证明对血管内平滑肌细胞有毒性。有研究病理分析显示,在脑淀粉样血管病变中脑小动脉中存在平滑肌细胞丢失;慢性肾脏疾病表现为高磷血症,导致平滑肌细胞凋亡和内侧钙化;CADASIL血管病理的标志是小动脉平滑肌损伤,平滑肌细胞的持续丧失和小动脉损伤,可导致自动调节功能受损,无法适应全身血压的改变 [20] 。

由于小血管壁的削弱,特别是平滑肌被纤维组织或坏死组织取代,高血压患者在有或没有动脉瘤形成的情况下都可能发生血管破裂 [38] 。

3. 血压变异性

高血压血管病变为CMBs发生的机制之一,影响着CMBs的发生发展。CMBs发生与高血压密切相关,BPV可以直观衡量血压的动态变化,动态血压对器官的损害更具有预测性。BPV被认为是自主神经系统控制的生理标志物,行为,环境,神经中枢或反射影响之间的复杂相互作用以及其他潜在因素会产生短期和长期波动 [39] 。动态血压是高血压相关器官损伤(包括脑损伤)更强的预测指标。在高血压环境中,这些波动的动力学更复杂,与高血压的严重程度、抗高血压药物的使用、对治疗的依从性和高血压介导的器官损伤的存在有关 [40] 。

4. 高血压患者脑CMBs与血压变异性

目前关于高血压患者脑CMBs与BPV的相关性研究还不足。但是有一些研究已经证实了它们之间的关系。Igase等 [41] 报道CMBs与收缩压(systolic blood pressure, SBP)呈正相关,Fanet等 [42] 认为CMBs与舒张压(diastolic blood pressure, DBP)呈正相关。L Lyu等 [43] 研究表示了DBP和SBP均为CMBs的独立危险因素。一项关于腔隙性脑卒中患者2年随访研究表面:腔隙性卒中患者的DBP和SBP水平均与新CMBs的发生相关,且与年龄和性别无关 [44] 。

Zhang等的基于社区的一般老年人群的一项研究表明,老年人昼夜节律的非杓型和反杓型患脑小血管疾病比率更高 [45] 。有研究发现SBP变异性是卒中和冠状动脉疾病的预测因子,峰值SBP (SBP Max)的预测性大于平均值SBP,在治疗时SBP的残差变异性预后较差,并且稳定的高血压预后优于发作性高血压 [46] 。

有研究发现各种动态血压成分与CMBs之间存在很强的关联,在一项关于首次出现腔隙性脑卒中患者的研究中,CMBs的发生和数量与较高的日间收缩压(day systolic blood pressure, DSBP)和日间舒张压(day diastolic blood pressure, DDBP)、夜间收缩压(night systolic blood pressure, NSBP)和夜间舒张压(night diastolic blood pressure, NDBP)水平显著相关,高血压和随机SBP与深部脑压相关性更强,这表明深部脑压是血压相关的脑小血管病的标志。深部脑压比脑叶脑压与动态血压水平的相关性更强 [47] ,除了清醒时的血压外,睡眠时的血压仍与CMBs的存在显著相关。在被诊断患有夜间高血压的受试者中,CMBs的可能性高出5至6倍 [48] 。有研究发现随诊BPV与深部和幕下区域CMBs的发生显著相关,这些区域是高血压血管病变和出血的常见部位,这些部位的穿透性动脉分支直接从大血管发出,在血压波动方面是脆弱的。随着高血压的发展,小动脉和毛细血管暴露在高水平的压力下,导致泄漏和破裂 [49] 。然而,一项包括472名受试者的弗雷明汉研究表明,CMBs与高龄和性别有关,但在去除年龄和性别的影响后与血压无关 [50] 。

5. 未来研究方向

尽管已经有研究证实了高血压患者脑CMBs与BPV的相关性,但是还需要更多的研究来探讨其致病机制以及确立更精确的诊断标准。具体而言,未来的研究可以从以下几个方面展开:1) 更大的样本和长期的随访研究,以确认高血压患者CMBs与BPV之间的相关性。2) 探究血压变异性对CMBs不同数量及位置的影响。3) 探索BPV对CMBs的致病作用机制,以制定更有效的干预策略。4) 发展更精确的测量方法,并确定诊断标准,以便更准确地评估高血压患者的CMBs和BPV。

6. 结论

高血压患者脑CMBs与BPV的相关性已经为研究者和临床医生提供了新的方向。尽管研究仍处于初步阶段,但已经得到了一些有力的证据。本文总结了目前可得的研究成果,表明高血压患者CMBs与BPV之间存在显著的相关性,血压变异性是影响高血压患者CMBs的一个独立危险因素。因此,在临床实践中,需要及时发现高血压患者的BPV,并采取有效的干预措施,以降低CMBs和相关心血管事件的风险。未来的研究应该从更多的角度深入探讨这一问题,为高血压患者的治疗和管理提供更全面、更精准的指导。

NOTES

*通讯作者。

参考文献

[1] 《中国高血压防治指南》修订委员会. 中国高血压防治指南2018年修订版[J]. 心脑血管病防治, 2019, 19(1): 1-44.
[2] Wardlaw, J.M., Smith, E.E., Biessels, G.J., et al. (2013) Neuroimaging Standards for Research into Small Vessel Disease and Its Contribution to Ageing and Neurodegeneration. The Lancet Neurology, 12, 822-838.
https://doi.org/10.1016/S1474-4422(13)70124-8
[3] 刘潇潇, 孙海荣, 沈腾群, 等. 老年高血压患者脑微出血与血脂的相关性研究[J]. 中华老年心脑血管病杂志, 2022, 24(12): 1240-1243.
[4] Fazekas, F., Kleinert, R. and Roob, G. (1999) Histopathologic Analysis of Foci of Signal Loss on Gradient-Echo T2*-Weighted MR Images in Pa-tients with Spontaneous Intracerebral Hemorrhage: Evidence of Microangiopathy- Related Microbleeds. American Jour-nal of Neuroradiology, 20, 637-642.
[5] Romero, J.R., Preis, S.R., Beiser, A., Himali, J.J., Shoamanesh, A., Wolf, P.A., Kase, C.S., Vasan, R.S., DeCarli, C. and Seshadri, S. (2017) Cerebral Microbleeds as Predictors of Mortality: The Framingham Heart Study. Stroke, 48, 781-783.
https://doi.org/10.1161/STROKEAHA.116.015354
[6] Lee, J., Sohn, E.H., Oh, E. and Lee, A.Y. (2018) Charac-teristics of Cerebral Microbleeds. Dementia and Neurocognitive Disorders, 17, 73-82.
https://doi.org/10.12779/dnd.2018.17.3.73
[7] Zhang, J.B., Liu, L.f., Sun, H.R., Li, M.F., Li, Y., Zhao, J.W., Li, J., Liu, X.W., Cong, Y.N., Li, F. and Li, Z.G. (2018) Cerebral Microbleeds Are Associated with Mild Cognitive Im-pairment in Patients with Hypertension. Journal of the American Heart Association, 7, e008453.
https://doi.org/10.1161/JAHA.117.008453
[8] Yakushiji, Y., Nishiyama, M., Yakushiji, S., Hirotsu, T., Uchino, A., Nakajima, J., Eriguchi, M., Nanri, Y., Hara, M., Horikawa, E. and Kuroda, Y. (2008) Brain Microbleeds and Global Cognitive Function in Adults without Neurological Disorder. Stroke, 39, 3323-3328.
https://doi.org/10.1161/STROKEAHA.108.516112
[9] Ku, H.L. and Chi, N.F. (2011) Cerebral Lobar Micro-hemorrhages Detection by High Magnetic Field Susceptibility Weighted Image: A Potential Diagnostic Neuroimage Technique of Alzheimer’s Disease. Medical Hypotheses, 76, 840-842.
https://doi.org/10.1016/j.mehy.2011.02.032
[10] 赵宏祥, 马越捷, 赵青军, 陶承. 脑微出血影响因素及其对出血性脑卒中的影响分析[J]. 实用心脑肺血管病杂志, 2021, 29(6): 57-62.
[11] Lau, K.K., Wong, Y.K., Teo, K.C., et al. (2017) Long-Term Prognostic Implications of Cerebral Microbleeds in Chinese Patients with Ischemic Stroke. Jour-nal of the American Heart Association, 6, e007360.
https://doi.org/10.1161/JAHA.117.007360
[12] Lee, J.S., Ko, K.H., Oh, J.H., et al. (2017) Cerebral Microbleeds, Hypertension, and Intracerebral Hemorrhage in Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. Frontiers in Neurology, 8, Article 203.
https://doi.org/10.3389/fneur.2017.00203
[13] Lim, J.S., Hong, K.S., Kim, G.M., Bang, O.Y., Bae, H.J., Kwon, H.M., Park, J.M., Lee, S.H., Rha, J.H., Koo, J., Yu, K.H., Seo, W.K., Lee, K.B. and Lee, Y.S. (2015) Cerebral Microbleeds and Early Recurrent Stroke After Transient Ischemic Attack: Results from the Korean Transient Ischemic Attack Expression Registry. JAMA Neurology, 72, 301-308.
https://doi.org/10.1001/jamaneurol.2014.3958
[14] Koh, S.H., Park, C.Y., Kim, M.K., Lee, K.Y., Kim, J., Chang, D.I., Kim, H.T. and Kim, S.H. (2011) Microbleeds and Free Active MMP-9 Are Independent Risk Factors for Neuro-logical Deterioration in Acute Lacunar Stroke. European Journal of Neurology, 18, 158-164.
https://doi.org/10.1111/j.1468-1331.2010.03100.x
[15] 韩忠奎, 任明山, 夏元亮, 锁六军. 首发急性腔隙性脑梗死患者脑微出血与早期神经功能恶化的关联研究[J]. 医学研究生学报, 2015(11): 1160-1163.
[16] Greenberg, S.M., Vernooij, M.W., Cordonnier, C., et al. (2009) Cerebral Microbleeds: A Guide to Detection and Interpretation. The Lancet Neurology, 8, 165-174.
https://doi.org/10.1016/S1474-4422(09)70013-4
[17] 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国脑小血管病诊治指南2020[J]. 中华神经科杂志, 2022, 55(8): 807-818.
[18] Shao, L., Wang, M. and Ge, X.H. (2017) The Use of Susceptibility-Weighted Imaging to Detect Cerebral Microbleeds after Lacunar Infarction. European Review for Medical and Pharmacological Sciences, 21, 3105-3112.
[19] Nandigam, R.N.K.,Viswanathan, A., Delgado, P., Skehan, M.E., Smith, E.E., Rosand, J., Greenberg, S.M. and Dickerson, B.C. (2009) MR Imaging Detection of Cerebral Microbleeds: Effect of Susceptibility-Weighted Imaging, Section Thickness, and Field Strength. American Journal of Neuroradiology, 30, 338-343.
https://doi.org/10.3174/ajnr.A1355
[20] Fisher, M. (2016) Cerebral Microbleeds and Thrombolysis: Clinical Con-sequences and Mechanistic Implications. JAMA Neurology, 73, 632-635.
https://doi.org/10.1001/jamaneurol.2016.0576
[21] Greenberg, S.M., Eng, J.A., Ning, M.M., Smith, E.E. and Rosand, J. (2004) Hemorrhage Burden Predicts Recurrent Intracerebral Hemorrhage after Lobar Hemorrhage. Stroke, 35, 1415-1420.
https://doi.org/10.1161/01.STR.0000126807.69758.0e
[22] Afzal, S., Khan, I.U. and Lee, J.W. (2022) A Transfer Learning-Based Approach to Detect Cerebral Microbleeds. Computers, Materials & Continua, 71, 1903-1923.
https://doi.org/10.32604/cmc.2022.021930
[23] Yubi, T., Hata, J., Ohara, T., et al. (2018) Prevalence of and Risk Factors for Cerebral Microbleeds in a General Japanese Elderly Community. Neurology: Clinical Practice, 8, 223-231.
https://doi.org/10.1212/CPJ.0000000000000464
[24] Vernooij, M.W., van der Lugt, A., Ikram, M.A., et al. (2008) Prevalence and Risk Factors of Cerebral Microbleeds: The Rotterdam Scan Study. Neurology, 70, 1208-1214.
https://doi.org/10.1212/01.wnl.0000307750.41970.d9
[25] Lee, S.H., Park, J.M., Kwon, S.J., et al. (2004) Left Ventricular Hypertrophy Is Associated with Cerebral Microbleeds in Hypertensive Patients. Neurology, 63, 16-21.
https://doi.org/10.1212/01.WNL.0000132525.36804.A1
[26] Elkhatib, T.H.M., Elsaid, A.F., Al-Molla, R.M., Khamis, M.E.M. and Fahmi, R.M. (2020) Prevalence and Associated Risk Factors of Cerebral Microbleeds in Egyptian Patients with Acute Ischemic Stroke and Atrial Fibrillation. Journal of Stroke and Cerebrovascular Diseases, 29, Article ID: 104703.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104703
[27] Cordonnier, C., Al-Shahi Salman, R. and Wardlaw, J. (2007) Spontaneous Brain Microbleeds: Systematic Review, Subgroup Analyses and Standards for Study Design and Reporting. Brain, 130, 1988-2003.
https://doi.org/10.1093/brain/awl387
[28] Xia, Y.W., Wang, Y., Yang, L.M., Wang, Y.Q., Liang, X.N., Zhao, Q.H., Wu, J.J., Chu, S.G., Liang, Z.H., Ding, H.S., Ding, D., Cheng, X. and Dong, Q. (2021) Incident Cerebral Mi-crobleeds and Hypertension Defined by the 2017 ACC/AHA Guidelines. Annals of Translational Medicine, 9, Article 314.
https://doi.org/10.21037/atm-20-5142
[29] Schrag, M., McAuley, G., Pomakian, J., et al. (2010) Correlation of Hypointensities in Susceptibility-Weighted Images to Tissue Histology in Dementia Patients with Cerebral Amyloid Angiopathy: A Postmortem MRI Study. Acta Neuropathologica, 119, 291-302.
https://doi.org/10.1007/s00401-009-0615-z
[30] Potigumjon, A., Watcharakorn, A. and Dharmasaroja, P.A. (2017) Prevalence of Cerebral Microbleeds in Thai Patients with Ischemic Stroke. Journal of Neurosciences in Rural Practice, 8, 216-220.
https://doi.org/10.4103/0976-3147.203836
[31] Sakai, K. and Yamada, M. (2021) Cerebral Amyloid Angiopa-thy-Related Inflammation and Dementia. Clinical and Experimental Neuroimmunology, 12, 101-106.
https://doi.org/10.1111/cen3.12634
[32] Bu, G.J. (2009) Apolipoprotein E and Its Receptors in Alzheimer’s Dis-ease: Pathways, Pathogenesis and Therapy. Nature Reviews Neuroscience, 10, 333-344.
https://doi.org/10.1038/nrn2620
[33] Greenberg, S.M., William Rebeck, G., Vonsattel, J.P.G., et al. (1995) Apolipoprotein E ϵ4 and Cerebral Hemorrhage Associated with Amyloid Angiopathy. Annals of Neurology, 38, 254-259.
https://doi.org/10.1002/ana.410380219
[34] Li, H.Q., Cai, W.J., Hou, X.H., et al. (2020) Genome-Wide Associa-tion Study of Cerebral Microbleeds on MRI. Neurotoxicity Research, 37, 146-155.
https://doi.org/10.1007/s12640-019-00073-3
[35] Luo, Q., Tang, H., Xu, X., Huang, J., Wang, P., He, G., Song, X., Huang, Y., Chen, S., Yan, F., Tan, Y. and Ma, J. (2021) The Prevalence and Risk Factors of Cerebral Microbleeds: A Community-Based Study in China. Therapeutics and Clinical Risk Management, 17, 165-171.
https://doi.org/10.2147/TCRM.S297708
[36] Ruzali, W.A.W., Kehoe, P.G. and Love, S. (2013) Influence of LRP-1 and Apolipoprotein E on Amyloid-β Uptake and Toxicity to Cerebrovascular Smooth Muscle Cells. Journal of Alzheimer’s Disease, 33, 95-110.
https://doi.org/10.3233/JAD-2012-121336
[37] Greenberg, S.M., Vonsattel, J.P.G., Segal, A.Z., et al. (1998) As-sociation of Apolipoprotein E ϵ2 and Vasculopathy in Cerebral Amyloid Angiopathy. Neurology, 50, 961-965.
https://doi.org/10.1212/WNL.50.4.961
[38] Lee, S.H., Ryu, W.S. and Roh, J.K. (2009) Cerebral Microbleeds Are a Risk Factor for Warfarin-Related Intracerebral Hemorrhage. Neurology, 72, 171-176.
https://doi.org/10.1212/01.wnl.0000339060.11702.dd
[39] Wei, F.F., Asayama, K. and Hara, A. (2018) Blood Pressure Variability versus Blood Pressure Level in Risk Stratification. In: Vasan, R.S. and Sawyer, D.B., Eds., Ency-clopedia of Cardiovascular Research and Medicine, Elsevier, Amsterdam, 350-355.
https://doi.org/10.1016/B978-0-12-809657-4.99591-7
[40] Cesarea, C., Marijanab, T. and Guidoa, G. (2021) Blood Pressure Variability: A New Therapeutic Target on the Horizon. Journal of Hypertension, 39, 1771-1773.
https://doi.org/10.1097/HJH.0000000000002865
[41] Igase, M., Tabara, Y., Igase, K., Nagai, T., Ochi, N., Kido, T., Nakura, J., Sadamoto, K., Kohara, K. and Miki, T. (2009) Asymptomatic Cerebral Microbleeds Seen in Healthy Sub-jects Have a Strong Association with Asymptomatic Lacunar Infarction. Circulation Journal, 73, 530-533.
https://doi.org/10.1253/circj.CJ-08-0764
[42] Fan, Y.H., Zhang, L., Lam, W.W., Mok, V.C. and Wong, K.S. (2003) Cerebral Microbleeds as a Risk Factor for Subsequent Intracerebral Hemorrhages among Patients with Acute Ischemic Stroke. Stroke, 34, 2459-2462.
https://doi.org/10.1161/01.STR.0000090841.90286.81
[43] Lyu, L., Shen, J., Zeng, C., et al. (2020) Cerebral Mi-crobleeds Are Associated with Blood Pressure Levels in Individuals with Hypertension. Clinical and Experimental Hy-pertension, 42, 328-334.
https://doi.org/10.1080/10641963.2019.1665673
[44] Klarenbeek, P., van Oostenbrugge, R.J., Rouhl, R.P.W., et al. (2013) Higher Ambulatory Blood Pressure Relates to New Cerebral Microbleeds: 2-Year Follow-Up Study in Lacunar Stroke Patients. Stroke, 44, 978-983.
https://doi.org/10.1161/STROKEAHA.111.676619
[45] Zhang, H., Cui, Y. and Zhao, Y.X. (2019) Association of Circadian Rhythm of Blood Pressure and Cerebral Small Vessel Disease in Community-Based Elderly Population. The Journals of Gerontology: Series A, 74, 1322-1330.
https://doi.org/10.1093/gerona/gly212
[46] Rothwell, P.M., Howard, S.C. and Dolan, E. (2010) Prognostic Signif-icance of Visit-to-Visit Variability, Maximum Systolic Blood Pressure, and Episodic Hypertension. The Lancet, 375, 895-905.
https://doi.org/10.1016/S0140-6736(10)60308-X
[47] Staals, J., Van Oostenbrugge, R.J. and Knottnerus, I.L. (2009) Brain Microbleeds Relate to Higher Ambulatory Blood Pressure Levels in First-Ever Lacunar Stroke Patients. Stroke, 40, 3264-3268.
https://doi.org/10.1161/STROKEAHA.109.558049
[48] Henskens, L.H.G., van Oostenbrugge, R.J., Kroon, A.A., de Leeuw, P.W. and Lodder, J. (2008) Brain Microbleeds Are Associated with Ambulatory Blood Pressure Levels in a Hypertensive Population. Hypertension, 51, 62-68.
https://doi.org/10.1161/HYPERTENSIONAHA.107.100610
[49] Liu, W.H., Liu, R., Sun, W., et al. (2012) Dif-ferent Impacts of Blood Pressure Variability on the Progression of Cerebral Microbleeds and White Matter Lesions. Stroke, 43, 2916-2922.
https://doi.org/10.1161/STROKEAHA.112.658369
[50] Jeerakathil, T., Wolf, P.A., Beiser, A., Hald, J.K., Au, R., Kase, C.S., Massaro, J.M. and DeCarli, C. (2004) Cerebral Microbleeds Prevalence and Associa-tions with Cardiovascular Risk Factors in the Framingham Study. Stroke, 35, 1831-1835.
https://doi.org/10.1161/01.STR.0000131809.35202.1b