肠促胰素类多肽对非酒精性脂肪性肝病的影响
Effect of Incretogenic Peptides on Non-Alcoholic Fatty Liver Disease
DOI: 10.12677/ACM.2023.1361396, PDF, HTML, XML, 下载: 164  浏览: 302 
作者: 苏怡平:青海大学研究生院,青海 西宁;马晓梅:青海大学附属医院内分泌与代谢病科,青海 西宁
关键词: 非酒精性脂肪性肝病2型糖尿病胰高血糖素样肽-1胰高血糖素样肽-1受体激动剂NAFLD T2DM GLP-1 GLP-1RAs
摘要: 目前,非酒精性脂肪性肝病(NAFLD)是最常见的肝病,影响高达70%的糖尿病患者,尚无特效药可用于治疗。GLP-1受体激动剂(GLP-1 RA)除了其抗高血糖作用和令人惊讶的心肾保护作用外,对NAFLD患者的体重以及脂肪肝和纤维化的临床、生化和组织学标志物具有显著影响。因此,GLP-1 RAs可能是治疗糖尿病和NAFLD的武器。本综述的目的是总结目前可获得的关于GLP-1 RAs在NAFLD治疗中作用的证据,并假设未来的潜在情况。
Abstract: At present, non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, affecting up to 70% of diabetic patients, and there is no specific drug for treatment. GLP-1 receptor agonists (GLP-1 RA) have significant effects on body weight and clinical, biochemical, and histological mark-ers of fatty liver and fibrosis in patients with NAFLD, in addition to their anti-hyperglycemic effect and surprising cardio-renal protection. Therefore, GLP-1 RAs may be a weapon in the treatment of diabetes and NAFLD. The purpose of this review was to summarize the currently available evidence on the role of GLP-1 RAs in the treatment of NAFLD and to hypothesize potential future scenarios.
文章引用:苏怡平, 马晓梅. 肠促胰素类多肽对非酒精性脂肪性肝病的影响[J]. 临床医学进展, 2023, 13(6): 9987-9995. https://doi.org/10.12677/ACM.2023.1361396

1. 引言

由于代谢综合征的传播,非酒精性脂肪性肝病(NAFLD)已成为全球最常见的肝病,全球估计患病率为32.4% [1] 。其特征是肝细胞内脂质过度积聚,可因炎症和纤维化的发展而变得复杂,并发展为非酒精性脂肪性肝炎(NASH, non-alcoholic steatohepatitis)和肝硬化 [2] 。NAFLD和代谢综合征的基石有共同的发病机制,与胰岛素抵抗密切相关。T2DM和NAFLD的胰岛素抵抗决定了肝脏产量的增加和肌肉葡萄糖摄取的减少,以及脂肪组织中脂解的减少和肝脏脂肪生成的增加,从而提高葡萄糖和循环游离脂肪酸(FFA)水平 [3] 。高水平的循环FFA是通过抑制受体后胰岛素信号导致胰岛素抵抗程度进一步恶化的原因,助长了恶性循环 [4] 。

胰高血糖素样肽-1 (GLP-1)是一种由肠道内分泌细胞产生的肽类激素,调节餐后葡萄糖稳态 [5] 。GLP-1受体激动剂(GLP-1 RAs)能够增加高血糖诱导的胰岛素分泌,减少胰高血糖素分泌,延迟胃排空,减少食欲和热量摄入,强烈推荐用于T2DM治疗 [6] 。与钠–葡萄糖转运蛋白2 (SGLT2)抑制剂类似,GLP-1 RA表现出令人惊讶的心脏和肾脏保护作用,因为它们显著降低了T2DM患者的主要不良心血管事件(MACE)发生率和肾脏疾病进展风险 [7] 。由于它们促进体重减轻,最近被批准用于治疗患有或不患有T2DM的患者的肥胖 [8] [9] 。它们可以改善肝脏损伤,有利于降低脂肪变性、炎症的程度,并有望降低肝纤维化。这些影响的程度和长期临床影响仍在评估中,但现有数据表明GLP-1 RAs在NAFLD的治疗中发挥着主要作用。本篇综述旨在收集目前关于GLP-1 RAs在NAFLD中作用的证据,并描述其对肝脏疾病及其并发症的潜在影响,评估未来的临床使用场景。

2. GLP-1受体激动剂:作用机制和当前适应症

GLP-1是一种由30个氨基酸组成的肠道激素,其作用由位于肠道(远端回肠和结肠)、胰腺α和β细胞以及中枢神经系统(CNS)的特异性受体(GLP-1受体,GLP-1R)介导 [10] 。尽管水平较低,但它也在心脏、肺、肾脏、血管和外周神经系统中表达 [10] [11] 。GLP-1的主要作用是增强β细胞对高血糖的胰岛素分泌,并抑制α细胞释放胰高血糖素 [12] 。此外,GLP-1减缓胃排空和胃肠动力,以减少葡萄糖吸收,从而控制餐后葡萄糖和甘油三酯的转运。除了肠道机制外,GLP-1还能够通过直接刺激中枢神经系统来诱导饱腹感 [11] 。通过这些作用机制,GLP-1 RAs增强了内源性GLP-1的生理作用。GLP-1 RAs诱导的良好代谢特征(体重减轻和热量摄入减少,血糖改善)使人们能够假设其在治疗非酒精性脂肪肝、T2DM和肥胖方面的潜在有效性。

3. GLP-1受体激动剂对NAFLD的影响

3.1. GLP-1 RA对体重的影响

迄今为止,唯一有效的治疗NAFLD的方法是减肥,通常通过改变生活方式(饮食、体育活动)或减肥手术来实现。然而,很难实现显著和持久的体重减轻。除了生活方式的改变外,GLP-1 RA还被证明可以通过早期饱腹感和食欲下降来降低2~7公斤的体重,从而降低热量摄入 [13] [14] [15] 。此外,这些药物的治疗可以减少对食物的渴望,增加用餐带来的乐趣 [16] 。参与这一进程的机制既有核心机制,也有外围机制。在中枢神经系统中,血清素是食欲调节的关键因素。通过刺激其在中枢神经系统中的受体,GLP-1降低了下丘脑中5-羟色胺5-HT2A受体的表达,导致食欲下降 [17] 。这种作用独立于血清素分泌,血清素分泌不受影响 [18] 。同时,GLP-1 RAs能够延迟胃排空并减缓胃肠道的肠道运动,从而在中枢水平增强早期饱腹感 [19] 。然而,由于快速反应的机制,GLP-1随着时间的推移对受体的长期刺激减少了对胃排空的影响 [20] 。体重减轻的程度取决于所使用的GLP-1 RA和剂量。到目前为止,还没有确定对减肥的长期反应的具体预测因素。

3.2. GLP-1 RAs对肝细胞裂解的影响

肝细胞裂解标志物(天冬氨酸氨基转移酶,AST,最重要的是丙氨酸氨基转移酶,ALT)代表了NAFLD患者潜在肝脏炎症。事实上,患有NAFLD和肝细胞裂解酶升高的患者患NASH和进展为肝硬化的风险增加 [21] 。同时,降低NAFLD进展风险的治疗都与肝细胞溶解的显著减少有关 [21] [22] [23] 。在患有NAFLD的超重或肥胖患者中,体重减轻 ≥ 7%~10%可改善肝脏酶以及疾病的组织学分级 [24] 。值得注意的是,大约40%的基线肝酶升高的患者在治疗后达到了正常的ALT。Fan等人 [25] 比较了艾塞那肽和二甲双胍对患有NAFLD的糖尿病患者的治疗。作者表明,与二甲双胍治疗相比,艾塞那肽治疗12周可显著降低肝脏酶。

NAFLD治疗的另一个目标是减少甘油三酯在肝脏中的积聚。在这方面,GLP-1 RAs已被证明可显著改善肝脏脂肪变性。与其他降血糖药物相比,艾塞那肽显著降低了与减肥相关的肝脏甘油三酯含量和心外膜脂肪组织 [26] 。Braslov等人 [27] 强调,其他口服降糖药无法检测到艾塞那肽诱导的肝脏脂肪积聚的改善(使用脂肪肝指数FLI评估)。Vanderheiden [28] 、Petit [29] 等人通过磁共振成像证明,利拉鲁肽治疗患者的肝脏和皮下脂肪显著减少。

3.3. GLP-1 RAs对肝纤维化的影响

肝纤维化是NASH患者临床结果的主要决定因素 [30] 。特别是,约15%的糖尿病患者可检测到临床相关的纤维化 [31] 。NAFLD的治疗必须能够影响肝纤维化,旨在降低死亡率、肝移植和肝脏相关事件。到目前为止,很少有研究评估GLP-1 RAs对NAFLD相关肝纤维化的疗效 [32] 。此外,大多数数据是从纤维化的间接标志物中获得的,如APRI (AST与血小板计数比指数)、NFS (NAFLD纤维化评分)、FIB-4 (基于4个因素的纤维化指数)或肝硬度评估(LSM)。Tan等人 [33] 发现,与使用其他降糖药物治疗的患者相比,使用利拉鲁肽治疗的糖尿病患者在12个月的随访后,NFS、FIB-4和LSM显著降低。

4. GLP-1 RAs在NAFLD中的潜在作用机制

首先,内源性GLP-1和GLP-1受体激动剂可以改善肝脏胰岛素抵抗 [34] 。在肝脂肪变性的情况下,胰岛素信号通路在很大程度上是缺乏的。特别是,胰岛素信号传导的关键效应器AKT的磷酸化似乎显著降低,阻碍了胰岛素受体底物-2 (IRS-2)下游的受体后信号级联 [35] 。GLP-1配体能够促进AKT和IRS-2下游其他关键分子(PDK-1和PKC-ζ)的磷酸化 [36] 。GLP-1和GLP-1受体激动剂诱导的受体后信号级联的激活以及由此产生的胰岛素信号通路的调节将减少肝细胞甘油三酯的储存,从而改善肝脂肪变性 [36] 。关于胰岛素抵抗的机制,脂肪因子起着重要作用。其中,脂联素是一种激素,能够通过与受体结合发挥胰岛素增敏作用,并激活主要由腺苷单磷酸依赖性激酶(AMPK)和过氧化物酶体增殖物激活受体(PPAR)-α介导的受体后信号通路 [37] 。肥胖和脂肪肝患者的脂联素水平显著降低。据推测,GLP-1 RAs可增加脂联素水平,改善胰岛素抵抗程度,从而减少肝脏脂肪积聚 [38] ,并对纤维化的发展具有保护作用 [39] 。事实上,GLP-1增加了肝细胞中的环磷酸腺苷(cAMP),导致AMPK的磷酸化和脂肪生成的抑制 [40] 。然而,这些假设还需要进一步研究。事实上,无论涉及何种机制,GLP-1 RAs治疗后检测到的脂联素水平升高可能与体重减轻和炎症有关,与血糖控制改善有关 [38] 。

法尼素X受体(FXR)可能在GLP-1 RAs的抗脂肪变性机制中发挥非边缘作用。这是一种多功能受体,在进食状态反应中发挥关键作用,能够调节葡萄糖和脂质代谢、胆汁酸稳态和肝脏再生 [41] 。最近,Errafii等人 [42] 在体外脂肪变性模型(HepG2细胞)上表明,GLP-1 RAs诱导的脂肪变性的改善可以部分解释为通过直接刺激GLP-1R激活法尼素X受体/维甲酸X受体(FXR/RXR)途径,从而抑制新生脂肪生成。此外,FXR激活似乎通过增加脂肪酸氧化 [43] 和抑制PPAR-γ表达 [44] 来降低脂肪肝疾病的程度 [45] 。后者在非酒精性脂肪肝中过度表达,与肝脏脂肪变性的发展和进展直接相关 [46] 。在这方面,利拉鲁肽已被证明可减少PPAR-γ的肝脏表达,从而减少肝细胞内脂肪酸的积累,恢复生理脂质稳态 [47] [48] 。

另一种可以解释GLP-1 RAs在NAFLD中作用的保护机制是预防肝细胞凋亡的潜在作用 [49] 。事实上,肝细胞脂肪积累能够诱导内质网(ER)应激,从而导致肝细胞凋亡和肝损伤的进展。溶酶体降解和自噬的机制对于去除潜在的毒性和保护性脂肪酸以对抗内质网应激诱导的细胞死亡至关重要 [50] 。Sharma等人 [49] 证明GLP-1R刺激能够激活自噬机制,减轻内质网应激介导的细胞凋亡,减少肝细胞内脂肪酸的积累。这可能潜在地防止NAFLD中肝损伤的进展。

除了GLP-1 RAs在肝细胞中潜在的直接作用机制外,一些证据证实了这些药物在降低低级别慢性和全身炎症(代谢综合征的一个特征)方面的作用。事实上,炎症标志物,如血清C反应蛋白(CRP)、白细胞介素(IL)-6和肿瘤坏死因子(TNF)-α,在胰岛素抵抗患者中显著升高。除了改善代谢状况外,GLP-1 RA已被证明可显著降低血清CRP [51] 、IL-6 [52] 和TNF-α [51] 的水平。GLP-1 RAs治疗还能够减少脂肪组织的巨噬细胞浸润,抑制脂肪细胞中的炎症途径,同时改善胰岛素敏感性 [53] 。全身炎症状态的改善可能是降低NAFLD进展和HCC发展风险的重要辅助因子,也是GLP-1 RAs发挥心血管保护作用的关键决定因素 [54] 。此外,GLP-1 RA最近被证明可以通过影响骨骼肌代谢来改善肥胖小鼠的肌肉减少性肥胖 [55] [56] [57] 。在这些小鼠模型中,除了减肥外,索马鲁肽还可以降低肌肉内脂肪的积累,促进蛋白质的合成,增加质量和肌肉功能 [55] 。GLP-1 RAs已被证明可以通过抑制肌肉生长抑制素的表达和促进肌生成因子的表达,以及通过抗炎和抗凋亡作用来改善肌肉萎缩 [56] [57] 。GLP-1 RAs可以保证独立于体重减轻和血糖控制的额外直接益处。

5. 未来展望

GLP-1 RA已被证明可促进NASH患者的显著减肥,降低肝损伤指数和脂肪变性,诱导脂肪性肝炎的消退,并减缓纤维化的进展。然而,GLP-1受体激动剂在NASH中的潜力尚未得到充分探索。事实上,目前还没有旨在评估GLP-1 RA在减少肝纤维化方面的疗效的长期试验。目前缺乏关于GLP-1 RAs治疗对HCC发病率或复发风险的影响的具体试验。然而,目前关于GLP-1 Ras益处的现有证据使我们能够假设这类药物在NASH患者中实现纤维化的长期消退和HCC的发病率/复发率降低方面的潜在疗效。这些假设需要在专门的试验中得到验证。

由于NASH的复杂和异质的病理生理学,有人假设对不同途径的同时作用可以发挥协同作用,优化治疗结果。从这个角度来看,双重(GLP-1和GIP或GLP1和胰高血糖素)或三重(GLP-1、GIP和胰高胰素)受体激动剂 [58] [59] 的可能性是最近研究的问题。葡萄糖依赖性促胰岛素肽(GIP)通过增加脂肪组织中的胰岛素分泌、肝脏葡萄糖和甘油三酯摄取发挥作用。胰高血糖素还参与葡萄糖和脂质稳态,以及能量消耗和食物摄入的调节。特别是,它抑制肝脏合成,促进脂肪酸的β氧化 [60] ,并可能促进脂肪组织的脂解 [61] 。它还通过诱导棕色脂肪组织产热来增加能量消耗 [62] ,并减少热量摄入 [63] 。然而,胰高血糖素会抵消胰岛素的作用,促进糖异生和肝脏糖原分解 [59] 。由于这些途径的激活有时会产生相反的效果,对其中两种或多种途径的同时作用可能会产生互补和协同效应 [64] 。

越来越多的证据表明GLP-1和胰高血糖素具有双重激动作用 [65] 。胰高血糖素和GLP-1都能降低食欲,促进体重减轻;此外,胰高血糖素还会增加能量消耗。此外,在双重激动剂中,GLP-1可能对胰高血糖素的高血糖作用具有保护作用。

与GLP-1/GCG双重激动剂类似,GLP-1受体和GIP的共同激活在治疗T2DM和肥胖方面具有迷人的前景。事实上,如果GIP受体激动剂(GIP-RA)在刺激胰岛素分泌和促进外周葡萄糖摄取方面有效,单独使用它们就不会影响体重。GIP-RA能够增强GLP-1 RA作用的机制尚不清楚。双受体激动剂可以比选择性单受体激动剂更有效地抵消T2DM的两种发病机制(肥胖诱导的胰岛素抵抗和胰腺胰岛素缺乏) [66] 。

如果双受体激动剂GLP-1/GCG和GLP-1/GIP在血糖控制和减肥方面表现出协同作用,那么三重GLP-1/GCG/GIP激动剂可能会导致结果的进一步最大化。事实上,对三种关键代谢途径的协同作用可能更有效地减轻体重和治疗肥胖,促进食物摄入量(GLP-1,胰高血糖素)的减少、能量消耗(胰高血糖蛋白)的增加和外周葡萄糖摄取,并增强GLP-1诱导的体重减轻(GIP),减轻胰高血糖肽的高血糖作用。然而,到目前为止,还没有在人类身上进行的研究。

双重和三重激动剂可能在治疗T2DM和肥胖方面具有潜在疗效,但目前很少有数据表明它们在NAFLD中的作用。在这方面,Finan等人 [67] 在小鼠模型中初步显示了三重激动剂在逆转脂肪肝方面的优异疗效。这种作用明显优于单激动剂和双激动剂。迄今为止,只有一项关于多种激动剂联合治疗人类NAFLD疗效的试验可用。Nara等人 [68] 研究表明,与单一疗法相比,联合疗法显著减轻了体重,尤其是肝脏脂肪变性、炎症和纤维化,证实了GLP-1和FXR激动剂在NASH治疗中的互补或协同作用。

6. 结论

GLP-1受体激动剂已被证明能有效降低体重、肝损伤指数和肝脏脂肪含量。一些证据还表明,这些药物能够在不可忽视的NASH患者中促进脂肪性肝炎的消退,并减少肝纤维化的进展。目前没有证据表明GLP-1 RAs在改善NAFLD患者先前存在的肝纤维化方面的疗效。然而,GLP-1 RA长期治疗后的数据尚不可用。双重和三重激动剂有望带来额外的益处,但还需要具体的人体临床试验。

参考文献

参考文献

[1] Riazi, K., Azhari, H., Charette, J.H., et al. (2022) The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 7, 851-861.
https://doi.org/10.1016/S2468-1253(22)00165-0
[2] Burra, P., Bizzaro, D., Gonta, A., et al. (2021) Clinical Im-pact of Sexual Dimorphism in Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH). Liver International: Official Journal of the International Association for the Study of the Liver, 41, 1713-1733.
https://doi.org/10.1111/liv.14943
[3] Tanase, D.M., Gosav, E.M., Costea, C.F., et al. (2020) The Intricate Rela-tionship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). Journal of Diabetes Research, 2020, Article ID: 3920196.
https://doi.org/10.1155/2020/3920196
[4] Dresner, A., Laurent, D., Marcucci, M., et al. (1999) Effects of Free Fatty Acids on Glucose Transport and IRS-1-Associated Phosphatidylinositol 3-Kinase Activity. The Journal of Clinical Investigation, 103, 253-259.
https://doi.org/10.1172/JCI5001
[5] Drucker, D.J. (2018) Mechanisms of Action and Therapeutic Application of Glucagon-Like Peptide-1. Cell Metabolism, 27, 740-756.
https://doi.org/10.1016/j.cmet.2018.03.001
[6] Davies, M.J., Aroda, V.R., Collins, B.S., et al. (2022) Management of Hyperglycaemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 65, 1925-1966.
https://doi.org/10.1007/s00125-022-05787-2
[7] Zhang, Y.F., Jiang, L., Wang, J.H., et al. (2022) Network Meta-Analysis on the Effects of Finerenone versus SGLT2 Inhibitors and GLP-1 Receptor Ago-nists on Cardiovascular and Renal Outcomes in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease. Cardiovascular Diabetology, 21, Article No. 232.
https://doi.org/10.1186/s12933-022-01676-5
[8] Jensterle, M., Rizzo, M., Haluzík, M., et al. (2022) Efficacy of GLP-1 RA Approved for Weight Management in Patients with or without Diabetes: A Narrative Review. Advances in Therapy, 39, 2452-2467.
https://doi.org/10.1007/s12325-022-02153-x
[9] Del Prato, S., Gallwitz, B., Holst, J.J., et al. (2021) The In-cretin/Glucagon System as a Target for Pharmacotherapy of Obesity. Obesity Reviews: An Official Journal of the Interna-tional Association for the Study of Obesity, 23, e13372.
https://doi.org/10.1111/obr.13372
[10] Campbell, J.E. and Drucker, D.J. (2013) Pharmacology, Physiology, and Mechanisms of Incretin Hormone Action. Cell Metabolism, 17, 819-837.
https://doi.org/10.1016/j.cmet.2013.04.008
[11] Rajeev, S.P. and Wilding, J. (2016) GLP-1 as a Target for Thera-peutic Intervention. Current Opinion in Pharmacology, 31, 44-49.
https://doi.org/10.1016/j.coph.2016.08.005
[12] Salvatore, T., Nevola, R., Pafundi, P.C., et al. (2019) Incretin Hormones: The Link between Glycemic Index and Cardiometabolic Diseases. Nutrients, 11, Article No. 1878.
https://doi.org/10.3390/nu11081878
[13] Blundell, J., Finlayson, G., Axelsen, M., et al. (2017) Effects of Once-Weekly Semaglutide on Appetite, Energy Intake, Control of Eating, Food Preference and Body Weight in Subjects with Obesity. Diabetes, Obesity & Metabolism, 19, 1242-1251.
https://doi.org/10.1111/dom.12932
[14] Rubino, D.M., Greenway, F.L., Khalid, U., et al. (2022) Effect of Weekly Subcutaneous Semaglutide vs Daily Liraglutide on Body Weight in Adults with Overweight or Obesity without Diabetes: The STEP 8 Randomized Clinical Trial. JAMA, 327, 138-150.
https://doi.org/10.1001/jama.2021.23619
[15] Yan, J.H., Yao, B., Kuang, H.Y., et al. (2019) Lirag-lutide, Sitagliptin, and Insulin Glargine Added to Metformin: The Effect on Body Weight and Intrahepatic Lipid in Pa-tients with Type 2 Diabetes Mellitus and Nonalcoholic Fatty Liver Disease. Hepatology, 69, 2414-2426.
https://doi.org/10.1002/hep.30320
[16] Van Bloemendaal, L., Veltman, D.J., Ten Kulve, J.S., et al. (2015) Brain Reward-System Activation in Response to Anticipation and Consumption of Palatable Food Is Altered by Glucagon-Like Peptide-1 Receptor Activation in Humans. Diabetes, Obesity & Metabolism, 17, 878-886.
https://doi.org/10.1111/dom.12506
[17] Nonogaki, K. and Kaji, T. (2018) Liraglutide, a GLP-1 Receptor Agonist, Which Decreases Hypothalamic 5-HT2A Receptor Expression, Reduces Appetite and Body Weight Independently of Serotonin Synthesis in Mice. Journal of Diabetes Research, 2018, Article ID: 6482958.
https://doi.org/10.1155/2018/6482958
[18] Nonogaki, K. and Kaji, T. (2016) The Acute Anorexic Effect of Lirag-lutide, a GLP-1 Receptor Agonist, Does Not Require Functional Leptin Receptor, Serotonin, and Hypothalamic POMC and CART Activities in Mice. Diabetes Research and Clinical Practice, 120, 186-189.
https://doi.org/10.1016/j.diabres.2016.08.009
[19] Halawi, H., Khemani, D., Eckert, D., et al. (2017) Effects of Li-raglutide on Weight, Satiation, and Gastric Functions in Obesity: A Randomised, Placebo-Controlled Pilot Trial. The Lancet Gastroenterology & Hepatology, 2, 890-899.
https://doi.org/10.1016/S2468-1253(17)30285-6
[20] Umapathysivam, M.M., Lee, M.Y., Jones, K.L., et al. (2013) Comparative Effects of Prolonged and Intermittent Stimulation of the Glucagon-Like Peptide 1 Receptor on Gastric Emptying and Glycemia. Diabetes, 63, 785-790.
https://doi.org/10.2337/db13-0893
[21] Ekstedt, M., Franzén, L.-E., Mathiesen, U.-L., et al. (2006) Long-Term Follow-Up of Patients with NAFLD and Elevated Liver Enzymes. Hepatology (Baltimore, Md.), 44, 865-873.
https://doi.org/10.1002/hep.21327
[22] Neuschwander-Tetri, B.A., Loomba, R., Sanyal, A.J., et al. (2014) Far-nesoid X Nuclear Receptor Ligand Obeticholic Acid for Non-Cirrhotic, Non-Alcoholic Steatohepatitis (FLINT): A Mul-ticentre, Randomised, Placebo-Controlled Trial. The Lancet (London, England), 385, 956-965.
https://doi.org/10.1016/S0140-6736(14)61933-4
[23] Vilar-Gomez, E., Calzadilla-Bertot, L., Friedman, S.L., et al. (2017) Serum Biomarkers Can Predict A Change in Liver Fibrosis 1 Year after Lifestyle Intervention for Biopsy-Proven NASH. Liver International: Official Journal of the International Association for the Study of the Liver, 37, 1887-1896.
https://doi.org/10.1111/liv.13480
[24] Vilar-Gomez, E., Martinez-Perez, Y., Calzadilla-Bertot, L., et al. (2015) Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroen-terology, 149, 367-378.e5.
https://doi.org/10.1053/j.gastro.2015.04.005
[25] Fan, H., Pan, Q.R., Xu, Y., et al. (2013) Exenatide Improves Type 2 Diabetes Concomitant with Non-Alcoholic Fatty Liver Disease. Arquivos Brasileiros de Endocrinologia e Metabologia, 57, 702-708.
https://doi.org/10.1590/S0004-27302013000900005
[26] Dutour, A., Abdesselam, I., Ancel, P., et al. (2016) Ex-enatide Decreases Liver Fat Content and Epicardial Adipose Tissue in Patients with Obesity and Type 2 Diabetes: A Prospective Randomized Clinical Trial Using Magnetic Resonance Imaging and Spectroscopy. Diabetes, Obesity & Me-tabolism, 18, 882-891.
https://doi.org/10.1111/dom.12680
[27] Blaslov, K., Zibar, K., Bulum, T., et al. (2013) Ef-fect of Exenatide Therapy on Hepatic Fat Quantity and Hepatic Biomarkers in Type 2 Diabetic Patients. Clinics and Re-search in Hepatology and Gastroenterology, 38, e61-e63.
https://doi.org/10.1016/j.clinre.2013.10.013
[28] Vanderheiden, A., Harrison, L.-B., Warshauer, J.-T., et al. (2016) Mechanisms of Action of Liraglutide in Patients with Type 2 Diabetes Treated with High-Dose Insulin. The Journal of Clinical Endocrinology and Metabolism, 101, 1798-1806.
https://doi.org/10.1210/jc.2015-3906
[29] Jean-Michel, P., Jean-Pierre, C., Romaric, L., et al. (2017) Effect of Li-raglutide Therapy on Liver Fat Content in Patients with Inadequately Controlled Type 2 Diabetes: The Lira-NAFLD Study. The Journal of Clinical Endocrinology & Metabolism, 102, 407-415.
[30] Angulo, P., Kleiner, D.E., Dam-Larsen, S., et al. (2015) Liver Fibrosis, but No Other Histologic Features, Is Associated with Long-Term Outcomes of Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology, 149, 389-397.e10.
https://doi.org/10.1053/j.gastro.2015.04.043
[31] Romina, L., Eddison-Godinez, L., Fernando, B., et al. (2020) Advanced Liver Fibrosis Is Common in Patients with Type 2 Diabetes Followed in the Outpatient Setting: The Need for Systematic Screening. Diabetes Care, 44, 399-406.
https://doi.org/10.2337/dc20-1997
[32] Newsome, P.-N., Buchholtz, K., Cusi, K., et al. (2020) A Place-bo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. The New England Journal of Medicine, 42, 1113-1124.
https://doi.org/10.1056/NEJMoa2028395
[33] Tan, Y.J., Zhen, Q., Ding, X.Y., et al. (2022) Association between Use of Liraglutide and Liver Fibrosis in Patients with Type 2 Diabetes. Frontiers in Endocrinology, 2022, Article ID: 935180.
https://doi.org/10.3389/fendo.2022.935180
[34] Mells, J.-E., Fu, P.-P., Sharma, S., et al. (2011) Glp-1 Analog, Liraglutide, Ameliorates Hepatic Steatosis and Cardiac Hypertrophy in C57BL/6J Mice Fed a Western Diet. American Journal of Physiology. Gastrointestinal and Liver Physiology, 302, G225-G235.
https://doi.org/10.1152/ajpgi.00274.2011
[35] Piro, S., Spadaro, L., Russello, M., et al. (2007) Molecular Deter-minants of Insulin Resistance, Cell Apoptosis and Lipid Accumulation in Non-Alcoholic Steatohepatitis. Nutrition, Me-tabolism, and Cardiovascular Diseases: NMCD, 18, 545-552.
https://doi.org/10.1016/j.numecd.2007.08.002
[36] Gupta, N.-A., Mells, J., Dunham, R.-M., et al. (2010) Gluca-gon-Like Peptide-1 Receptor Is Present on Human Hepatocytes and Has a Direct Role in Decreasing Hepatic Steatosis in Vitro by Modulating Elements of the Insulin Signaling Pathway. Hepatology (Baltimore, Md.), 51, 1584-1592.
https://doi.org/10.1002/hep.23569
[37] Yadav, A., Kataria, M.-A., Saini, V., et al. (2012) Role of Leptin and Adi-ponectin in Insulin Resistance. Clinica Chimica Acta, 417, 80-84.
https://doi.org/10.1016/j.cca.2012.12.007
[38] Savvidou, S., Karatzidou, K., Tsakiri, K., et al. (2016) Circulating Adiponectin Levels in Type 2 Diabetes Mellitus Patients with or without Non-Alcoholic Fatty Liver Disease: Results of a Small, Open-Label, Randomized Controlled Intervention Trial in a Subgroup Receiving Short-Term Exenatide. Diabetes Research and Clinical Practice, 113, 125-134.
https://doi.org/10.1016/j.diabres.2015.12.003
[39] Handy, J.-A., Fu, P.-P., Kumar, P., et al. (2011) Adiponectin Inhibits Leptin Signalling via Multiple Mechanisms to Exert Protective Effects against Hepatic Fibrosis. The Biochemical Journal, 440, 385-395.
https://doi.org/10.1042/BJ20102148
[40] Ben-Shlomo, S., Zvibel, I., Shnell, M., et al. (2010) Glucagon-Like Pep-tide-1 Reduces Hepatic Lipogenesis via Activation of AMP-Activated Protein Kinase. Journal of Hepatology, 54, 1214-1223.
https://doi.org/10.1016/j.jhep.2010.09.032
[41] Panzitt, K. and Wagner, M. (2021) FXR in Liver Physiology: Mul-tiple Faces to Regulate Liver Metabolism. Biochimica et Biophysica Acta, 1867, Article ID: 166133.
https://doi.org/10.1016/j.bbadis.2021.166133
[42] Errafii, K., Khalifa, O., Al-akl, N.S., et al. (2022) Comparative Transcriptome Analysis Reveals That Exendin-4 Improves Steatosis in HepG2 Cells by Modulating Signaling Pathways Related to Lipid Metabolism. Biomedicines, 10, Article No. 1020.
https://doi.org/10.3390/biomedicines10051020
[43] Gao, Q., Jia, Y.Z., Yang, G.S., et al. (2015) PPARα-Deficient ob/ob Obese Mice Become More Obese and Manifest Severe Hepatic Steatosis Due to Decreased Fatty Acid Oxidation. The American Journal of Pathology, 185, 1396-1408.
https://doi.org/10.1016/j.ajpath.2015.01.018
[44] Jadhav, K., Xu, Y., Xu, Y.Y., et al. (2018) Reversal of Metabolic Disorders by Pharmacological Activation of Bile Acid Receptors TGR5 and FXR. Molecular Metabolism, 9, 131-140.
https://doi.org/10.1016/j.molmet.2018.01.005
[45] Ma, Y.J., Huang, Y.X., Yan, L.N., et al. (2013) Synthetic FXR Agonist GW4064 Prevents Diet-Induced Hepatic Steatosis and Insulin Resistance. Pharmaceutical Research, 30, 1447-1457.
https://doi.org/10.1007/s11095-013-0986-7
[46] Pettinelli, P. and Videla, L.A. (2011) Up-Regulation of PPAR-Gamma mRNA Expression in the Liver of Obese Patients: An Additional Reinforcing Lipogenic Mechanism to SREBP-1c Induction. The Journal of Clinical Endocrinology and Metabolism, 96, 1424-1430.
https://doi.org/10.1210/jc.2010-2129
[47] Decara, J., Arrabal, S., Beiroa, D., et al. (2016) Antiobesity Efficacy of GLP-1 Receptor Agonist Liraglutide Is Associated with Peripheral Tissue-Specific Modulation of Lipid Metabolic Regu-lators. Biofactors (Oxford, England), 42, 600-611.
https://doi.org/10.1002/biof.1295
[48] Seo, M.-H., Lee, J., Hong, S.-W., et al. (2016) Exendin-4 Inhibits Hepatic Lipogenesis by Increasing β-Catenin Signaling. PLOS ONE, 11, e0166913.
https://doi.org/10.1371/journal.pone.0166913
[49] Sharma, S., Mells, J.E., Fu, P.P., et al. (2011) GLP-1 Analogs Reduce Hepatocyte Steatosis and Improve Survival by Enhancing the Unfolded Protein Response and Promoting Macroautophagy. PLOS ONE, 6, e25269.
https://doi.org/10.1371/journal.pone.0025269
[50] Rahman, K., Liu, Y.S., Kumar, P., et al. (2016) C/EBP Homol-ogous Protein Modulates Liraglutide-Mediated Attenuation of Non-Alcoholic Steatohepatitis. Laboratory Investigation: A Journal of Technical Methods and Pathology, 96, 895-908.
https://doi.org/10.1038/labinvest.2016.61
[51] Derosa, G., Franzetti, I.-G., Querci, F., et al. (2012) Exenatide plus Metformin Compared with Metformin Alone on β-Cell Func-tion in Patients with Type 2 Diabetes. Diabetic Medicine, 29, 1515-1523.
https://doi.org/10.1111/j.1464-5491.2012.03699.x
[52] Wei, H., Bu, R., Yang, Q.H., et al. (2019) Exendin-4 Pro-tects against Hyperglycemia-Induced Cardiomyocyte Pyroptosis via the AMPK-TXNIP Pathway. Journal of Diabetes Research, 2019, Article ID: 8905917.
https://doi.org/10.1155/2019/8905917
[53] Lee, Y.-S., Park, M.-S., Choung, J.-S., et al. (2012) Glucagon-Like Peptide-1 Inhibits Adipose Tissue Macrophage Infiltration and Inflammation in an Obese Mouse Model of Diabetes. Di-abetologia, 55, 2456-2468.
https://doi.org/10.1007/s00125-012-2592-3
[54] Lee, Y.-S. and Jun, H.-S. (2016) Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control. Mediators of Inflammation, 2016, Article ID: 3094642.
https://doi.org/10.1155/2016/3094642
[55] Ren, Q.J., Chen, S.C., Chen, X., et al. (2022) An Effective Gluca-gon-Like Peptide-1 Receptor Agonists, Semaglutide, Improves Sarcopenic Obesity in Obese Mice by Modulating Skele-tal Muscle Metabolism. Drug Design, Development and Therapy, 16, 3723-3735.
https://doi.org/10.2147/DDDT.S381546
[56] Hong, Y., Lee, J.H., Jeong, K.W., et al. (2019) Amelioration of Muscle Wasting by Glucagon-Like Peptide-1 Receptor Agonist in Muscle Atrophy. Journal of Cachexia, Sarcopenia and Muscle, 10, 903-918.
https://doi.org/10.1002/jcsm.12434
[57] Kamiya, M., Mizoguchi, F. and Yasuda, S. (2022) Amelioration of In-flammatory Myopathies by Glucagon-Like Peptide-1 Receptor Agonist via Suppressing Muscle Fibre Necroptosis. Journal of Cachexia, Sarcopenia and Muscle, 13, 2118-2131.
https://doi.org/10.1002/jcsm.13025
[58] Gallwitz, B. (2022) Clinical Perspectives on the Use of the GIP/GLP-1 Receptor Agonist Tirzepatide for the Treatment of Type-2 Di-abetes and Obesity. Frontiers in Endocrinology, 13, Article ID: 1004044.
https://doi.org/10.3389/fendo.2022.1004044
[59] Capozzi, M.E., Dimarchi, R.D., Tschöp, M.H., et al. (2018) Tar-geting the Incretin/Glucagon System with Triagonists to Treat Diabetes. Endocrine Reviews, 39, 719-738.
https://doi.org/10.1210/er.2018-00117
[60] Campbell, J.E. and Drucker, D.J. (2015) Islet α Cells and Gluca-gon—Critical Regulators of Energy Homeostasis. Nature Reviews Endocrinology, 11, 329-338.
https://doi.org/10.1038/nrendo.2015.51
[61] Galsgaard, K.D., Pedersen, J., Knop, F.K., et al. (2019) Glucagon Receptor Signaling and Lipid Metabolism. Frontiers in Physiology, 10, Article No. 413.
https://doi.org/10.3389/fphys.2019.00413
[62] Tan, T.-M., Field, B.C.T., Mccullough, K.A., et al. (2012) Coad-ministration of Glucagon-Like Peptide-1 during Glucagon Infusion in Humans Results in Increased Energy Expenditure and Amelioration of Hyperglycemia. Diabetes, 62, 1131-1138.
https://doi.org/10.2337/db12-0797
[63] Parker, J.A., Mccullough, K.A., Field, B.C.T., et al. (2013) Glucagon and GLP-1 Inhibit Food Intake and Increase c-fos Expression in Similar Appetite Regulating Centres in the Brainstem and Amygdala. International Journal of Obesity, 37, 1391-1398.
https://doi.org/10.1038/ijo.2012.227
[64] Sánchez-Garrido, M.A., Brandt, S.J., Clemmensen, C., et al. (2017) GLP-1/Glucagon Receptor Co-Agonism for Treatment of Obesity. Diabetologia, 60, 1851-1861.
https://doi.org/10.1007/s00125-017-4354-8
[65] Elvert, R., Herling, A.W., Bossart, M., et al. (2018) Running on Mixed Fuel-Dual Agonistic Approach of GLP-1 and GCG Receptors Leads to Beneficial Impact on Body Weight and Blood Glucose Control: A Comparative Study between Mice and Non-Human Primates. Diabetes, Obesity and Metabo-lism, 20, 1836-1851.
https://doi.org/10.1111/dom.13212
[66] Finan, B., Ma, T., Ottaway, N., et al. (2013) Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans. Science Translational Medicine, 5, 209ra151.
https://doi.org/10.1126/scitranslmed.3007218
[67] Finan, B., Yang, B., Ottaway, N., et al. (2014) A Rationally Designed Monomeric Peptide Triagonist Corrects Obesity and Diabetes in Rodents. Nature Medicine, 21, 27-36.
https://doi.org/10.1038/nm.3761
[68] Nahra, R., Wang, T., Gadde, K.M., et al. (2022) Erratum. Effects of Cotadu-tide on Metabolic and Hepatic Parameters in Adults with Overweight or Obesity and Type 2 Diabetes: A 54-Week Ran-domized Phase 2b Study. Diabetes Care 2021; 44: 1433-1442. Diabetes Care, 45, 3112.
https://doi.org/10.2337/dc22-er12