慢性阻塞性肺疾病合并肺结核的临床研究
Clinical Study on Chronic Obstructive Pulmonary Disease Complicated with Pulmonary Tuberculosis
DOI: 10.12677/ACM.2023.1361377, PDF, HTML, XML, 下载: 246  浏览: 344 
作者: 刘敬璞:青海大学研究生院,青海 西宁;崔金霞*:青海大学附属医院呼吸与危重症医学科,青海 西宁
关键词: 慢性阻塞性肺疾病肺结核两病共存临床研究Chronic Obstructive Pulmonary Disease Pulmonary Tuberculosis Coexistence of Two Diseases Clinical Study
摘要: 慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)简称慢阻肺,是呼吸系统的常见疾病,慢阻肺患者最常见诱因为呼吸道感染,此类病人机体免疫力低下、长期吸入糖皮质激素控制病情,在此期间最易引起结核分枝杆菌的感染,因此慢阻肺合并肺结核的患者更难以治疗,两病共存以及相互影响使疾病的诊断和治疗存在难度,增加患者的死亡风险。本文从慢阻肺合并肺结核的危险因素、临床特点、影像学特点、肺功能以及治疗等方面进行综述。
Abstract: Chronic obstructive pulmonary disease (COPD), also known as chronic obstructive pulmonary dis-ease (COPD), is a common respiratory disease. Patients with COPD are the most common cause of respiratory infections, and their immune system is low. Long term inhalation of corticosteroids to control the condition is the most likely cause of infection with Mycobacterium tuberculosis during this period. Therefore, patients with COPD combined with pulmonary tuberculosis are more difficult to treat. The coexistence and mutual influence of two diseases make the diagnosis and treatment of the disease difficult, increasing the risk of death for patients. This article reviews the risk factors, clinical characteristics, imaging features, pulmonary function, and treatment of chronic obstructive pulmonary disease (COPD) complicated with pulmonary tuberculosis.
文章引用:刘敬璞, 崔金霞. 慢性阻塞性肺疾病合并肺结核的临床研究[J]. 临床医学进展, 2023, 13(6): 9844-9850. https://doi.org/10.12677/ACM.2023.1361377

1. 引言

慢性阻塞性肺疾病(COPD)是一种进展缓慢的慢性呼吸系统疾病,其特征是阻塞性通气功能障碍,很少是可逆的 [1] ,它导致发病率和早期死亡率增加,是一个重大的公共卫生问题,全球每年有超过3万人死亡。世界卫生组织估计,到2030年左右,COPD将成为全球第三大死因 [2] 。另一个重要的全球公共卫生问题是结核分枝杆菌引起的结核病,也是全球发病和死亡的主要原因 [3] 。根据《2019年全球结核病报告》,2018年全球约有1000万新发病例,中国是结核病高负担的30个国家之一,占其中的14% [4] 。根据研究表明,结核病是慢性阻塞性肺疾病的重要危险因素;同时,COPD也与结核病密切相关 [5] 。

2. 慢性阻塞性肺疾病合并肺结核的危险因素

慢性阻塞性肺疾病和肺结核有共同的危险因素,如吸烟、细菌感染、病毒感染、吸入性皮质类固醇、体重低下、2型糖尿病、营养不良和维生素D缺乏、生物质燃料暴露、社会经济地位低下等。

2.1. 吸烟

慢性阻塞性肺疾病(COPD)是影响全世界数百万人的最常见的慢性呼吸道疾病之一,它是由遗传易感性和环境因素之间的相互作用引起的。吸烟是COPD的主要病因和环境原因。15%至50%的吸烟者发展为COPD,80%~90%的COPD患者为吸烟者或既往吸烟者 [6] 。研究表明,吸烟、肺功能降低和慢性阻塞性肺病之间的联系已经得到了很好的证实,易感吸烟者的FEV1下降速度比非吸烟者的任何年龄相关变化都要快 [7] 。同时,吸烟会降低肺部巨噬细胞的吞噬作用,导致结核病感染和复发的可能性很高 [8] 。

2.2. 细菌感染

COPD患者中30%至50%的急性加重是由细菌(流感嗜血杆菌、肺炎链球菌、卡他莫拉菌和肺炎衣原体)引起的,高达30%的病例涉及流感病毒和鼻病毒等 [9] 。几十年来,研究人员一直在探索细菌感染在COPD加重期中的作用,支气管镜方面的研究不仅从50%的急性期患者中分离出细菌,而且从25%至30%的稳定期患者中也分离出细菌。通过这些技术,已经表明从环境中获得新的细菌菌株是COPD急性加重的主要驱动因素 [10] 。

2.3. 病毒感染

慢阻肺急性加重(AECOPD)的主要原因是呼吸道病毒感染,主要发病机制包括病毒–细菌共同感染、呼吸道微生物群的变化以及宿主对细菌的反应和细菌易感性,特别是近两年来,新冠肺炎感染可导致AECOPD,这是非常危险的 [11] 。COVID-19患者中COPD的数据显示,COVID-19住院患者中COPD的患病率范围很广(1.1%~38%)。冠状病毒是AECOPD的季节性原因。几个因素可能在COPD患者发生严重SARS-CoV-2感染的易感性增加中起作用 [6] ,其中一个因素是COPD患者经常使用吸入性药物,如皮质类固醇(ICS)。Attaway等人的研究表明,SARS-CoV-2检测呈阳性的COPD患者在检测时使用皮质类固醇的可能性比检测呈阴性的患者低2.4倍 [12] 。

2.4. 吸入性皮质类固醇

吸入性皮质类固醇(ICS)已广泛用于COPD治疗,因为这些药物可以减少某些COPD患者的急性加重,包括使用支气管舒张剂但仍有多次或重度加重病史的患者、血嗜酸性粒细胞计数 > 300个细胞/μl的患者,以及有哮喘病史和/或伴有哮喘的患者。然而,ICS的使用可导致肺结核复发,并增加无肺结核患者患肺结核的风险 [13] 。因此,在结核病流行国家使用高剂量吸入性皮质类固醇之前,应强制排除结核病感染或疾病 [14] 。考虑到既往肺结核患者人数众多,中低收入国家中COPD患病率高,在给COPD患者开具ICS/长效β2受体激动剂(LABA)或ICS/LABA/长效M胆碱受体拮抗剂(LAMA)处方前,应进行胸片或计算机体层成像扫描,以确保COPD患者没有肺结核 [15] 。

2.5. 体重低下

除了吸烟,COPD患者还患有可能增加活动性结核病风险的疾病,如低体重指数和粘膜纤毛清除受损。体重不足(体重指数BMI < 18.5公斤/米2)是我们研究中COPD的一个重要危险因素。许多研究报告表明体重不足人群中COPD的高患病率,但一些研究也报告了随着BMI的增加,COPD患病率很高 [16] 。Wada等人研究表明BMI每降低2.8 kg/m2,COPD死亡率增加60%,相当于每降低5.0 kg/m2,增加107% [17] 。

2.6. 2型糖尿病

糖尿病和慢阻肺以双向方式相互作用。COPD的进展和预后因合并糖尿病而加重,它通过以下机制做到这一点:高血糖对肺部生理的直接影响,炎症和/或对细菌感染的易感性等。全身炎症和皮质类固醇的使用也可能增加患2型糖尿病的风险 [18] 。糖尿病与肺结核的相互作用也是双向的,它也是发生结核病的风险之一,2型糖尿病合并肺结核(PTB-T2DM)的发病率呈19.3%~24.1%的上升趋势。这两种疾病密切相关,相互促进 [19] 。一方面,由于组织糖含量高、代谢紊乱、免疫功能下降,结核分枝杆菌加速了繁殖速度,增加了耐药菌株的产生,影响了PTB-T2DM患者的预后;另一方面,结核病可加重T2DM患者的糖代谢紊乱,增加酮症酸中毒的发生率,并呈现危险的预后 [19] 。

2.7. 营养不良和维生素D缺乏

营养不良可诱发结核病,结核病在营养不良中发挥作用。营养不良是肺结核发生的主要危险因素,也是肺结核患者肺外疾病的危险因素 [20] 。营养不良可促进肺结核的发生和发展,增加耐药性 [21] 。据报道 [22] ,非活动性肺结核合并慢性阻塞性肺疾病患者营养不良的发生率更高。维生素D缺乏也是肺结核和慢阻肺的潜在危险因素。Nnoaham等人 [23] 在一项系统综述和荟萃分析中评估了低血清维生素D水平与活动性结核病风险之间的关系。维生素D通过先天和适应性免疫系统在宿主对结核分枝杆菌的免疫防御中发挥重要作用,它是肺部发育所必需的,其缺乏有可能在早期引发慢性肺部疾病 [24] 。

2.8. 生物质燃料暴露

生物质燃料暴露是COPD最重要的非吸烟相关因素,接触生物质燃料烟雾的人数远高于接触烟雾的人数。Misra等 [25] 人发现,生活在主要使用生物质燃料做饭家庭中的人患活动性结核病的几率为3.56。由于发展中国家许多人使用生物质燃料取暖或做饭,这种风险非常大。

2.9. 社会经济地位低下

社会经济低下(SES)是COPD和肺结核的另一个危险因素。低SES也是COPD患者健康相关生活质量差的原因。Kanervisto等人 [26] 在一项基于人群的研究中表明,基础教育水平是COPD的独立风险因素(奇数比为1.8)。低SES暴露于营养不良、室内空气污染、酒精、拥挤和通风不良的地方、不健康的烹饪习惯等都可能增加患结核病的风险。

3. 慢性阻塞性肺疾病合并肺结核的临床特点

慢性阻塞性肺疾病和肺结核都是慢性呼吸道疾病,在临床症状上有很多相似之处,如咳嗽、发烧、盗汗、胸闷、呼吸急促和咯血 [27] 。由于结核病的临床症状可以被慢性阻塞性肺疾病的症状所掩盖,漏诊会延误对结核病的治疗。一项研究发现 [28] ,30.7%有肺结核病史的患者与气流受限(FEV1\/FVC < 0.7)有关,而无肺结核病史的患者这一比例为13.9%。中国的另一项基于人群的研究 [29] 表明,既往肺结核病史是气流受限的独立危险因素,发病率为24.2%。因此,对于既往有肺结核病史的患者,应怀疑并警惕COPD的合并发生。Ma和Gao [28] 等人研究表明新治疗的COPD合并PTB患者的临床症状包括咳嗽、发烧、盗汗、胸闷、气短、乏力和体重减轻。

4. 慢性阻塞性肺疾病合并肺结核的肺功能检查

肺功能作为COPD的重要诊断和评估指标,也是COPD发病率的重要预测指标 [30] 。Lee等人 [31] 在一项病例对照研究中评估了21名结核相关阻塞性肺疾病(TOPD)患者的肺功能参数,并将其与按年龄,性别和FEV1值(%)匹配的COPD患者进行了比较预测,结果表明与COPD患者相比,咯血在TOPD中更常见,因为TOPD患者可能发展为支气管扩张症;TOPD患者的FVC值(%)和使用支气管舒张剂后FEV1值(%)也显著降低。Wang等人的研究中 [32] ,在一般人群中既往结核病组的肺功能指标,包括FEV1 (%)和FEV1/FVC (%),与COPD患者对照组相比,肺功能指标预测的FVC1 (%)和FEV1/FVC (%)低于非结核病组;在COPD患者中,既往结核病组的气流受限严重程度分类显著高于非结核病组。这项研究表明 [32] ,有肺结核病史的患者肺功能与COPD风险之间存在剂量–反应关系,该剂量–反应曲线表明,当FEV1/FVC (%)降至某一临界点以下时,COPD的风险迅速增加,这提醒我们需要对患者进行动态肺功能检查。

5. 慢性阻塞性肺疾病合并肺结核的影像学表现

慢阻肺合并肺结核的影像学特点表现为肺部多形态病灶,如空洞、胸腔积液、胸膜增厚、钙化影、斑片状影、实变影等 [33] 。PTB引起的慢性炎症反应和长期解剖改变被认为是肺功能受损和预后不良的主要病理基础。研究中发现COPD的放射学表型受到了广泛关注,肺气肿、支气管壁增厚和支气管扩张被认为是3个主要的形态学发现,可能会提供有关COPD不同表型的相关信息 [34] 。在这项关于既往有PTB的COPD的胸部影像学(支气管扩张症和肺气肿)和临床特征的横断面研究中 [35] ,最重要的发现是与无PTB的患者相比,有既往PTB病史的COPD患者表现出更高的患病率和更严重的支气管扩张,肺水肿的患病率增加,以及更广泛的肺气肿。

6. 慢性阻塞性肺疾病合并肺结核的治疗

慢阻肺合并PTB应遵循早诊断,以尽早联合应用两种疾病的临床规范治疗方案。当慢阻肺合并PTB,或存在结核分枝杆菌潜伏感染风险时,应尽量避免或谨慎使用全身或吸入糖皮质激素 [36] 。然而,由于抗结核病药物的使用不规范,中国的耐药结核病病例越来越多 [37] 。目前,多耐药结核的发病机制尚不清楚,以及影响多耐药结核病发生的危险因素在不同的国家和地区是不同的 [38] 。Shadrach [39] 等人的研究中发现COPD合并PTB患者对异烟肼、利福平、卡那霉素和乙胺丁醇的耐药率显著高于单独PTB患者,表明COPD并发PTB有很高的多重耐药性(MDR)。同时延迟抗结核治疗也是一个独立的风险因素,因为它延长了持续时间并增加了气道炎症的严重程度,会导致肺部结构破坏速度加快,从而导致肺功能丧失。因此,早期诊断和及时开始抗结核治疗对于控制结核病和慢性阻塞性肺疾病的流行至关重要 [40] 。

7. 结论

综上所述,慢性阻塞性肺疾病和肺结核互为危险因素,然而COPD患者因吸烟、病毒和细菌、合并糖尿病等危险因素更易引起结核分枝杆菌感染,因此慢阻肺合并肺结核患者的治疗较难以及预后较差,应重视慢阻肺合并肺结核的早期诊断、早期治疗,减低患者死亡风险,防止未来结核病和慢性阻塞性肺疾病的发展。

NOTES

*通讯作者。

参考文献

[1] Raherison, C. and Girodet, P. (2009) Epidemiology of COPD. European Respiratory Review, 18, 213-221.
https://doi.org/10.1183/09059180.00003609
[2] Singh, D., Agusti, A., Anzueto, A., et al. (2019) Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: The GOLD Science Committee Report 2019. European Respiratory Journal, 53, Article ID: 1900164.
https://doi.org/10.1183/13993003.00164-2019
[3] Chai, Q., Lu, Z., Liu, Z., et al. (2020) Lung Gene Expression Signatures Suggest Pathogenic Links and Molecular Markers for Pulmonary Tuberculosis, Adenocarcinoma and Sar-coidosis. Communications Biology, 3, Article No. 604.
https://doi.org/10.1038/s42003-020-01318-0
[4] Harding, E. (2020) WHO Global Progress Report on Tuberculo-sis Elimination. The Lancet Respiratory Medicine, 8, Article No. 19.
https://doi.org/10.1016/S2213-2600(19)30418-7
[5] Lee, C.-H., Lee, M.-C., Lin, H.-H., et al. (2012) Pulmonary Tuberculosis and Delay in Anti-Tuberculous Treatment Are Important Risk Factors for Chronic Obstructive Pulmonary Disease. PLOS ONE, 7, e37978.
https://doi.org/10.1371/journal.pone.0037978
[6] Polverino, F. and Kheradmand, F. (2021) COVID-19, COPD, and AECOPD: Immunological, Epidemiological, and Clinical Aspects. Frontiers in Medicine, 7, Article ID: 627278.
https://doi.org/10.3389/fmed.2020.627278
[7] Chakrabarti, B., Calverley, P.M. and Davies, P.D. (2007) Tuber-culosis and Its Incidence, Special Nature, and Relationship with Chronic Obstructive Pulmonary Disease. International Journal of Chronic Obstructive Pulmonary Disease, 2, 263-272.
[8] Shimeles, E., Enquselassie, F., Aseffa, A., et al. (2019) Risk Factors for Tuberculosis: A Case-Control Study in Addis Ababa, Ethiopia. PLOS ONE, 14, e0214235.
https://doi.org/10.1371/journal.pone.0214235
[9] Papi, A., Bellettato, C.M., Braccioni, F., et al. (2006) Infections and Airway Inflammation in Chronic Obstructive Pulmonary Disease Severe Exacerbations. American Journal of Res-piratory and Critical Care Medicine, 173, 1114-1121.
https://doi.org/10.1164/rccm.200506-859OC
[10] Mallia, P., Contoli, M., Caramori, G., et al. (2007) Exacerbations of Asthma and Chronic Obstructive Pulmonary Disease (COPD): Focus on Virus Induced Exacerbations. Current Pharmaceutical Design, 13, 73-97.
https://doi.org/10.2174/138161207779313777
[11] Han, M.K., Quibrera, P.M., Carretta, E.E., et al. (2017) Fre-quency of Exacerbations in Patients with Chronic Obstructive Pulmonary Disease: An Analysis of the SPIROMICS Cohort. The Lancet Respiratory Medicine, 5, 619-626.
https://doi.org/10.1016/S2213-2600(17)30207-2
[12] Attaway, A.A., Zein, J. and Hatipoğlu, U.S. (2020) SARS-CoV-2 Infection in the COPD Population Is Associated with Increased Healthcare Utilization: An Analysis of Cleveland Clinic’s COVID-19 Registry. EClinicalMedicine, 26, Article ID: 100515.
https://doi.org/10.1016/j.eclinm.2020.100515
[13] Agusti, A., Fabbri, L.M., Singh, D., et al. (2018) Inhaled Corti-costeroids in COPD: Friend or Foe? European Respiratory Journal, 52, Article ID: 1801219.
https://doi.org/10.1183/13993003.01219-2018
[14] Brassard, P., Suissa, S., Kezouh, A., et al. (2011) Inhaled Cor-ticosteroids and Risk of Tuberculosis in Patients with Respiratory Diseases. American Journal of Respiratory and Criti-cal Care Medicine, 183, 675-678.
https://doi.org/10.1164/rccm.201007-1099OC
[15] Fan, H., Wu, F., Liu, J., et al. (2021) Pulmonary Tuberculosis as a Risk Factor for Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Annals of Translational Medicine, 9, Article No. 390.
https://doi.org/10.21037/atm-20-4576
[16] Hooper, R., Burney, P., Vollmer, W.M., et al. (2012) Risk Factors for COPD Spirometrically Defined from the Lower Limit of Normal in the BOLD Project. European Respiratory Journal, 39, 1343-1353.
https://doi.org/10.1183/09031936.00002711
[17] Wada, H., Ikeda, A., Maruyama, K., et al. (2021) Low BMI and Weight Loss Aggravate COPD Mortality in Men, Findings from a Large Prospective Cohort: The JACC Study. Scientific Reports, 11, Article No. 1531.
https://doi.org/10.1038/s41598-020-79860-4
[18] Gläser, S., Krüger, S., Merkel, M., et al. (2015) Chronic Ob-structive Pulmonary Disease and Diabetes Mellitus: A Systematic Review of the Literature. Respiration, 89, 253-264.
https://doi.org/10.1159/000369863
[19] Ma, L., Chen, X. and Gao, M. (2022) Analysis on the Risk Factors of Malnutrition in Type 2 Diabetes Mellitus Patients with Pulmonary Tuberculosis. Infection and Drug Resistance, 15, 7555-7564.
https://doi.org/10.2147/IDR.S381392
[20] Wang, X., Luo, L., Zhang, D., et al. (2022) Factors Associated with Nutritional Risk in Patients with Pulmonary Tuberculosis and Structural Lung Disease: A Hospital-Based Cross-Sectional Study. Journal of Multidisciplinary Healthcare, 15, 1799-1807.
https://doi.org/10.2147/JMDH.S375441
[21] Chu, A.L., Lecca, L.W., Calderón, R.I., et al. (2021) Smoking Cessa-tion in Tuberculosis Patients and the Risk of Tuberculosis Infection in Child Household Contacts. Clinical Infectious Diseases, 73, 1500-1506.
https://doi.org/10.1093/cid/ciab504
[22] Park, H.Y., Kang, D., Shin, S.H., et al. (2022) Pulmonary Tuberculosis and the Incidence of Lung Cancer among Patients with Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 19, 640-648.
https://doi.org/10.1513/AnnalsATS.202010-1240OC
[23] Nnoaham, K.E. and Clarke, A. (2008) Low Serum Vit-amin D Levels and Tuberculosis: A Systematic Review and Meta-Analysis. International Journal of Epidemiology, 37, 113-119.
https://doi.org/10.1093/ije/dym247
[24] Svanes, C., Sunyer, J., Plana, E., et al. (2010) Early Life Origins of Chronic Obstructive Pulmonary Disease. Thorax, 65, 14-20.
https://doi.org/10.1136/thx.2008.112136
[25] Sarkar, M., Madabhavi, I. and Kumar, K. (2017) Tuberculosis Asso-ciated Chronic Obstructive Pulmonary Disease. The Clinical Respiratory Journal, 11, 285-295.
https://doi.org/10.1111/crj.12621
[26] Kanervisto, M., Vasankari, T., Laitinen, T., et al. (2011) Low Socioeconomic Status Is Associated with Chronic Obstructive Airway Diseases. Respiratory Medicine, 105, 1140-1146.
https://doi.org/10.1016/j.rmed.2011.03.008
[27] Sakornsakolpat, P., Prokopenko, D., Lamontagne, M., et al. (2019) Genetic Landscape of Chronic Obstructive Pulmonary Disease Identifies Heterogeneous Cell-Type and Phenotype Asso-ciations. Nature Genetics, 51, 494-505.
https://doi.org/10.1038/s41588-018-0342-2
[28] Ma, L. and Gao, M. (2022) Analysis of Clinical Characteristics and Risk Factors for Drug Resistance in Newly-Treated Patients with Pulmonary Tuberculosis Complicated with Chronic Obstructive Pulmonary Disease. Infection and Drug Resistance, 15, 4861-4869.
https://doi.org/10.2147/IDR.S358121
[29] Menezes, A.M.B., Hallal, P.C., Perez-Padilla, R., et al. (2007) Tuber-culosis and Airflow Obstruction: Evidence from the PLATINO Study in Latin America. European Respiratory Journal, 30, 1180-1185.
https://doi.org/10.1183/09031936.00083507
[30] Matheson, M.C., Bowatte, G., Perret, J.L., et al. (2018) Predic-tion Models for the Development of COPD: A Systematic Review. International Journal of Chronic Obstructive Pul-monary Disease, 13, 1927-1935.
https://doi.org/10.2147/COPD.S155675
[31] Lee, J. and Chang, J. (2003) Lung Function in Patients with Chronic Airflow Obstruction Due to Tuberculous Destroyed Lung. Respiratory Medicine, 97, 1237-1242.
https://doi.org/10.1016/S0954-6111(03)00255-5
[32] Wang, Y., Li, Z. and Li, F. (2023) Impact of Previous Pul-monary Tuberculosis on Chronic Obstructive Pulmonary Disease: Baseline Results from a Prospective Cohort Study. Combinatorial Chemistry & High Throughput Screening, 26, 93-102.
https://doi.org/10.2174/1386207325666220406111435
[33] Kadowaki, T., Yano, S., Wakabayashi, K., et al. (2011) Pulmonary Tuberculosis with Atypical Radiological Findings in a Patient with Chronic Obstructive Pulmonary Disease. Kekkaku [Tuberculosis], 86, 763-766.
[34] Jung, J.-W., Choi, J.-C., Shin, J.-W., et al. (2015) Pulmonary Impairment in Tuberculosis Survivors: The Korean National Health and Nutrition Examination Survey 2008-2012. PLOS ONE, 10, e0141230.
https://doi.org/10.1371/journal.pone.0141230
[35] Jin, J., Li, S., Yu, W., et al. (2018) Emphysema and Bronchiec-tasis in COPD Patients with Previous Pulmonary Tuberculosis: Computed Tomography Features and Clinical Implica-tions. International Journal of Chronic Obstructive Pulmonary Disease, 13, 375-384.
https://doi.org/10.2147/COPD.S152447
[36] Pefura-Yone, E.W., Kengne, A.P., Tagne-Kamdem, P.E., et al. (2014) Clinical Significance of Low Forced Expiratory Flow between 25% and 75% of Vital Capacity Following Treated Pul-monary Tuberculosis: A Cross-Sectional Study. BMJ Open, 4, e005361.
https://doi.org/10.1136/bmjopen-2014-005361
[37] Nishi, M.P., Mancuzo, E.V., Sulmonett, N., et al. (2021) Pul-monary Functional Assessment: Longitudinal Study after Treatment of Pulmonary Tuberculosis. Revista do Instituto de Medicina Tropical de São Paulo, 63, e65.
https://doi.org/10.1590/s1678-9946202163065
[38] Tiberi, S., Zumla, A. and Migliori, G.B. (2019) Multidrug and Extensively Drug-Resistant Tuberculosis: Epidemiology, Clinical Features, Management and Treatment. Infectious Dis-ease Clinics, 33, 1063-1085.
https://doi.org/10.1016/j.idc.2019.09.002
[39] Shadrach, B.J., Kumar, S., Deokar, K., et al. (2021) A Study of Multidrug Resistant Tuberculosis among Symptomatic Household Contacts of MDR-TB Patients. Indian Journal of Tu-berculosis, 68, 25-31.
https://doi.org/10.1016/j.ijtb.2020.09.030
[40] Chung, K.-P., Chen, J.-Y., Lee, C.-H., et al. (2011) Trends and Pre-dictors of Changes in Pulmonary Function after Treatment for Pulmonary Tuberculosis. Clinics, 66, 549-556.
https://doi.org/10.1590/S1807-59322011000400005