新生儿脑血管自主调节功能
Cerebral Autoregulation in Neonates
DOI: 10.12677/ACM.2023.1371520, PDF, HTML, XML, 下载: 303  浏览: 367  科研立项经费支持
作者: 庄盈欣, 王建辉*:重庆医科大学附属儿童医院新生儿诊治中心,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿科学重庆市重点实验室,重庆
关键词: 脑血管自主调节功能新生儿早产儿新生儿缺氧缺血性脑病多巴胺动脉导管未闭手术 体外膜肺 Cerebral Vascular Autoregulation Neonates Premature Infants Neonatal Hypoxic Ischemic Encephalopathy Dopamine Patent Ductus Arteriosus Surgery Extracorporeal Membrane Oxygenation
摘要: 维持脑血流在脑灌注压变化时保持稳定的机制被称为脑血管自主调节功能,它通过脑血管的血管反应(即血管平滑肌的收缩和舒张)实现。脑血管自主调节功能有赖于成熟的心血管系统及平稳的内环境,而新生儿群体较大婴儿在各方面发育尚不完善,在多种疾病的侵袭下容易出现脑血管自主调节功能受损,进而影响神经系统发育。早期监测患病新生儿的脑血管自主调节功能,识别并干预可对其造成损伤的危险因素,或可改善患儿神经预后。本文就脑血管自主调节功能的监测方法和新生儿在常见疾病状态下脑血管自主调节功能的改变进行综述,旨在探讨脑血管自主调节功能的监测在新生儿疾病诊疗过程中的应用价值及前景,为其进一步的临床研究提供依据。
Abstract: The mechanism of maintaining stable cerebral blood flow during changes in cerebral perfusion pressure is called cerebral vascular autoregulation, which is achieved through the vascular re-sponse of cerebral blood vessels (the contraction and relaxation of vascular smooth muscles). The autonomous regulation function of cerebral blood vessels depends on a mature cardiovascular sys-tem and a stable internal environment. However, the development of the neonatal population is still incomplete in various aspects compared to older infants, which is prone to damage to the autono-mous regulation function of cerebral blood vessels under the invasion of various diseases, thereby affecting the development of the nervous system. Early monitoring of cerebrovascular autonomic regulation function of sick newborns, identification and intervention of risk factors that can cause damage to them may improve the neurological prognosis of children. This article reviews the moni-toring methods of cerebral vascular autoregulation function and the changes in cerebral vascular autoregulation function in newborns under common disease conditions, aiming to explore the ap-plication value and prospects of monitoring cerebral vascular autoregulation function in the diag-nosis and treatment of neonatal diseases, and provide a basis for further clinical research.
文章引用:庄盈欣, 王建辉. 新生儿脑血管自主调节功能[J]. 临床医学进展, 2023, 13(7): 10886-10892. https://doi.org/10.12677/ACM.2023.1371520

1. 引言

脑血管自主调节功能(cerebral vascular autoregulation, CAR)是脑灌注压(cerebral perfusion pressure, CPP)在一个较大范围内波动时,颅脑通过调节脑血管管径使脑血管阻力发生相应变化,从而使脑血流量(cerebral blood flow, CBF)维持相对恒定的过程。新生儿,尤其是早产儿,由于大脑处于发育阶段,CAR作用机制尚不成熟,一些病理因素下可导致CAR进一步受损,从而增加患儿发生神经系统并发症风险 [1] 。改善新生儿CAR以维持稳定的脑血流,对改善新生儿的近远期临床结局具有重要意义。

2. 新生儿CAR的生理机制

根据流体力学原理,脑血流取决于脑灌注压及脑血管阻力。当脑灌注压发生变化时,脑血管阻力也随之改变以维持脑血流相对稳定的能力。脑灌注压与脑血流的关系呈现“S”型曲线(如图1),其中的上拐点和下拐点分别为CAR的上限(ULA)和下限(LLA)。只有当脑灌注压处于CAR上限和下限之间时,脑血管才能对血压变化作出调节反应,即CAR处于正常状态。反之,若脑灌注压低于CAR下限或高于上限,脑血流受脑灌注压的被动影响,即CAR处于受损状态 [1] [2] 。在临床中,脑灌注压的监测较难实现,且易受外周动脉血压(arterial blood pressure, ABP)的影响,故临床医师常通过监测ABP与脑血流的关系来评估CAR。CAR上限与下限所对应的动脉血压范围,即为理想血压范围,其中CAR处于最佳状态时的动脉血压即为最佳ABP。

胎儿脑室周围白质区域的动脉血管于孕24周左右出现,至30~32周逐渐成熟。因此,足月儿脑血管发育基本成熟,而小早产儿未成熟的脑血管由于管壁较薄、缺乏神经胶质纤维和周细胞的支撑,使早产儿脑血管无法及时对血流作出有效调节,从而导致脑血流的波动。同时,早产儿血压较足月儿偏低,更易出现CAR受损,且CAR容易受心动周期的影响。研究发现,在罹患低血压的早产儿中,脑血流与舒张压和平均动脉压的相关性明显,但与收缩压相关性较弱,提示低血压的早产儿在舒张期更容易出现CAR受损。但总体而言,早产儿CAR随胎龄的增加而不断成熟 [3] 。

Figure 1. Relationship curve between cerebral blood flow and cerebral perfusion pressure

图1. 脑血流与脑灌注压的关系曲线

3. 新生儿CAR的临床监测

CAR的临床监测主要是分析脑血流随动脉血压波动的变化。目前临床上直接测量脑血流较为困难,一些检查技术,如近红外光谱(Near-infrared spectroscopy, NIRS)、经颅超声多普勒、氙CT脑血流成像、正电子发射断层扫描等均可用于脑血流的间断检测,其中,NIRS监测在新生儿病房的应用最为广泛。

NIRS是一种可对脑血流行连续、无创监测的技术。近红外光(700~1000 nm)可穿透皮肤和头骨等生物组织,经过多次弹性散射和吸收,最后反射至信号接收器上,通过Beer-Lambert定律分析,计算得出相应组织信息 [4] 。在对局部血流的评估中,含氧血红蛋白和脱氧血红蛋白以氧为示踪剂,对近红外光显示出不同的吸收光谱,故在NIRS监测下,可测算出局部区域实时含氧血红蛋白和脱氧血红蛋白,并进一步计算局部脑组织氧饱和度(regional cerebral oxygen saturation, rScO),在患儿通气、组织耗氧及血红蛋白浓度等处于相对稳定状态时,rScO2的变化可反应脑血流的变化 [5] 。

目前,新生儿临床中常通过实时监测rScO2与动脉血压值,计算两者的相关系数来评估CAR状态,其中,动脉血压值需通过有创动脉血压监测精确获得。在动脉压波动时,正常的CAR可维持脑血流的稳定,以保证大脑充分的血氧供应,此时rScO2与动脉压相关性较低。反之CAR受损时,rScO2与动脉压相关性增强,出现压力被动性rScO2,即rScO2、脑血流随血压的波动而变化。一般将rScO2与动脉压的相关系数大于0.5定义为CAR受损 [6] 。一些研究显示,通过CAR的监测有助于早期识别发生脑损伤的高危患儿,并且,CAR监测可确定患儿理想血压范围,从而指导危重新生儿的血流动力学管理,减少患儿发生近远期不良神经结局的风险 [7] 。

但是,需要认识到NIRS监测具有一定的局限性。通过近红外光谱技术,我们可以对新生儿CAR进行无创监测,但监测过程中会受到解剖区域的限制。临床及研究中,NIRS监测器常放置于头部前额或颞顶叶区域,此时就无法对早产儿及HIE患儿的易受损区,如白质区域、基底神经节、丘脑等进行精确地CAR评估。因此,额叶最佳ABP或许不能反映其他解剖区域的最佳ABP。但在缺乏临床可用的区域自主调节功能的指标情况下,确定额叶的最佳MAP是指导危重新生儿血液动力学管理的合理指标。此外新生儿头皮厚度、皮肤颜色等也可能会干扰测量结果 [1] [8] 。

4. 新生儿不同临床状态下的CAR

4.1. 早产儿

NIRS已被用于监测早产儿的CAR。新生儿颅内出血的风险和严重程度与新生儿胎龄和出生体重呈负相关。研究显示,胎龄38~43周足月儿颅内出血发病率为1%,而胎龄24~30周的早产儿发生率为50%左右 [9] 。CBF对收缩压和平均ABP的自动调节发生在妊娠23~33周,胎龄小于26周的新生儿出现压力被动CBF (即CAR受损)的风险很高。并且在妊娠33周前,新生儿CBF对舒张性ABP总体上是被动的,提示其舒张期血压较低,更易出现CAR受损 [3] 。而CAR受损增加了严重脑室出血和死亡的风险,患有IVH的婴儿通常生后有CAR受损,且受损时长与IVH出现风险呈正相关 [10] [11] 。与足月儿相比,早产儿更易出现低血压,且胎龄越低,出现低血压的风险越高。血压一旦低于最佳ABP可导致CAR受损,出现脑灌注不足 [12] [13] 。低于最佳ABP与早产儿脑室内出血和死亡显著相关,高于最佳ABP则会增加严重脑室内出血的风险 [14] 。早期发现CAR受损并将血压控制在合理范围之内可能减少新生儿出现不良神经预后的风险。

4.2. 新生儿缺氧缺血性脑病

新生儿缺氧缺血性脑病是新生儿死亡及致残的重要因素,亚低温是目前有循证支持的早期有效干预方法 [15] 。但是,亚低温治疗过程中可能存在的血流动力学异常需引起关注。Massaro团队使用NIRS对36名接受亚低温治疗患儿进行CAR监测,发现预后不良(死亡或中/重度脑病)患儿CAR受损程度更重,受损持续时间更长,且以左侧大脑半球为著 [16] 。Lee团队对接受亚低温治疗患儿通过持续监测评估CAR定义理想血压范围,结果发现患儿实测血压与理想血压的偏离与其脑部不同区域的损伤存在相关性。患儿实测血压低于理想血压的持续时间越长,偏离程度越大,其脑中央旁回和白质损伤越大。而当实测血压处于理想血压范围或轻微升高,其脑损伤较轻微 [7] 。近期Liu等的研究结果也得出类似结果 [2] 。CAR监测对新生儿缺氧缺血性脑病患儿病情发展具有一定的预测作用,亚低温治疗及复温期间,将血压维持在最佳ABP范围内与减少MRI中的脑损伤和改善患儿2年后神经发育结果有关 [7] [17] [18] 。

4.3. 临床应用多巴胺

多巴胺是新生儿科临床常用的血管活性物质,可用于升血压和改善器官灌注,但一些研究显示多巴胺的使用可能导致CAR受损。Eriksen团队对60名胎龄 < 32周的早产儿行NIRS监测,其中13名患儿接受多巴胺治疗,研究显示多巴胺的使用与CAR受损存在相关性,可能的机制为多巴胺刺激患儿脑血管α受体,使CAR-MABP曲线右移或者曲线斜率增大,使新生儿CAR对外周血压改变更加敏感,CAR更容易受损 [19] 。同期另一项研究发现对于胎龄 < 29周的早产儿,生后96 h内临床使用多巴胺进行升压治疗与CAR受损有关,且CAR受损时长在多巴胺使用剂量达到11~15 μg/kg/min时达到峰值,提示多巴胺在升血压的同时可能对脑血流存在负面影响 [20] 。

但与之相反的是,在一项探究多巴胺对低血压新生猪仔CAR影响的实验研究中,Eriksen团队给各组别低血压新生猪以不同速率的多巴胺输注,同时使用超声多普勒技术监测其脑血流变化评估CAR,发现各组别新生猪CAR从正常发展为受损时的血压无明显组间差异,提示其CAR不受多巴胺输注的影响。这与多巴胺引起颅内血管收缩,损害CAR的假设不符。且对于外周血管来说,小剂量多巴胺可以扩张血管,或许本次实验中多巴胺扩张了新生猪颅内血管,而不是收缩血管导致颅内血流减少 [21] 。综上研究者认为多巴胺或许不会对CAR产生负面影响。

4.4. 动脉导管未闭(Patent Ductus Arteriosus, PDA)

在正常足月儿,PDA多于生后1天内功能性闭合,并于数天至数周内实现解剖性闭合。而对于早产儿,由于PDA平滑肌发育不成熟及缺氧、感染等多因素的作用,可导致PDA持续开放,部分患儿可出现血流动力学异常PDA。研究证实,具有血流动力学异常PDA的早产儿rScO2值明显低于无血流动力学异常PDA的早产儿,或可增大CAR受损的风险 [22] 。Chock团队比较不同方法治疗PDA对患儿脑血流动力学的影响,发现与吲哚美辛口服及保守治疗相比,PDA结扎的新生儿在术后6小时内脑血流和脑组织氧供出现时间更长的血压被动期,提示更长时间的CAR受损 [23] 。患儿行PDA结扎后,虽然其体循环血量出现上升趋势,但在NIRS监测下可见到结扎术后一段时间的rScO2下降,可能与降主动脉舒张期血流增加相关,具体机制仍需进一步研究明确 [24] 。

4.5. 手术

对于需要在新生儿期进行心脏手术治疗的患儿,手术期间麻醉剂及心肺体外循环的使用,可导致其外周血压降低,进一步导致CAR受损。Smith等在新生儿手术过程中对72名患儿进性CAR监测,发现体外循环温度在36℃的新生儿,其平均动脉压一般维持在44 mmHg,反应CAR状态的平均动脉压与rScO2相关系数平均值为0.0 (−0.02~0.004),而体外循环温度在18℃的新生儿,平均动脉压一般维持在25 mmHg,相关系数平均值为0.5 (0.4~0.7),提示CAR受损 [25] 。在新生儿非心脏手术中,较常见的为腹部手术。Kuik团队在对19位行开腹手术的新生儿(14例新生儿坏死性小肠结肠炎和5例自发性肠穿孔)行围手术期CAR监测,发现有3名新生儿出现术前CAR受损,12名术中出现CAR受损,提示新生儿围手术期间存在普遍的血流动力学不稳定及CAR受损,可能增加脑损伤风险 [26] 。但由于新生儿腹部手术中以新生儿坏死性小肠结肠炎多见,该类患儿大多为早产儿,且伴随较重的炎症反应,本身出现CAR受损风险较高,故麻醉和手术对该类患儿CAR损伤的额外作用有待进一步研究明确 [27] [28] 。

4.6. 新生儿体外膜肺治疗

接受静脉–动脉体外膜肺治疗的新生儿,平均ABP和rScO2之间存在相关性。使用多模式近红外监测额叶、顶叶和枕叶皮层的近红外信号。发现将体外膜肺治疗的血流从100%降低到70%会导致自主调节功能失调。右顶叶皮层较左顶叶皮层出现更明显的CAR受损,这可能与置管于右侧颈总动脉和颈内静脉有关 [29] 。一项单中心回顾性研究分析153名中位数日龄为12.5天的患儿在体外膜肺治疗中行rScO2监测,发现神经结局较差的患儿出现rScO2 ≤ 50%,或比基线下降>20%的比例显著高于出院时神经结果良好的患者 [30] 。类似的,Clair等对34名小于3月龄的接受ECMO支持的婴儿行rScO2监测,发现出现脑损伤、死亡不良结局的婴儿rScO2较预后好的婴儿低,提示其或许存在CAR受损 [31] 。目前有儿童研究MABP与rScO2相关性评估其CAR,证实CAR评估在儿科ECMO中是可行的 [32] 。故后期可进一步进行大样本研究评估新生儿期颈动脉和颈静脉ECMO插管对CAR及神经预后的影响,评估血流动力学管理对该类患儿的收益。

5. 结论

住院新生儿,特别是早产儿,面临普遍的血流动力学不稳定。CAR的临床监测有助于及时发现CAR受损的患儿,并通过定义个体化的理想血压范围,实现精准的血流动力学管理,从而避免或减轻脑损伤,改善患儿神经预后。

基金项目

重庆市科卫联合医学科研项目(2022MSXM137);重庆医科大学未来医学青年创新团队发展支持计划(WO134)。

NOTES

*通讯作者。

参考文献

[1] Rhee, C.J., et al. (2018) Neonatal Cerebrovascular Autoregulation. Pediatric Research, 84, 602-610.
https://doi.org/10.1038/s41390-018-0141-6
[2] Liu, X., et al. (2021) Wavelet Autoregulation Monitoring Identi-fies Blood Pressures Associated with Brain Injury in Neonatal Hypoxic-Ischemic Encephalopathy. Frontiers in Neurol-ogy, 28, Article 662839.
https://doi.org/10.3389/fneur.2021.662839
[3] Rhee, C.J., et al. (2014) The Ontogeny of Cerebrovascular Pres-sure Autoregulation in Premature Infants. Journal of Perinatology, 34, 926-931.
https://doi.org/10.1038/jp.2014.122
[4] Jöbsis, F.F. (1977) Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters. Science, 198, 1264-1267.
https://doi.org/10.1126/science.929199
[5] Scholkmann, F., et al. (2014) A Review on Continuous Wave Func-tional Near-Infrared Spectroscopy and Imaging Instrumentation and Methodology. Neuroimage, 85, 6-27.
https://doi.org/10.1016/j.neuroimage.2013.05.004
[6] Kooi, E.M.W., et al. (2017) Measuring Cerebrovascular Autoregulation in Preterm Infants Using Near-Infrared Spectroscopy: An Overview of the Literature. Expert Review of Neurotherapeutics, 17, 801-818.
https://doi.org/10.1080/14737175.2017.1346472
[7] Lee, J.K., et al. (2017) Optimizing Cerebral Autoregulation May Decrease Neonatal Regional Hypoxic-Ischemic Brain Injury. Developmental Neuroscience, 39, 248-256.
https://doi.org/10.1159/000452833
[8] Costa, F.G., Hakimi, N. and Van Bel, F. (2021) Neuroprotection of the Perinatal Brain by Early Information of Cerebral Oxygenation and Perfusion Patterns. International Journal of Molecular Sciences, 22, Article 5389.
https://doi.org/10.3390/ijms22105389
[9] Drife, J. and Künzel, W. (2009) Editors’ Highlights. European Journal of Obstetrics & Gynecology and Reproductive Biology, 142, 1-2.
https://doi.org/10.1016/j.ejogrb.2008.11.001
[10] Hoffman, S.B., Cheng, Y.J., Magder, L.S., Shet, N. and Viscardi, R.M. (2019) Cerebral Autoregulation in Premature Infants during the First 96 Hours of Life and Relationship to Adverse Outcomes. Archives of Disease in Childhood Fetal and Neonatal Edition, 104, F473-F479.
https://doi.org/10.1136/archdischild-2018-315725
[11] Cimatti, A.G., et al. (2020) Cerebral Oxygenation and Au-toregulation in Very Preterm Infants Developing IVH during the Transitional Period: A Pilot Study. Frontiers in Pediat-rics, 8, Article 381.
https://doi.org/10.3389/fped.2020.00381
[12] Thewissen, L., et al. (2021) Cerebral Oxygen Saturation and Autoregulation during Hypotension in Extremely Preterm Infants. Pediatric Research, 90, 373-380.
https://doi.org/10.1038/s41390-021-01483-w
[13] Vesoulis, Z.A., Liao, S.M. and Mathur, A.M. (2017) Gestation-al Age-Dependent Relationship between Cerebral Oxygen Extraction and Blood Pressure. Pediatric Research, 82, 934-939.
https://doi.org/10.1038/pr.2017.196
[14] Costa, C.S.D., Czosnyka, M., Smielewski, P. and Austin, T. (2018) Optimal Mean Arterial Blood Pressure in Extremely Preterm Infants within the First 24 Hours of Life. The Jour-nal of Pediatrics, 203, 242-248.
https://doi.org/10.1016/j.jpeds.2018.07.096
[15] Wassink, G., et al. (2019) Therapeutic Hypothermia in Neonatal Hypoxic-Ischemic Encephalopathy. Current Neurology and Neuroscience Reports, 19, Article No. 2.
https://doi.org/10.1007/s11910-019-0916-0
[16] Massaro, A.N., et al. (2015) Impaired Cerebral Autoregulation and Brain Injury in Newborns with Hypoxic-Ischemic Encephalopathy Treated with Hypothermia. Journal of Neuro-physiology, 114, 818-824.
https://doi.org/10.1152/jn.00353.2015
[17] Burton, V.J., et al. (2015) A Pilot Cohort Study of Cerebral Autoregu-lation and 2-Year Neurodevelopmental Outcomes in Neonates with Hypoxic-Ischemic Encephalopathy Who Received Therapeutic Hypothermia. BMC Neurology, 15, Article No. 209.
https://doi.org/10.1186/s12883-015-0464-4
[18] Carrasco, M., et al. (2018) Cerebral Autoregulation and Conven-tional and Diffusion Tensor Imaging Magnetic Resonance Imaging in Neonatal Hypoxic-Ischemic Encephalopathy. Pedi-atric Neurology, 82, 36-43.
https://doi.org/10.1016/j.pediatrneurol.2018.02.004
[19] Eriksen, V.R., Hahn, G.H. and Greisen, G. (2014) Dopa-mine Therapy Is Associated with Impaired Cerebral Autoregulation in Preterm Infants. Acta Paediatrica, 103, 1221-1226.
https://doi.org/10.1111/apa.12817
[20] Solanki, N.S. and Hoffman, S.B. (2020) Association between Dopamine and Cerebral Autoregulation in Preterm Neonates. Pediatric Research, 88, 618-622.
https://doi.org/10.1038/s41390-020-0790-0
[21] Eriksen, V.R., Rasmussen, M.B., Hahn, G.H. and Greisen, G. (2017) Dopamine Therapy Does Not Affect Cerebral Autoregulation during Hypotension in Newborn Piglets. PLOS ONE, 12, e0170738.
https://doi.org/10.1371/journal.pone.0170738
[22] Navikiene, J., Virsilas, E., Vankeviciene, R., Liubsys, A. and Jankauskiene, A. (2021) Brain and Renal Oxygenation Measured by NIRS Related to Patent Ductus Arteriosus in Pre-term Infants: A Prospective Observational Study. BMC Pediatrics, 21, Article No. 559.
https://doi.org/10.1186/s12887-021-03036-w
[23] Chock, V.Y., Ramamoorthy, C. and Van Meurs, K.P. (2012) Cerebral Autoregulation in Neonates with a Hemodynamically Significant Patent Ductus Arteriosus. The Journal of Pe-diatrics, 160, 936-942.
https://doi.org/10.1016/j.jpeds.2011.11.054
[24] Michel-Macías, C., Morales-Barquet, D.A., Martínez-García, A. and Ibarra-Ríos, D. (2020) Findings from Somatic and Cerebral Near-Infrared Spectroscopy and Echocardiographic Monitoring during Ductus Arteriosus Ligation: Description of Two Cases and Review of Literature Ductus Arteriosus and the Preterm Brain. Frontiers in Pediatrics, 8, Article 523.
https://doi.org/10.3389/fped.2020.00523
[25] Smith, B., et al. (2017) Does Hypothermia Impair Cerebrovascular Autoregulation in Neonates during Cardiopulmonare Bypass? Pediatric Anesthesia, 27, 905-910.
https://doi.org/10.1111/pan.13194
[26] Kuik, S.J., et al. (2018) Preterm Infants Undergoing Laparotomy for Necrotizing Enterocolitis Orspontaneous Intestinal Perforation Display Evidence of Impaired Cerebrovascular Autoregulation. Early Human Development, 118, 25-31.
https://doi.org/10.1016/j.earlhumdev.2018.01.019
[27] Schat, T.E., et al. (2016) Assessing Cerebrovascular Auto-regulation in Infants with Necrotizing Enterocolitis Using Near-Infrared Spectroscopy. Pediatric Research, 79, 76-80.
https://doi.org/10.1038/pr.2015.184
[28] Biouss, G., et al. (2019) Experimental Necrotizing Enterocolitis Induces Neuroinflammation in the Neonatal Brain. Journal of Neuroinflammation, 16, Article No. 97.
https://doi.org/10.1186/s12974-019-1481-9
[29] Zamora, C.A., et al. (2016) Resistive Index Variability in Anterior Cerebral Artery Measurements during Daily Transcranial Duplex Sonography: A Predictor of Cerebrovascular Compli-cations in Infants Undergoing Extracorporeal Membrane Oxygenation? Journal of Ultrasound in Medicine, 35, 2459-2465.
https://doi.org/10.7863/ultra.15.09046
[30] Tsou, P.Y., Garcia, A.V., Yiu, A., Vaidya, D.M. and Bembea, M.M. (2020) Association of Cerebral Oximetry with Outcomes after Extracorporeal Membrane Oxygenation. Neurocritical Care, 33, 429-437.
https://doi.org/10.1007/s12028-019-00892-4
[31] Clair, M., et al. (2017) Prognostic Value of Cerebral Tissue Ox-ygen Saturation during Neonatal Extracorporeal Membrane Oxygenation. PLOS ONE, 12, e0172991.
https://doi.org/10.1371/journal.pone.0172991
[32] Joram, N., et al. (2021) Continuous Monitoring of Cerebral Autoregulation in Children Supported by Extracorporeal Membrane Oxygenation: A Pilot Study. Neurocritical Care, 34, 935-945.
https://doi.org/10.1007/s12028-020-01111-1