不同运动形式对非酒精性脂肪性肝病疗效的Meta分析
The Therapeutic Effects of Different Exercise Forms on Nonalcoholic Fatty Liver Disease: A Meta-Analysis
DOI: 10.12677/ACM.2023.1371538, PDF, HTML, XML, 下载: 152  浏览: 294  科研立项经费支持
作者: 武云辉:山西医科大学基础医学院,山西 太原;袁淑娟*:山西医科大学第一医院康复科,山西 太原
关键词: 运动非酒精性脂肪性肝病康复疗效Meta分析Exercise Nonalcoholic Fatty Liver Disease Rehabilitation Therapeutic Effects Meta-Analysis
摘要: 目的:比较和评价不同运动形式对非酒精性脂肪肝病(NAFLD)患者肝功能、糖代谢、BMI以及血脂代谢指标的康复治疗效果。方法:检索中国知网、PubMed、WanFangDate、Web of Science数据库,筛选运动对NAFLD的随机对照试验。对纳入文献进行质量评价、数据分析、森林图绘制、亚组分析、漏斗图绘制、Egger检验。结果:有氧运动对NAFLD患者的肝功能、BMI以及血脂代谢指标具有显著效益;高强度间歇运动对降低NAFLD患者的部分肝功能和部分血脂代谢指标具有显著效益;抗阻运动对NAFLD患者的部分肝功能、全部糖代谢以及部分血脂代谢指标具有显著效益;有氧结合抗阻运动对NAFLD患者的部分肝功能、BMI和部分血脂代谢指标具有显著效益。亚组分析显示,国家、干预周期、干预频次、研究设计等因素不同可能会影响研究间的效果差异,Egger检验显示部分结论可能存在发表偏倚。结论:有氧运动对减脂、减重以及改善肝功能效果最好,抗阻运动的显著优势是降低血糖代谢指标,有氧结合抗阻治疗效果次之,高强度间歇性训练较不理想。
Abstract: Objective: To compare and evaluate the rehabilitation effects of different exercise forms on liver function, glucose metabolism, BMI and blood lipid metabolism in patients with nonalcoholic fatty liver disease (NAFLD). Methods: The databases of CNKI, PubMed, WanFangDate, and Web of Science were searched to screen randomized controlled trials of exercise on NAFLD. Quality evaluation, data analysis, forest plot, analysis, funnel plot and Egger’s test were performed for the included re-searches. Results: Aerobic exercise had significant benefits on liver function, BMI and blood lipid metabolism indicators in NAFLD patients; high-intensity intermittent exercise had significant bene-fits on reducing partial indicators of liver function and blood lipid metabolism in NAFLD patients; resistance exercise had significant benefits on partial indicators of liver function, all glucose metab-olism indicators and partial indicators of blood lipid metabolism in NAFLD patients; aerobic com-bined with resistance exercise had significant benefits on some liver function indicators, BMI and some blood lipid metabolism indicators in NAFLD patients. Analysis showed that different factors such as country, intervention cycle, intervention frequency, and study design may affect the effects among studies, and Egger’s test showed that some conclusions may have publication bias. Conclu-sions: In the effects of treating NAFLD, aerobic exercise has the best effects on fat reduction, weight loss and improvements of liver function; the significant advantage of resistance exercise is to reduce the indexes of blood glucose metabolism; followed by aerobic combined with resistance therapy; and high intensity intermittent training is not ideal.
文章引用:武云辉, 袁淑娟. 不同运动形式对非酒精性脂肪性肝病疗效的Meta分析[J]. 临床医学进展, 2023, 13(7): 11014-11035. https://doi.org/10.12677/ACM.2023.1371538

1. 前言

非酒精性脂肪性肝病(Nonalcoholic fatty liver disease, NAFLD)是除酒精外由其他因素引起的肝脏脂肪变性,最近NAFLD被定义为代谢功能障碍性脂肪肝病(Metabolic dysfunction-associated fatty liver disease, MAFLD) [1] ,即在肝脂肪变性的基础上,还存在肥胖/超重、2型糖尿病、代谢失调的其中一种情况就可以定义为MAFLD。NAFLD的主要致病原因是静坐少动和营养过剩,并引起脂代谢异常、氧化应激、炎症、细胞凋亡和死亡以及纤维化,受到代谢疾病、肠道菌群、遗传等因素影响,可由单纯性非酒精性脂肪肝、非酒精性肝炎(NASH)进展为肝纤维化、肝硬化,甚至肝细胞癌 [2] ,是肝移植的重要原因之一 [3] 。NAFLD的全球患病率约为25.2% [4] ,并在逐年上升,目前还没有FDA批准的治疗药物 [5] ,饮食调整、运动康复在早期阶段逆转NAFLD进展仍是主要的干预手段 [6] 。目前主要运动方式包括有氧运动(AT)、抗阻运动(RT)、高强度间歇性运动(HIIT)等,但它们对NAFLD的治疗效果参差不齐 [7] ,本研究通过不同运动方式对NAFLD的干预效果进行Meta分析,以期为运动康复疗法提供参考依据。

2. 研究方法

2.1. 文献检索策略

计算机检索中国知网、PubMed、Web of Science、Wan Fang Date数据库运动干预NAFLD的随机对照试验。检索时间段均设定为建库至2022年1月5日,同时手工检索纳入文献。中文检索词:有氧运动、抗阻运动、有氧结合抗阻运动、高强度间歇运动、运动、训练、锻炼、非酒精性脂肪肝、非酒精性脂肪肝病、非酒精性脂肪肝炎、肝脏脂肪变性、随机对照、随机对照试验。英文检索词:Non-alcoholic Fatty Liver Disease、Nonalcoholic Fatty Liver Disease、nonalcoholic hepatic steatosis、nonalcoholic liver steatosis、Nonalcoholic Steatohepatitis、Nonalcoholic Fatty Liver、Nonalcoholic Fatty Livers、NAFLD、NASH、aerobic exercise、aerobic training、resistance exercise、resistance training、physical endurance、physical exertion、physical activity、exercise、training、random controlled trial、randomized controlled trial、controlled trial。

2.2. 纳入排除标准

纳入标准:① 研究对象为确诊的NAFLD患者;② 干预措施为AT,RT,HIIT,有氧结合抗阻运动(ART);③ 对照措施除无试验组的运动干预外,饮食或(和)基础药物治疗相同处理;④ 结局指标:肝损伤指标 [8] :天冬氨酸氨基转移酶(AST)、丙氨酸氨基转移酶(ALT)、以及谷氨酰转移酶(GGT),糖代谢指标 [9] :空腹血糖(FBG)、稳态模型胰岛素抵抗指数(HOMA-IR),BMI [10] 、脂代谢指标 [11] [12] [13] :甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C);⑤ 研究类型为随机对照试验。排除标准:重复发表、数据资料不全、无法获取全文的文献。

2.3. 资料提取和偏倚风险评估

2名研究者分别采用独立双盲式按照纳入与排除标准筛选文献,与第3名研究人员讨论一致后纳入。提取基本信息以及干预前、后试验组及对照组结局指标的均值(Means)、标准差(SD)与样本量(n)。根据最新的Cochrane系统评价手册 [14] ,采用软件Review manager5.4版本绘制质量评价图。

2.4. 统计学处理

对纳入研究严格遵循PRISMA指南 [15] 依次进行数据合并、异质性检验、森林图绘制、亚组分析,采用软件Stata16.0版本对纳入研究进行发表偏倚检验。数据资料提取均为连续型变量,采用标准化均数差(SMD)和95%的置信区间(CI)作为效应尺度进行统计,检验水准α = 0.05,P > 0.05为无统计学意义。根据I2定量分析各文献间的异质性大小,若I2 ≤ 50% (P > 0.1),则各研究间无统计学异质性或异质性较小,可以忽略异质性,采用固定效应模型;反之,表明异质性较高,采用随机效应模型。采用漏斗图、Egger’s检验评估是否存在发表偏倚,若P < 0.1表示存在一定发表偏倚。

3. 研究结果

3.1. 文献纳入基本信息

图1,计算机检索到1264篇文献,手工检索到5篇文献,除重后得到1143篇文献,根据纳排标准阅读标题和摘要后,初筛、全文复筛、剔除不符合的文献,共纳入22篇文献(其中一些文献包含多种运动方式):AT 14篇,RT 5篇,ART 4篇,HIIT 3篇。纳入文献特征见表1

3.2. 文献质量评价

纳入文献质量评价分为3个等级:A级(≥4个低风险)、B级(2个 ≤ 低风险 ≤ 3个)、C级(≤1个低风险)。其中有8篇A级文献,14篇B级文献,整体质量尚可(见图2)。

Figure 1. Literature screening procedure

图1. 文献筛选流程

Table 1. Basic characteristics of included literatures (n = 22)

表1. 纳入文献的基本特征表(n = 22)

注:?:未提及;试验组:运动方式 × 频率 × 时长 × 强度; ① AST; ② ALT; ③ GGT; ④ FBG; ⑤ HOMA-IR; ⑥ BMI; ⑦ TG; ⑧ TC; ⑨ LDL-C; ⑩ HDL-C。

Figure 2. Risk of bias graph and risk of bias summary

图2. 偏倚风险比例图及文献偏移风险总结

3.3. Meta分析结果

3.3.1. 肝功能(AST、ALT、GGT)

图3,AT降低AST (SMD = −0.33, 95%CI [−0.50, −0.15], P = 0.0003)、ALT (SMD = −0.92, 95%CI [−1.27, −0.57], P < 0.00001)、GGT (SMD = −3.28, 95%CI [−5.69, −0.88], P = 0.007)具有统计学意义;HIIT仅降低ALT (SMD = −0.51, 95%CI [−0.90, −0.12], P = 0.01)有统计学意义;RT降低ALT (SMD = −0.34, 95%CI [−0.55, −0.14], P = 0.0009)、GGT (SMD = −0.22, 95%CI [−0.42, −0.01], P = 0.04)有统计学意义,ART降低ALT (SMD = −0.61, 95%CI [−0.87, −0.36], P < 0.00001)有统计学意义。

AST

ALT

GGT

Figure 3. Forest plot of four exercise modalities on liver function parameters in NAFLD patients

图3. 四种运动方式对NAFLD患者肝功能指标的森林图

AT干预ALT (I2 = 68%, P = 0.005)和AT (I2 = 98%, P < 0.00001)、ART (I2 = 98%, P < 0.00001)干预GGT组间存在高度异质性,Meta分析选择随机效应模型,并探讨异质性来源。运动干预NAFLD治疗差异可能与周期、频次、国家等因素有关,对以上影响因素进行亚组分析,见表2,AT在国家亚组中对ALT影响有统计学差异,在频次、国家亚组中对GGT影响有统计学差异;ART除在频次亚组中对GGT无影响外,其他影响因素均有统计学差异。

Table 2. Subgroup analysis of the effect of exercise on liver function in NAFLD patients

表2. 运动对NAFLD患者肝功能影响的亚组分析

注:/:该亚组只有一项研究,无亚组内异质性;*:表示具有统计学差异。

3.3.2. 糖代谢(FBG、HOMA-IR)

图4,四种运动方式中仅有RT对降低FBG (SMD = −0.52, 95%CI [−0.73, −0.31], P < 0.00001)和HOMA-IR (SMD = −0.54, 95%CI [−0.77, −0.31], P < 0.00001)有统计学意义。

FBG

HOMA-IR

Figure 4. Forest plot of four exercise modalities on glucose metabolism parameters in NAFLD patients

图4. 四种运动方式对NAFLD患者糖代谢指标的森林图

对AT干预FBG (I2 = 65%, P = 0.01)和HOMA-IR (I2 = 67%, P < 0.00001)组间进行亚组分析,探讨异质性来源。见表3,AT研究在干预周期、频次和国家亚组中对FBG的影响有统计学差异,在国家亚组中对HOMA-IR的影响有统计学差异。

Table 3. Subgroup analysis of the effect of aerobic exercise on glucose metabolism in NAFLD patients

表3. 有氧运动对NAFLD患者糖代谢影响的亚组分析

注:/:该亚组只有一项研究,无亚组内异质性;*:表示具有统计学差异。

3.3.3. BMI

图5,只有AT干预NAFLD降低BMI (SMD = −0.30, 95%CI [−0.46, −0.13],P = 0.0006)有统计学意义。

Figure 5. Forest plot of four exercise modalities on BMI in NAFLD patients

图5. 四种运动方式对NAFLD患者BMI的森林图

3.3.4. 脂代谢(TG, TC, LDL-C, HDL-C)

图6,AT对降低TG (SMD = −0.43, 95%CI [−0.55, −0.30], P < 0.00001)、TC (SMD = −0.41, 95%CI [−0.70, −0.12], P = 0.006)、LDL-C (SMD = −0.59, 95%CI [−1.01, −0.17], P = 0.006)和升高HDL-C (SMD = 0.49, 95%CI [0.24, 0.74], P = 0.0001)均有统计学意义;HIIT仅对降低TC (SMD = −0.61, 95%CI [−1.00, −0.21], P = 0.003)有统计学意义;RT对降低TG (SMD = −0.57, 95%CI [−0.76, −0.37], P < 0.00001)、LDL-C (SMD = −0.46, 95%CI [−0.67, −0.25], P < 0.00001)和升高HDL-C (SMD = 0.55, 95%CI [0.16, 0.93], P = 0.006)有统计学意义;ART对降低TC (SMD = −0.36, 95%CI [−0.61, −0.12], P = 0.004)和升高HDL-C (SMD = 0.63, 95%CI [−0.01, 1.28], P = 0.05)有统计学意义。

TG

TC

LDL-C

HDL-C

Figure 6. Forest plot of the effects of four exercise modalities on lipid metabolism in NAFLD patients

图6. 四种运动方式对NAFLD患者脂代谢影响的森林图

对AT干预TC (I2 = 80%, P < 0.00001)和LDL-C (I2 = 85%, P < 0.00001)进行亚组分析探讨异质性的来源。见表4,AT干预TC在国家这一亚组中有统计学差异,在LDL-C的亚组分析中,均无统计学差异。

Table 4. Subgroup analysis of the effect of aerobic exercise on lipid metabolism in NAFLD patients

表4. 有氧运动对NAFLD患者脂代谢影响的亚组分析

注:/:该亚组只有一项研究,无亚组内异质性;*:表示具有统计学差异。

3.3.5. 发表偏倚:漏斗图、Egger’s检验

由于纳入的HIIT、RT以及ART研究数量太少,因此只对AT进行了漏斗图和Egger’s检验。如图7,AST、ALT、GGT、HOMA-IR漏斗图不是很对称,说明可能存在发表偏倚。Egger’s检验ALT的P < 0.1,提示存在一定的发表偏倚。

Figure 7. Funnel plot of 10 outcome measures for AT intervention in NAFLD patients

图7. AT干预NAFLD患者10种结局指标的漏斗图

4. 讨论

AT是在充分氧气供应下对大肌肉群进行强度低、耗时长、有节奏的重复性运动方式 [38] 。本次纳入的AT研究方式有跑步、步行、北欧健步走、打太极等。Meta分析结果显示,AT改善了肝功能(ALT、AST、GGT)、脂质代谢(TG、TC、LDL-C、HDL-C),降低了BMI,但是对糖代谢相关指标没有显著降低;亚组分析可以看出,提高干预周期、频次对降低NAFLD的FBG更有效,国家不同对FBG和HOMA-IR也存在影响。AT可通过激活AMPK途径磷酸化乙酰辅酶A羧化酶(ACC)并减少脂肪酸合成 [39] 。ACC在三羧酸循环中代谢为质子,导致线粒体电子传输系统中产生三磷酸腺苷。并且长期AT可以增加线粒体生物合成 [40] 从而提高线粒体功能促进能量代谢;最近的一项研究表明运动也可以通过上调AMPK-Nrf2-HO-1信号通路增强NAFLD抗氧化系统并减少氧化应激水平,包括提高抗氧化酶和基因表达(如超氧化物歧化酶(SOD),过氧化氢酶(CAT))的水平,降低脂质过氧化产物(丙二醛(MDA))并清除ROS的产生 [41] 。NAFLD常伴有心血管疾病,如动脉粥样硬化性、高血压等 [42] [43] ,跑步属于剧烈的运动,易诱发心肌梗阻和心绞痛,另外对肌力不良和骨质疏松的患者易造成运动损伤 [18] [21] [32] [36] 。

RT是使用哑铃、利用自身重力、器械辅助等对抗阻力的运动方式。本研究中抗阻运动方式有深蹲、俯卧撑、平板支撑等。Meta分析结果显示,RT对于改善NAFLD患者肝功能(ALT、GGT)、糖代谢(FBG、HOMA-IR)、脂代谢(TG、LDL-C、HDL-C)均有显著效益。RT对心肺耐力要求低,是增加肌肉力量、质量以及耐力的有效手段 [44] 。RT可使II型肌纤维肥大,增加葡萄糖转运蛋白4的表达,加速糖酵解,还可以上调腺苷酸活化蛋白激酶和小窝蛋白,改善胰岛素抵抗 [45] 。RT中分泌的鸢尾素可抑制脂肪生成相关调节因子改善肝脏脂肪变性 [46] 。近几年的研究表明,RT可能是通过提升骨骼肌对IGF-1的敏感性来降低血糖浓度,缓解肌肉衰减症,进而改善NAFLD以及肝纤维化的一个作用 [47] [48] [49] 。RT容易坚持,超重、年龄偏大、肌力弱等不能坚持有氧运动的人群可适当做些RT [28] [29] [36] 。

HIIT是以≥无氧阈或最大乳酸稳态的负荷强度进行多次持续时间为几秒到几分钟的练习,且每两次练习之间进行不完全恢复静息状态或低强度练习的运动方式 [50] ,是近几年较流行的运动。HIIT具有强度大、时间短、运动有间歇等特点,能在短期内提高心率、加速代谢,对健康人群和慢性病患者具有积极作用 [51] [52] 。HIIT能改善NAFLD患者心血管功能但对心肺耐力要求较高,存在运动风险 [30] [53] 。最近的一项研究发现高强度的运动负荷会使线粒体功能受损进而影响葡萄糖耐量 [54] 。既往也有相关研究指出在激烈的短期冲刺间歇训练后显示出内在线粒体呼吸(IMR)受损 [55] [56] [57] 。从Meta分析结果可以看出,HIIT可改善NAFLD患者的部分肝功能(ALT)以及脂代谢(TC、LDL-C),相比其他运动方式改善NAFLD的内容较少。

理论上,AT和RT的结合会发挥两者治疗NAFLD的优势,而本次Meta分析显示,ART仅对部分肝功能(ALT)、BMI以及脂代谢(TG、TC、HDL-C)具有改善效果,此前有研究表明单一有氧运动疗效更好 [58] ,关于ART对NAFLD治疗效果仍需更多的临床试验进一步的研究。张亚男等 [59] 指出运动对NAFLD的改善存在剂量–效应依赖关系,吉喆等 [51] 同样认为应该保持规律运动习惯才能维持运动康复NAFLD的疗效。

本研究的不足和局限:① RT、ART以及HIIT的研究文献偏少,对此次Meta分析一些结局指标具有一定的局限性;② 纳入研究的年龄、性别、国家、以及研究设计等具有一定差异。

5. 结论

本次Meta分析结果显示,有氧运动对减脂、减重以及改善肝功能效果最好,抗阻运动的显著优势是降低血糖代谢指标,有氧结合抗阻运动治疗效果次之,HIIT较不理想。在NAFLD患者运动康复方式的选择上,应评估NAFLD患者存在的危险因素、性别、年龄、运动能力、运动喜好等,存在心血管疾病、超重、伴有骨科疾病的NAFLD患者,不推荐进行HIIT和跑步等剧烈的有氧运动方式;肌力弱、老年人和不耐受有氧运动的NAFLD患者可考虑增加抗阻运动的训练。另外,NAFLD患者需要进行每周至少150 min或每次3次以上50 min左右的中等强度运动并且持续16周以上,这样对改善肝功能、糖脂代谢以及降低BMI上有较好的效果。

致谢

感谢刘立新老师提供的创作思路,感谢袁淑娟老师的提供的写作指导。

基金项目

感谢山西省基础研究计划“自然科学研究面上项目(202203021211024)”的支持。

NOTES

*通讯作者。

参考文献

[1] Eslam, M., Newsome, P.N., Sarin, S.K., et al. (2020) A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. Journal of Hepatology, 73, 202-209.
https://doi.org/10.1016/j.jhep.2020.03.039
[2] Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-Alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224.
https://doi.org/10.1016/S0140-6736(20)32511-3
[3] Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M. and Sanyal, A.J. (2018) Mechanisms of NAFLD Development and Therapeutic Strategies. Nature Medicine, 24, 908-922.
https://doi.org/10.1038/s41591-018-0104-9
[4] Flessa, C.M., Kyrou, I., Nasiri-Ansari, N., et al. (2021) Endo-plasmic Reticulum Stress and Autophagy in the Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD): Current Evidence and Perspectives. Current Obesity Reports, 10, 134-161.
https://doi.org/10.1007/s13679-021-00431-3
[5] Abdelmalek, M.F. (2021) Nonalcoholic Fatty Liver Disease: Another Leap Forward. Nature Reviews Gastroenterology & Hepatology, 18, 85-86.
https://doi.org/10.1038/s41575-020-00406-0
[6] Babu, A.F., Csader, S., Lok, J., et al. (2021) Positive Effects of Exercise Intervention without Weight Loss and Dietary Changes in NAFLD-Related Clinical Parameters: A Systematic Review and Meta-Analysis. Nutrients, 13, Article 3135.
https://doi.org/10.3390/nu13093135
[7] Xiong, Y.Z., Peng, Q.W., Cao, C.M., Xu, Z.J. and Zhang, B. (2021) Ef-fect of Different Exercise Methods on Non-Alco- holic Fatty Liver Disease: A Meta-Analysis and Meta-Regression. In-ternational Journal of Environmental Research and Public Health, 18, Article 3242.
https://doi.org/10.3390/ijerph18063242
[8] Unalp-Arida, A. And Ruhl, C.E. (2016) Noninvasive Fatty Liver Markers Predict Liver Disease Mortality in the U.S. Population. Hepatology, 63, 1170-1183.
https://doi.org/10.1002/hep.28390
[9] 中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018更新版) [J]. 传染病信息, 2018, 31(5): 393-402, 420.
[10] 章萌, 张姗, 金笑寒, 等. 体重指数与非酒精性脂肪肝关联的国内外研究现状[J]. 中国健康教育, 2022, 38(1): 76-80.
[11] Byrne, C.D. and Targher, G. (2015) NAFLD: A Multisystem Disease. Journal of Hepatology, 62, S47-S64.
https://doi.org/10.1016/j.jhep.2014.12.012
[12] Kuchay, M.S., Choudhary, N.S. and Mishra, S.K. (2020) Patho-physiological Mechanisms Underlying MAFLD. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14, 1875-1887.
https://doi.org/10.1016/j.dsx.2020.09.026
[13] Rinaldi, L., Pafundi, P.C., Galiero, R., et al. (2021) Mechanisms of Non-Alcoholic Fatty Liver Disease in the Metabolic Syndrome. A Narrative Review. Antioxidants, 10, Article 270.
https://doi.org/10.3390/antiox10020270
[14] Cumpston, M., Li, T., Page, M.J., et al. (2019) Updated Guidance for Trusted Systematic Reviews: A New Edition of the Cochrane Handbook for Systematic Reviews of Inter-ventions. Cochrane Database of Systematic Reviews, 10, ED000142.
https://doi.org/10.1002/14651858.ED000142
[15] Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G. and PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Medicine, 6, e1000097.
https://doi.org/10.1371/journal.pmed.1000097
[16] de Lira, C.T., Dos Santos, M.A., Gomes, P.P., et al. (2017) Aerobic Training Performed at Ventilatory Threshold Improves Liver Enzymes and Lipid Profile Related to Non-Alcoholic Fatty Liver Disease In Adolescents with Obesity. Nutrition and Health, 23, 281-288.
https://doi.org/10.1177/0260106017720350
[17] Rezende, R.E., Duarte, S.M., Stefano, J.T., et al. (2016) Ran-domized Clinical Trial: Benefits of Aerobic Physical Activity for 24 Weeks in Post-Menopausal Women with Nonalco-holic Fatty Liver Disease. Menopause, 23, 876-883.
https://doi.org/10.1097/GME.0000000000000647
[18] 林坤, 杨建全. 快走结合太极拳锻炼对老年非酒精性脂肪性肝病合并高血压患者的影响[J]. 中国老年学杂志, 2016, 36(11): 2700-2702.
[19] 查国芬, 姚水洪, 郑忠法. 农村非酒精性脂肪肝患者的运动干预及超声随访观察[J]. 中国农村卫生事业管理, 2013(6): 691-692.
[20] 毛治和. 月见草联合有氧运动治疗对非酒精性脂肪肝患者血脂代谢和肝脏形态的影响[J]. 北京体育大学学报, 2008, 31(8): 1087-1089.
[21] 胡利勋, 杨建全. 快步走联合太极拳锻炼对高龄非酒精性脂肪性肝病合并高血压患者血压和肝功能的影响[J]. 实用肝脏病杂志, 2015(5): 508-511.
[22] 蔡昱. 运动疗法治疗肥胖伴非酒精性脂肪性肝病的效果观察[J]. 反射疗法与康复医学, 2020, 1(23): 96-98.
[23] 许寿生. 健步走对非酒精性脂肪性肝病患者血液生化指标的影响[J]. 西安体育学院学报, 2006, 23(5): 79-81, 101.
[24] 谭思洁, 徐冬青, 曹立全, 等. FATmax运动干预中年女性非酒精性脂肪肝的研究[J]. 天津体育学院学报, 2015, 30(3): 185-189.
[25] 赵璨. 北欧式持杖健步走对糖尿病前期非酒精性脂肪肝绝经后女性腹部、肝脏脂肪及血脂的影响[D]: [博士学位论文]. 上海: 上海体育学院, 2016.
[26] 罗超, 李晗冉, 田东华, 等. 体医融合模式下HIIT干预NAFLD的运动方法与效果评价[J]. 北京师范大学学报(自然科学版), 2020, 56(1): 132-140.
[27] Abdelbasset, W.K., Tantawy, S.A., Kamel, D.M., et al. (2020) Effects of High-Intensity Interval and Moderate-Inten- sity Continuous Aerobic Exercise on Diabetic Obese Pa-tients with Nonalcoholic Fatty Liver Disease: A Comparative Randomized Controlled Trial. Medicine, 99, e19471.
https://doi.org/10.1097/MD.0000000000019471
[28] Moradi Kelardeh, B., Rahmati-Ahmadabad, S., Farzanegi, P., Helalizadeh, M. and Azarbayjani, M.A. (2020) Effects of Non-Linear Resistance Training and Curcumin Supplementa-tion on the Liver Biochemical Markers Levels and Structure in Older Women with Non-Alcoholic Fatty Liver Disease. Journal of Bodywork and Movement Therapies, 24, 154-160.
https://doi.org/10.1016/j.jbmt.2020.02.021
[29] Takahashi, A., Abe, K., Usami, K., et al. (2015) Simple Resistance Exercise Helps Patients with Non-Alcoholic Fatty Liver Disease. International Journal of Sports Medicine, 36, 848-852.
https://doi.org/10.1055/s-0035-1549853
[30] Hallsworth, K., Thoma, C., Hollingsworth, K.G., et al. (2015) Modi-fied High-Intensity Interval Training Reduces Liver Fat and Improves Cardiac Function in Nonalcoholic Fatty Liver Dis-ease: A Randomized Controlled Trial. Clinical Science, 129, 1097-1105.
https://doi.org/10.1042/CS20150308
[31] Shamsoddini, A., Sobhani, V., Ghamar Chehreh, M.E., et al. (2015) Ef-fect of Aerobic and Resistance Exercise Training on Liver Enzymes and Hepatic Fat in Iranian Men with Nonalcoholic Fatty Liver Disease. Hepatitis Monthly, 15, e31434.
https://doi.org/10.5812/hepatmon.31434
[32] 付洋洋, 孟美美, 荣宁, 等. 有氧运动与抗阻运动对非酒精性脂肪肝患者影响效果研究[J]. 南京医科大学学报(自然科学版), 2018, 38(4): 528-531.
[33] Houghton, D., Thoma, C., Hallsworth, K., et al. (2017) Exercise Reduces Liver Lipids and Viscer-al Adiposity in Patients with Nonalcoholic Steatohepatitis in a Randomized Controlled Trial. Clinical Gastroenterology and Hepatology, 15, 96-102.E3.
https://doi.org/10.1016/j.cgh.2016.07.031
[34] Shojaee-Moradie, F., Cuthbertson, D.J., Barrett, M., et al. (2016) Exercise Training Reduces Liver Fat and Increases Rates of VLDL Clearance But Not VLDL Production in NAFLD. The Journal of Clinical Endocrinology & Metabolism, 10, 4219-4228.
https://doi.org/10.1210/jc.2016-2353
[35] Wong, V.W., Chan, R.S., Wong, G.L., et al. (2013) Community-Based Lifestyle Modification Programme for Non- Alcoholic Fatty Liver Disease: A Randomized Controlled Trial. Journal of Hepatology, 59, 536-542.
https://doi.org/10.1016/j.jhep.2013.04.013
[36] 贾国瑜, 韩涛, 高磊, 等. 有氧运动和抗阻运动改善非酒精性脂肪肝的随机对照研究[J]. 中华肝脏病杂志, 2018, 26(1): 34-41.
[37] 柯东春, 卢红元. 非酒精性脂肪肝大学生患者的运动康复锻炼及饮食指导[J]. 肝脏, 2014(5): 353-355.
[38] Guo, R., Liong, E.C., So, K.F., et al. (2015) Ben-eficial Mechanisms of Aerobic Exercise on Hepatic Lipid Metabolism in Non-Alcoholic Fatty Liver Disease. Hepatobili-ary & Pancreatic Diseases International, 14, 139-144.
https://doi.org/10.1016/S1499-3872(15)60355-1
[39] Bai, Y., Li, T., Liu, J., et al. (2023) Aerobic Exercise and Vitamin E Improve High-Fat Diet-Induced NAFLD in Rats by Regulating the AMPK Pathway and Oxidative Stress. European Journal of Nutrition.
https://doi.org/10.1007/s00394-023-03179-9
[40] Zhang, Y., Liu, Y., Liu, X., et al. (2022) Exercise and Metformin Intervention Prevents Lipotoxicity-Induced Hepatocyte Apoptosis by Alleviating Oxidative and ER Stress and Activating the AMPK/Nrf2/HO-1 Signaling Pathway in db/db Mice. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2297268.
https://doi.org/10.1155/2022/2297268
[41] Hari, A., Fealy, C.E., Axelrod, C.L., et al. (2020) Exercise Training Rapidly Increases Hepatic Insulin Extraction in NAFLD. Medicine & Science in Sports & Exercise, 52, 1449-1455.
https://doi.org/10.1249/MSS.0000000000002273
[42] Targher, G., Byrne, C.D. and Tilg, H. (2020) NAFLD and Increased Risk of Cardiovascular Disease: Clinical Associations, Pathophysiological Mechanisms and Pharmacological Implications. Gut, 69, 1691-1705.
https://doi.org/10.1136/gutjnl-2020-320622
[43] Neeland, I.J., Poirier, P. and Després, J.P. (2018) Cardiovascular and Metabolic Heterogeneity of Obesity: Clinical Challenges and Implications for Management. Circulation, 137, 1391-1406.
https://doi.org/10.1161/CIRCULATIONAHA.117.029617
[44] Hallsworth, K., Fattakhova, G., Hollingsworth, K.G., et al. (2011) Resistance Exercise Reduces Liver Fat and Its Mediators in Non-Alcoholic Fatty Liver Disease Inde-pendent of Weight Loss. Gut, 60, 1278-1283.
https://doi.org/10.1136/gut.2011.242073
[45] Hashida, R., Kawaguchi, T., Bekki, M., et al. (2017) Aerobic vs. Re-sistance Exercise in Non-Alcoholic Fatty Liver Disease: A Systematic Review. Journal of Hepatology, 66, 142-152.
https://doi.org/10.1016/j.jhep.2016.08.023
[46] Park, M.J., Kim, D.I., Choi, J.H., Heo, Y.R. and Park, S.H. (2015) New Role of Irisin in Hepatocytes: The Protective Effect of Hepatic Steatosis in vitro. Cellular Signalling, 27, 1831-1839.
https://doi.org/10.1016/j.cellsig.2015.04.010
[47] Nishikawa, H., Enomoto, H., Nishiguchi, S. and Iijima, H. (2021) Sarcopenic Obesity in Liver Cirrhosis: Possible Mechanism and Clinical Impact. International Journal of Molecular Sci-ences, 22, Article 1917.
https://doi.org/10.3390/ijms22041917
[48] Bian, A., Ma, Y., Zhou, X., et al. (2020) Association between Sarcope-nia and Levels of Growth Hormone and Insulin-Like Growth Factor-1 in the Elderly. BMC Musculoskeletal Disorders, 21, Article No. 214.
https://doi.org/10.1186/s12891-020-03236-y
[49] Takahashi, H., Kotani, K., Tanaka, K., Egucih, Y. and Anzai, K. (2018) Therapeutic Approaches to Nonalcoholic Fatty Liver Disease: Exercise Intervention and Related Mechanisms. Frontiers in Endocrinology, 9, Article 588.
https://doi.org/10.3389/fendo.2018.00588
[50] 黎涌明. 高强度间歇训练对不同训练人群的应用效果[J]. 体育科学, 2015(8): 59-75, 96.
[51] 吉喆, 周海涛, 曹卉, 等. 不同运动对非酒精性脂肪肝康复效果的研究现状[J]. 中国康复医学杂志, 2021, 36(11): 1465-1471.
[52] 林家煜, 黄惠斌, 梁波, 等. 高强度间歇运动肥胖大鼠鸢尾素、瘦素、脂联素和内脏脂肪的变化[J]. 中国组织工程研究, 2022, 26(35): 5583-5588.
[53] Hamasaki, H. (2019) Per-spectives on Interval Exercise Interventions for Non-Alcoholic Fatty Liver Disease. Medicines, 6, Article 83.
https://doi.org/10.3390/medicines6030083
[54] Flockhart, M., Nilsson, L.C., Tais, S., et al. (2021) Excessive Ex-ercise Training Causes Mitochondrial Functional Impairment and Decreases Glucose Tolerance in Healthy Volunteers. Cell Metabolism, 33, 957-970.E6.
https://doi.org/10.1016/j.cmet.2021.02.017
[55] Larsen, F.J., Schiffer, T.A., Ørtenblad, N., et al. (2016) High-Intensity Sprint Training Inhibits Mitochondrial rESPiration through Aconitase Inactivation. The FASEB Journal, 30, 417-427.
https://doi.org/10.1096/fj.15-276857
[56] Konopka, A.R., Castor, W.M., Wolff, C.A., et al. (2017) Skeletal Muscle Mitochondrial Protein Synthesis and Respiration in Response to the Energetic Stress of an Ul-tra-Endurance Race. Journal of Applied Physiology, 123, 1516-1524.
https://doi.org/10.1152/japplphysiol.00457.2017
[57] Layec, G., Blain, G.M., Rossman, M.J., et al. (2018) Acute High-Intensity Exercise Impairs Skeletal Muscle Respiratory Capacity. Medicine & Science in Sports & Exercise, 50, 2409-2417.
https://doi.org/10.1249/MSS.0000000000001735
[58] Franco, I., Bianco, A., Dìaz, M.D.P., et al. (2019) Effec-tiveness of Two Physical Activity Programs on Non-Alcoholic Fatty Liver Disease. A Randomized Controlled Clinical Trial. Revista de la Facultad de Ciencias Médicas de Córdoba, 76, 26-36.
https://doi.org/10.31053/1853.0605.v76.n1.21638
[59] 张亚男, 范竹萍, 范建高. 非酒精性脂肪性肝病的运动处方制定[J]. 中国实用内科杂志, 2019, 39(3): 222-226.