ORMDL3在肥胖条件下对呼吸系统的影响及机制探讨
The Effect and Mechanism of ORMDL3 on the Respiratory System under Obese Conditions
DOI: 10.12677/ACM.2023.1361418, PDF, HTML, XML, 下载: 182  浏览: 404  科研立项经费支持
作者: 宋启君:山东第一医科大学研究生院,山东 济南;山东第一医科大学附属省立医院儿科,山东 济南;孙 妍*:山东第一医科大学附属省立医院儿科,山东 济南
关键词: ORMDL3肥胖呼吸系统凋亡鞘脂ORMDL3 Obesity Respiratory System Apoptosis Sphingolipids
摘要: 血清类黏蛋白1样蛋白3 (Orosomucoid 1-like protein 3, ORMDL3)是ORM家族蛋白的一种,ORM家族存在3中同源蛋白——ORMDL1、ORMDL2、ORMDL3。ORMDL3作为锚定在内质网中的跨膜蛋白,具有调节钙离子稳态、调控未折叠蛋白反应与内质网应激的作用。ORMDL3在全基因组关联研究中被确定为哮喘相关蛋白与肥胖相关蛋白,存在调控细胞铁死亡、自噬、凋亡作用。目前ORMDL3的相关研究表明其存在调节鞘脂代谢的功能,在肥胖条件下对呼吸功能产生一定的影响。本文对ORMDL3在肥胖条件下对呼吸系统的影响及机制进行探讨。
Abstract: Orosomucoid 1-like protein 3 (ORMDL3) is one of the ORM family proteins, and there are three ho-mologous proteins in the ORM family—ORMDL1, ORMDL2, and ORMDL3. As a transmembrane pro-tein anchored in the endoplasmic reticulum, ORMDL3 has the functions of regulating calcium ion homeostasis, regulating unfolded protein response and endoplasmic reticulum stress. ORMDL3 is identified as an asthma-associated protein and an obesity-associated protein in genome-wide asso-ciation studies, and plays a role in regulating cell ferroptosis, autophagy, and apoptosis. Current re-search has shown that ORMDL3 also has the function of regulating sphingolipid metabolism, and ef-fects on respiratory function under obese conditions. Here we discuss the influence and mecha-nisms of ORMDL3 on the respiratory system under obesity.
文章引用:宋启君, 孙妍. ORMDL3在肥胖条件下对呼吸系统的影响及机制探讨[J]. 临床医学进展, 2023, 13(6): 10136-10141. https://doi.org/10.12677/ACM.2023.1361418

1. 引言

ORMDL3是一种锚定在内质网中的跨膜蛋白,编码基因位于17q21染色体区。ORMDL3在2002年由Hjelmqvist等人首次报道,2007年Moffatt等人通过全基因组关联研究确定ORMDL3为哮喘相关研究。随着近年的研究发现,ORMDL3除与哮喘密切相关外,还与炎症性疾病、阿尔茨海默症、动脉粥样硬化等疾病相关,其机制涉及内质网应激、自噬、铁死亡等 [1] [2] [3] 。ORMDL3既与鞘脂的代谢密切相关,又参与呼吸系统相关疾病的发生,同时在机体肥胖状态下组织炎症的调控中发挥作用,其生物学功能较为复杂。因此本文对ORMDL3在肥胖条件下对呼吸系统的影响及机制进行探讨。

2. ORMDL3概述

ORMDL3基因属于ORM基因家族,该家族包括三个进化保守的基因(ORMDL1, ORMDL2, ORMDL3)。该基因在酵母、微孢子虫中的同系物,植物、果蝇、尾索动物和脊椎动物均有表达。人类ORM家族基因在成人和胎儿组织中普遍表达。ORMDL3位于17q21染色体区,在心脏、脑、胎盘、肾脏、肺、胰腺、骨骼肌均有表达 [4] 。

ORM家族的3个基因具有高度的同源性,三个ORM家族基因编码的蛋白均由153个氨基酸构成,不同亚型的蛋白仅存在序列的不同,具有约80%的氨基酸同源性 [4] 。ORMDL3编码蛋白质锚定于内质网上。因此,ORMDL3可调节内质网上的肌浆–内质网钙ATP酶(sarco/endoplasmic reticulum Ca2+-ATPases, SERCAs)参与内质网钙离子稳态的调控。ORMDL3蛋白在体内与丝氨酸棕榈酰转移酶(serine palmitoyltransferase, SPT)形成稳定的复合物,以此调节体内的鞘脂合成 [5] 。同时,ORMDL3通过调控内质网应激的经典通路如PERK (PKR-like ER kinase)-ATF4 (Activating transcription factor 4)、ATF6 (Activating transcription factor 6)等,参与细胞的自噬、铁死亡等 [2] [6] 。

Yankun Shao等人的研究发现,在阿尔茨海默病患者的血清样本中,ORMDL3 mRNA表达上升,且表达水平与其病情严重程度正相关 [2] 。在阿尔茨海默病的小鼠模型中则进一步印证了ORMDL3通过PERK-ATF4-HSPA5 (heat shock 70 kDa protein 5)通路参与铁死亡的调节。PERK相关通路的激活在呼吸系统炎症性疾病当中也广泛表达,并参与细胞损伤 [7] 。

3. ORMDL3对呼吸系统的影响及其机制

哮喘是一种多因素相关疾病。相关基因表达会增加哮喘发生的风险。2007年Moffatt等人将ORMDL3确定为哮喘相关基因 [8] 。Feng Guo等人发现ORMDL3可以通过调节SERCAs从而介导Ca2+通路,引发细胞发生自噬,从而促进肺泡上皮细胞损伤,并增加哮喘风险 [9] 。我们既往研究表明,ORMDL3通过调节ERK1/2/VEGF/MMP-9通路促进慢性哮喘中的血管生成,从而影响气道重建 [10] 。在巨噬细胞中,ORMDL3的高表达可以通过促进神经酰胺的表达增强炎症反应 [11] 。在肥胖哮喘的患者当中,巨噬细胞在组织中的浸润增加,这些巨噬细胞主要具有促炎表型,参与肥胖导致的组织炎症。表明巨噬细胞的浸润有可能是肥胖引起气道疾病的一种潜在机制 [12] 。

在过去的几年中,针对ORMDL3与呼吸系统的研究大多局限于哮喘相关。近年的一些研究表明,ORDML3参与呼吸道病毒感染后的抗病毒防御 [13] [14] 。在鼻病毒感染的ORMDL3过表达的细胞中,干扰素(interferons, IFN) (IFN-α, IFN-β, IFN-λ)、寡聚腺苷酸合成酶(oligo-adenylate synthetase, OAS)和RNAse L等表达明显增加,鼻病毒的病毒载量较正常细胞减少 [15] 。这表明ORMDL3可能存在对于免疫系统的特殊调节机制,目前尚未明确。

4. ORMDL3在肥胖相关疾病中的影响及其机制

ORMDL3的表达与其上游的启动因子转录因子环AMP反应结合蛋白(cyclic AMP response-binding protein, CREB)密切相关 [16] 。Young-Sil Yoon等人研究发现,在高脂喂养的肥胖小鼠中,CREB上游的负调节因子丝氨酸/苏氨酸蛋白激酶(serine/threonine-protein kinase, SIK2)表达明显降低,CREB的表达升高 [17] 。CREB过表达启动ORMDL3的转录 [16] 。这表明在肥胖条件下,机体ORMDL3受到SIK2-CREB通路的激活发挥作用,参与机体鞘脂的调节与组织炎症的调控。

ORMDL3可在人体中调节鞘脂代谢 [18] 。丝氨酸棕榈酰转移酶可以与ORMDL3形成稳定的复合物,在酵母中ORM家族蛋白的主要的鞘脂调节机制是由特定残基上的Orm蛋白磷酸化介导的 [19] ,与哺乳动物中作用机制不同。既往认为ORMDL3是SPT的负调节因子,蛋白增加将进一步抑制从头鞘脂生物合成,然而后续研究发现,ORMDL3表达水平对丝氨酸棕榈酰转移酶的活性没有影响 [5] ,单纯的ORMDL3表达升高不会抑制鞘脂合成,只有当外部SPT 水平升高时,才能观察到ORMDL3表达增加抑制从头鞘脂生物合成。ORMDL3与SPT的关联水平在高鞘脂和低鞘脂条件下是相同的 [20] ,因此我们推测ORMDL3参与鞘脂调节的机制与ORMDL-SPT复合物有关。在酵母菌中ORMDL3可以通过磷酸化响应鞘脂调节,在人体中ORMDL3缺少相应的磷酸化点位。结合以下研究,神经酰胺可以通过反馈调节抑制ORMDL3-SPT介导的鞘脂合成,且神经酰胺抑制仅需要膜结合元件,而不涉及可扩散的蛋白质或小分子 [21] 。因此ORMDL-SPT复合物的构象改变可能是ORMDL3调节鞘脂合成的关键。另外,Clement Oyeniran等人研究发现A549细胞ORMDL3过表达会增加神经酰胺表达,表明在神经酰胺的调节上ORMDL3可能存在其他特殊机制 [11] 。

5. ORMDL3在肥胖条件下对呼吸系统的影响及机制

肥胖作为全球流行性疾病,是哮喘、阻塞性睡眠呼吸暂停、肥胖低通气综合征(Obesity hypoventilation syndrome, OHS)和肺动脉高压的重要危险因素 [22] 。肥胖对于心血管系统、肝代谢等有重要影响。严重肥胖可引起睡眠呼吸障碍、肥胖低通气综合征,加重哮喘和肺部炎症,长期低氧血症和高碳酸血症导致呼吸衰竭、心功能不全等严重疾病。

研究表明,肥胖患者FEV1、FVC值更高,且FEV1/FVC比率降低,且其他肺容积如TLC、RV和FRC均在肥胖人群降低 [23] 。肥胖低通气综合征(Obesity hypoventilation syndrome, OHS)是一种因肥胖导致的肺泡通气不足引发的疾病,表现为肥胖、高碳酸血症、睡眠呼吸障碍。肥胖低通气综合征的患者主要发病机制为肺泡通气量不足,而肥胖通气量不足可能是由呼吸系统机械特性改变和上皮细胞损伤引起。

肥胖引起的脂肪沉积会导致呼吸系统发生机械特性改变,降低胸壁顺应性。除机械因素外,肥胖会增加呼吸道高反应性,这一作用可能是通过细胞炎症介导的细胞损伤引起的 [24] 。肥胖状态下,促炎性巨噬细胞、肥大细胞显著增加。患有哮喘的肥胖个体中,巨噬细胞对皮下脂肪组织和内脏脂肪组织的浸润增加 [12] 。同时肥胖会增加体内促炎性脂肪因子 [25] ,引发气道炎症甚至全身炎症。总之,细胞炎性损伤加重气道炎症,有可能是肥胖导致的肺功能改变的原因之一。

目前已有研究表明,ORMDL3可通过调控SERCAs从而影响内质网钙离子稳态,并调节未折叠蛋白反应(unfolded protein response, UPR) [26] 。在肥胖机体中ORMDL会引起脂质代谢异常,而脂质代谢的异常会导致SERCAs功能障碍从而引发内质网钙离子稳态改变 [27] 。钙离子稳态的改变会进一步引发内质网应激。内质网是分泌性蛋白与膜蛋白合成加工的场所,只有正确折叠和修饰的蛋白才能正常的发挥其生理功能。内质网应激是细胞的一种重要自我防御机制,在外界各种不良刺激的影响下,内质网上大量的未折叠蛋白堆积,促使内质网功能紊乱。ORMDL3调节的未折叠蛋白反应同样可以促使内质网应激发生,从而进一步引起细胞损伤。肥胖会导致CREB-ORMDL3过表达会进一步加重未折叠蛋白的堆积,从而引发内质网应激 [15] 。

UPR所导致的内质网应激通常由3种内质网应激感受蛋白介导:需肌醇酶1 (Inositol-requiring protein 1, IRE1)、蛋白激酶样内质网激酶(PKR-like ER kinase, PERK)、转录激活因子6 (Activating transcription factor 6, ATF6)。这三种蛋白在哺乳动物中均普遍表达。IRE1被激活后会切割Unspliced XBP1 mRNA,合成转录激活因子XBP1s,通过诱导蛋白降解相关基因转录来缓解内质网应激。PERK则是通过二聚化、磷酸化,导致底物eIF2a聚集,使其磷酸化。elF2a磷酸化可以上调ATF4表达,ATF4调节基因编码蛋白转录,同时激活C/EBP同源蛋白(C/EBP homologous, CHOP)。长期的PERK通路激活可以促使CHOP聚集从而导致细胞死亡。ATF6则是通过细胞质的效应物参与内质网应激调节。ORMDL3通过调节UPR,激活下游IRE-1、PERK、ATF6蛋白,这些蛋白通过调控凋亡、焦亡、自噬、铁死亡相关蛋白,调控细胞损伤。Jia Li等人发现,ORMDL3过表达上调ATF6、Beclin1、LC3βII,ATF6是UPR激活内质网应激的关键蛋白,Beclin1、LC3βII是细胞自噬的关键因子 [6] 。C/EBP同源蛋白(CHOP)的基因启动子内含有UPR相关蛋白的结合位点,包括ATF4、ATF6及XBP1等。ORMDL3也可特异性激活ATF6 [28] ,通过ATF6通路与PERK-ATF4通路引起凋亡相关蛋白CHOP的堆积,最终激活caspase-3引发细胞凋亡。

6. 结语

尽管在内质网应激、内质网钙离子调节、脂质代谢等方面已经明确了部分机制,ORMDL3调控疾病发生发展的具体机制仍待阐明。肥胖会导致呼吸系统功能改变,尤其是导致呼吸系统整体顺应性降低,这是由胸廓的机械运动改变和肺泡的细胞损伤改变造成的。ORMDL3在肥胖条件下对机体的调节很可能与鞘脂的代谢密不可分,肥胖条件下呼吸系统的炎性因子调节、内质网应激、铁死亡等发病机制仍需我们进一步发掘。探索ORMDL3在肥胖条件下呼吸系统影响及机制,为肥胖相关并发症的治疗提供了潜在靶点。

基金项目

本研究得到了山东省自然科学基金(批准号:ZR2020MH003)的资助。

NOTES

*通讯作者。

参考文献

[1] Ma, X., Long, F., Yun, Y., Dang, J., Wei, S., Zhang, Q., Li, J., Zhang, H., Zhang, W., Wang, Z., Liu, Q. and Zou, C. (2018) ORMDL3 and Its Implication in Inflammatory Disorders. International Journal of Rheumatic Diseases, 21, 1154-1162.
https://doi.org/10.1111/1756-185X.13324
[2] Shao, Y., Xu, Y., Di, H., Shi, X., Wang, Y., Liu, H. and Song, L. (2023) The Inhibition of ORMDL3 Prevents Alzheimer’s Disease through Ferroptosis by PERK/ATF4/HSPA5 Pathway. IET Nanobiotechnology, 17, 182-196.
https://doi.org/10.1049/nbt2.12113
[3] Sun, Y., Guan, X., Zhang, T., Li, Y., Shi, H., Chitakunye, A.T., Hong, H., Zhang, S., Zhu, Q. and Cai, L. (2022) Regulation of the Sensitivity of Hepatocarcinoma Cells by ORMDL3, to Sorafenib by Autophagy. Medical Oncology, 39, Article No. 159.
https://doi.org/10.1007/s12032-022-01767-z
[4] Hjelmqvist, L., Tuson, M., Marfany, G., Herrero, E., Balcells, S. and Gonzàlez-Duarte, R. (2002) ORMDL Proteins Are a Conserved New Family of Endoplasmic Reticulum Membrane Proteins. Genome Biology, 3, Article No. Research 0027.1.
https://doi.org/10.1186/gb-2002-3-6-research0027
[5] Zhakupova, A., Debeuf, N., Krols, M., Toussaint, W., Vanhoutte, L., Alecu, I., Kutalik, Z., Vollenweider, P., Ernst, D., von Eckardstein, A., Lambrecht, B.N., Janssens, S. and Hornemann, T. (2016) ORMDL3 Expression Levels Have No Influence on the Activity of Serine Palmitoyltransferase. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 30, 4289-4300.
https://doi.org/10.1096/fj.201600639R
[6] Li, J., Ullah, M.A., Jin, H., Liang, Y., Lin, L., Wang, J., Peng, X., Liao, H., Li, Y., Ge, Y. and Li, L. (2021) ORMDL3 Functions as a Negative Regulator of Antigen-Mediated Mast Cell Acti-vation via an ATF6-UPR-Autophagy-Depen- dent Pathway. Frontiers in Immunology, 12, Article 604974.
https://doi.org/10.3389/fimmu.2021.604974
[7] Cui, H., Zhang, S., Wu, Z., Xu, C., Xu, D. and Jin, Z. (2022) In-sulin-Like Growth Factor-1 Reduces Hyperoxia-Induced Lung Inflammation and Oxidative Stress and Inhibits Cell Apoptosis through PERK/eIF2α/ATF4/CHOP Signaling. Experimental Lung Research, 48, 187-197.
https://doi.org/10.1080/01902148.2022.2106388
[8] Moffatt, M.F., Kabesch, M., Liang, L., Dixon, A.L., Stra-chan, D., Heath, S., Depner, M., von Berg, A., Bufe, A., Rietschel, E., Heinzmann, A., Simma, B., Frischer, T., Wil-lis-Owen, S.A., Wong, K.C., Illig, T., Vogelberg, C., Weiland, S.K., von Mutius, E., Abecasis, G.R., Farrall, M., Gut, I.G., Lathrop, G.M. and Cookson, W.O. (2007) Genetic Variants Regulating ORMDL3 Expression Contribute to the Risk of Childhood Asthma. Nature, 448, 470-473.
https://doi.org/10.1038/nature06014
[9] Guo, F., Hao, Y., Zhang, L., Croteau-Chonka, D.C., Thibault, D., Kothari, P., Li, L., Levy, B.D., Zhou, X. and Raby, B.A. (2022) Asthma Susceptibility Gene ORMDL3 Promotes Autophagy in Human Bronchial Epithelium. American Journal of Respiratory Cell and Molecular Biology, 66, 661-670.
https://doi.org/10.1165/rcmb.2021-0305OC
[10] Ding, Z., Yu, F., Sun, Y., Jiao, N., Shi, L., Wan, J. and Liu, Q. (2021) ORMDL3 Promotes Angiogenesis in Chronic Asthma through the ERK1/2/VEGF/MMP-9 Pathway. Frontiers in Pediatrics, 9, Article 708555.
https://doi.org/10.3389/fped.2021.708555
[11] Oyeniran, C., Sturgill, J.L., Hait, N.C., Huang, W.C., Avni, D., Maceyka, M., Newton, J., Allegood, J.C., Montpetit, A., Conrad, D.H., Milstien, S. and Spiegel, S. (2015) Aberrant ORM (Yeast)—Like Protein Isoform 3 (ORMDL3) Expression Dysregulates Ceramide Homeostasis in Cells and Ceramide Exacerbates Allergic Asthma in Mice. The Journal of Allergy and Clinical Immunology, 136, 1035-1046.E6.
https://doi.org/10.1016/j.jaci.2015.02.031
[12] Periyalil, H.A., Wood, L.G., Wright, T.A., Karihaloo, C., Starkey, M.R., Miu, A.S., Baines, K.J., Hansbro, P.M. and Gibson, P.G. (2018) Obese Asthmatics Are Characterized by Altered Adipose Tissue Macrophage Activation. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology, 48, 641-649.
https://doi.org/10.1111/cea.13109
[13] Wang, X.H., Shu, J., Jiang, C.M., Zhuang, L.L., Yang, W.X., Zhang, H.W., Wang, L.L., Li, L., Chen, X.Q., Jin, R. and Zhou, G.P. (2017) Mechanisms and Roles by Which IRF-3 Mediates the Regulation of ORMDL3 Transcription in Respiratory Syncytial Virus Infection. The International Journal of Biochemis-try & Cell Biology, 87, 8-17.
https://doi.org/10.1016/j.biocel.2017.03.007
[14] Song, D.J., Miller, M., Beppu, A., Rosenthal, P., Das, S., Karta, M., Vuong, C., Mehta, A.K., Croft, M. and Broide, D.H. (2017) Rhinovirus Infection of ORMDL3 Transgenic Mice Is Associated with Reduced Rhinovirus Viral Load and Airway Inflammation. Journal of Immunology, 199, 2215-2224.
https://doi.org/10.4049/jimmunol.1601412
[15] Adolph, T.E., Niederreiter, L., Blumberg, R.S. and Kaser, A. (2012) Endoplasmic Reticulum Stress and Inflammation. Digestive Diseases, 30, 341-346.
https://doi.org/10.1159/000338121
[16] Zhuang, L.L., Jin, R., Zhu, L.H., Xu, H.G., Li, Y., Gao, S., Liu, J.Y. and Zhou, G.P. (2013) Promoter Characterization and Role of cAMP/PKA/CREB in the Basal Transcription of the Mouse ORMDL3 Gene. PLOS ONE, 8, e60630.
https://doi.org/10.1371/journal.pone.0060630
[17] Yoon, Y.S., Liu, W., Van de Velde, S., Matsumura, S., Wiater, E., Huang, L. and Montminy, M. (2021) Activation of the Adipocyte CREB/CRTC Pathway in Obesity. Communica-tions Biology, 4, Article No. 1214.
https://doi.org/10.1038/s42003-021-02735-5
[18] Brown, R.D.R. and Spiegel, S. (2023) ORMDL in Metabolic Health and Disease. Pharmacology & Therapeutics, 245, Article ID: 108401.
https://doi.org/10.1016/j.pharmthera.2023.108401
[19] Gururaj, C., Federman, R.S. and Chang, A. (2013) Orm Proteins Integrate Multiple Signals to Maintain Sphingolipid Homeostasis. The Journal of Biological Chemistry, 288, 20453-20463.
https://doi.org/10.1074/jbc.M113.472860
[20] Siow, D., Sunkara, M., Dunn, T.M., Morris, A.J. and Wattenberg, B. (2015) ORMDL/Serine Palmitoyltransferase Stoichiometry Determines Effects of ORMDL3 Expres-sion on Sphingolipid Biosynthesis. Journal of Lipid Research, 56, 898-908.
https://doi.org/10.1194/jlr.M057539
[21] Siow, D.L. and Wattenberg, B.W. (2012) Mammalian ORMDL Proteins Mediate the Feedback Response in Ceramide Biosynthesis. The Journal of Biological Chemistry, 287, 40198-40204.
https://doi.org/10.1074/jbc.C112.404012
[22] Hales, C.M., Fryar, C.D., Carroll, M.D., Freedman, D.S. and Ogden, C.L. (2018) Trends in Obesity and Severe Obesity Prevalence in US Youth and Adults by Sex and Age, 2007-2008 to 2015-2016. JAMA, 319, 1723-1725.
https://doi.org/10.1001/jama.2018.3060
[23] Forno, E., Han, Y.Y., Mullen, J. and Celedón, J.C. (2018) Over-weight, Obesity, and Lung Function in Children and Adults—A Meta-Analysis. The Journal of Allergy and Clinical Immunology: In Practice, 6, 570-581.E10.
https://doi.org/10.1016/j.jaip.2017.07.010
[24] Shore, S.A. (2010) Obesity, Airway Hyperresponsiveness, and In-flammation. Journal of Applied Physiology, 108, 735-743.
https://doi.org/10.1152/japplphysiol.00749.2009
[25] Roth, C.L., Kratz, M., Ralston, M.M. and Reinehr, T. (2011) Changes in Adipose-Derived Inflammatory Cytokines and Chemokines after Successful Lifestyle Intervention in Obese Children. Metabolism: Clinical and Experimental, 60, 445-452.
https://doi.org/10.1016/j.metabol.2010.03.023
[26] Cantero-Recasens, G., Fandos, C., Rubio-Moscardo, F., Valverde, M.A. and Vicente, R. (2010) The Asthma-Associated ORMDL3 Gene Product Regulates Endoplasmic Retic-ulum-Mediated Calcium Signaling and Cellular Stress. Human Molecular Genetics, 19, 111-121.
https://doi.org/10.1093/hmg/ddp471
[27] Fu, S., Yang, L., Li, P., Hofmann, O., Dicker, L., Hide, W., Lin, X., Watkins, S.M., Ivanov, A.R. and Hotamisligil, G.S. (2011) Aberrant Lipid Metabolism Disrupts Calcium Homeostasis Causing Liver Endoplasmic Reticulum Stress in Obesity. Nature, 473, 528-531.
https://doi.org/10.1038/nature09968
[28] Bravo, R., Parra, V., Gatica, D., Rodriguez, A.E., Torrealba, N., Paredes, F., Wang, Z.V., Zorzano, A., Hill, J.A., Jaimovich, E., Quest, A.F. and Lavandero, S. (2013) Endoplasmic Reticulum and the Unfolded Protein Response: Dynamics and Metabolic Integration. International Review of Cell and Molecular Biology, 301, 215-290.
https://doi.org/10.1016/B978-0-12-407704-1.00005-1