外泌体miRNA在肺结核诊断中的研究进展
Research Progress about miRNA of Exosomes in the Diagnosis of Pulmonary Tuberculosis
DOI: 10.12677/ACM.2023.1371602, PDF, HTML, XML, 下载: 271  浏览: 396 
作者: 马 琦:青海大学研究生院,青海 西宁;久 太:青海大学附属医院呼吸与危重症医学科,青海 西宁
关键词: 肺结核外泌体miRNA生物标志物结核分枝杆菌Pulmonary Tuberculosis Exosomes miRNA Biomarkers Mycobacterium tuberculosis
摘要: 来自细胞外囊泡的微RNA (miRNA),长度约为22个核酸,不参与单链RNA的编码。它们参与调节转录后的基因表达,并在调节免疫系统方面发挥重要作用。近些年,很多关于miRNA与结核病之间的研究表明miRNA在结核病的发生发展上发挥重要作用,为结核病的诊断与鉴别诊断以及发病机制的研究提供了潜在的可能。本文将针对外泌体来源的miRNA在肺结核诊断中的研究现状做一个综述。
Abstract: miRNAs from extracellular vesicles are a class of substances that do not encode single stranded RNA, with a length of approximately 22 nucleic acids. They participate in regulating gene expression af-ter transcription and play an important role in regulating the immune system. In recent years, many studies on the relationship between miRNA and tuberculosis have shown that miRNA plays an important role in the occurrence and development of tuberculosis, providing potential possibili-ties for the diagnosis and differential diagnosis of tuberculosis and the study of pathogenesis. This article provides a review of the current research status of miRNAs derived from extracellular vesi-cles in the diagnosis of pulmonary tuberculosis.
文章引用:马琦, 久太. 外泌体miRNA在肺结核诊断中的研究进展[J]. 临床医学进展, 2023, 13(7): 11462-11467. https://doi.org/10.12677/ACM.2023.1371602

1. 引言

结核病(TB)是一种由结核分枝杆菌引起的传染性空气传播疾病,仍然是单一病原体传染病的主要死亡原因,也是全球第九大死亡原因 [1] 。2018年,约有1000万人患上结核病,120万人死于该疾病,超过了同期死于艾滋病毒和疟疾的总人数 [2] 。根据世界卫生组织(世卫组织)的数据,全球大约四分之一的人口感染了这种细菌,约5%至15%的人将在其一生中患上这种疾病 [3] 。

结核感染通常是由于吸入受感染的呼吸道飞沫,飞沫到达肺泡腔后分枝杆菌被肺泡巨噬细胞所吞噬 [4] 。一旦进入巨噬细胞,结核分枝杆菌出现几种逃逸宿主免疫反应的机制,比如调节吞噬体的成熟途径,阻断分枝杆菌吞噬小体与溶酶体的融合,从而避免宿主细胞的杀菌机制 [5] 。目前,活动性肺结核(PTB)的诊断,需要直接检测结核分枝杆菌(用微生物学或DNA扩增),因此,它高度依赖于是否有临床样本,例如痰液等,用于分析。目前可用的诊断结核分枝杆菌感染的非痰液检测方法,如结核菌素皮肤试验或基于干扰素(IFN-γ)释放的免疫分析方法,都不能区分潜伏性结核感染(LTBI)和活动性结核病 [6] 。

因此为了早期诊断从而控制传播,科学界一直在努力寻找新的生物标志物,以区分结核感染的不同状态,从无症状潜伏到进行性和破坏性的活动性疾病。而最近的证据表明,外泌体miRNA可能在几种肺部疾病的发病机制中具有重要意义。疾病中外泌体miRNA的差异表达推动了它们作为疾病生物标志物的前景,除了作为治疗工具外,有望可以实现无创临床诊断。在这篇综述中,旨在总结外泌体miRNA作为肺结核潜在生物标志物的最新进展,以期为肺结核的早期诊断提供新的视角。

2. 外泌体的生物学特性概述

外泌体直径30~120 nm,是细胞来源的囊泡 [7] 。它们普遍存在于体液中,包括尿液、血浆、母乳、支气管肺泡灌洗液(BAL)、唾液、精液、羊水、腹水、滑膜液、母乳和脑脊液 [8] 。它们包含许多不同的生物分子,包括蛋白质、脂质、mRNA和miRNA。外泌体可以将它的内容物,特别是miRNA,释放到邻近的细胞和远端细胞,传递到靶细胞的外泌体miRNA可以显著影响靶细胞内的生物通路,从而导致细胞功能的改变和病理状态,因此认为它们在细胞与细胞之间的通信中很重要 [9] 。

根据外泌体标志物综合数据库ExoCarta,外泌体的组成非常复杂,其分子含量取决于其细胞来源。在不同物种的外泌体中发现了1543个蛋白、194个脂质、1639个mRNA和764个miRNA,其中膜转运蛋白和融合蛋白是最常被检测到的 [10] 。一些外泌体蛋白是通用的,包括四酯蛋白、CD63、CD81、CD9和热休克蛋白(Hsp70),这些通常被用作外泌体标记物 [11] 。外泌体富含脂质,如胆固醇、磷脂、磷脂酰丝氨酸和前列腺素,但缺乏核、线粒体和核糖体蛋白,它同时包含mRNA和miRNA [10] 。循环外泌体在生物液体中高度稳定 [9] ,因此,可以通过获取原始细胞的分子含量,提供关于原始细胞的生理和病理状态的大量信息 [12] 。因此,对外泌体miRNA的全面分析为肺结核的治疗和诊断靶点提供了新的研究方向 [13] 。

3. 外泌体在肺结核发病机制中的作用

结核分枝杆菌感染的个体通常被归分为LTBI或活动性结核。然而,在最初接触和发展为活动性疾病之间存在着不同的阶段。在第一次接触后,一些人可能成功地消除了该细菌,他们将不再携带活菌,但可能仍然有先前感染的免疫学证据 [14] 。当免疫系统无法清除感染但可以控制它,机体持续在潜在感染的状态多年,可能以缓慢或快速的方式进展为活动性疾病 [14] 。基于这些事实,结核分枝杆菌感染的命运高度依赖于个体的免疫反应,因此宿主免疫调节机制的遗传差异可能会影响发展为临床结核病的风险 [15] 。通过宿主miRNA的基因沉默被认为是人类巨噬细胞对抗结核分枝杆菌等细胞内病原体的机制之一 [16] 。了解miRNA如何调节结核分枝杆菌感染时的基因表达并识别它们的靶基因对于理解宿主对感染的反应至关重要。

一旦感染结核杆菌,含有分枝杆菌成分的外泌体能够通过诱导TNF-α、RANTES和iNOS的产生,以促炎症的方式刺激幼稚巨噬细胞 [17] [18] 。类似地,与形成强烈的获得性免疫应答一致,这些外泌体可以激活CD4+和CD8+ T细胞,并指示抗原呈递到这些细胞的替代途径,来代替巨噬细胞和树突状细胞的MHC呈递 [19] 。外泌体与其他细胞相互作用可能有多种机制。值得注意的是,从分枝杆菌感染的抗原提呈细胞(APCs)中脱落的外泌体显示MHC-II,并具有提呈加工抗原的能力 [20] 。后来的研究表明,外泌体也包含完整的分枝杆菌蛋白,包括抗原85复合物蛋白、HspX、DnaK和一些其他分枝杆菌蛋白 [21] 。尽管抗原的形式很可能会改变外泌体所靶向的细胞和细胞反应,一个单个的外泌体是否能同时包含经过加工和未加工的抗原尚不清楚 [22] 。研究表明,宿主热休克蛋白70 (Hsp70)在结核分枝杆菌感染细胞的外泌体中特异性增加,并被认为有助于促炎反应 [23] 。从结核分枝杆菌感染的巨噬细胞中释放的外泌体对与保护性免疫相关的细胞免疫反应也有抑制作用,特别是抑制激活幼稚巨噬细胞的INF-γ调节途径 [24] 。分枝杆菌在宿主体内的生存是一种微妙的免疫激活平衡,如通过特定受体进行必要的吞噬,避免吞噬体溶酶体融合中断,很明显,外泌体可能发挥比最初认为的更重要的作用 [25] 。

4. 外泌体miRNA有望作为肺结核诊断潜在的生物标记物

外泌体miRNA是基因表达网络中的关键调节因子,可诱导细胞增殖、死亡、激活细胞迁移、增强免疫反应和诱导血管生成等 [26] 。细胞内异常的miRNA可导致遗传物质的传递受损。已有miRNA作为肿瘤、糖尿病和脂质紊乱等多种疾病潜在的无创生物标志物的研究 [27] 。miRNA表达谱有望作为多种疾病有前景的生物标志物 [28] 。转录后的miRNA可调控体内部分基因,在生物体生长发育阶段,miRNA的表达具有显著差异。已有研究发现,miRNA参与多种感染性疾病的发生机制,如:肺结核、非典型性肺炎、乙型病毒性肝炎等 [29] 。同时,在结核病患者的血液中检测到miRNA的异常表达及具有寡核苷酸多态性,从而开启了结核病与miRNA之间关联的进一步探究 [30] 。

Dale等人发现miRNA调控巨噬细胞与结核分枝杆菌感染的致病机制具有相关性。有研究发现,当有毒力的结核分枝杆菌感染人类后,miRNA-29可在巨噬细胞中特异性地过度表达,且发现miRNA-29能通过下调IFN-γ的表达,抑制结核分枝杆菌在细胞内的免疫应答 [31] 。王燕等 [32] 研究发现,活动性肺结核患者外周血单个核细胞中miRNA-144的表达明显高于健康对照组的表达,且miRNA-144在患者肺结核急性期的表达显著升高,约为正常范围的5~10倍。因此,在患者肺结核急性期,随着miRNA-144的表达增加,机体内CD4+ T细胞辅助细胞和CD8+ T细胞杀伤细胞的数量、IFN-γ、TNF-γ等细胞因子的水平均会随之增加。以上研究表明,一些miRNA是结核感染所引起的免疫反应过程中的重要调节因子。

外泌体的miRNA在肺结核方向也有了一些进展。研究人员用BCG感染人外周血来源的巨噬细胞,提取外泌体和RNA并进行测序,得到了BCG感染后的miRNA释放谱 [33] 。另一项对巨噬细胞的研究发现,外泌体中的miR-20b-5p表现为上调时,MTB在巨噬细胞中的存活受到抑制 [34] 。在临床样本的研究中,研究者通过对肺炎,肺结核和肺癌患者胸腔积液外泌体的miRNA进行测序,分析后发现,不同组之间的比较后都存在差异表达的miRNA,而miR-378i只在肺结核中检测到,提示外泌体miRNA在肺结核中有潜在的临床诊断价值 [32] 。外泌体miRNA有望作为肺结核诊断潜在的生物标记物。

5. 问题与展望

然而,由于细胞间外泌体分泌和传递机制的复杂性,未来需要更多的研究来阐明外泌体在肺结核中的作用。在目前用于miRNA表达谱分析的平台中也可能存在潜在的缺陷。寻找miRNA作为可能的生物标记物通常涉及NGS或microRNA阵列的研究,因为它们在允许识别和分析多个靶点方面具有优势 [35] [36] 。然而,这两种技术可能都有缺点。NGS可以通过在多重PCR扩增过程中引入偏倚而产生误导性的结果,其中一些RNA的表达水平可以是人为地增强、减弱,甚至无法检测到。miRNA研究中通常涉及的另一个步骤是通过qPCR扩增验证NGS或微阵列发现。该技术需要具有高灵敏度的miRNA图谱分析和验证 [37] 。然而,由于缺乏可靠的miRNA定量归一化器,qPCR数据归一化仍然是最具挑战性的步骤之一,阻碍了准确的数据归一化策略 [38] [39] 。目前,小RNA,特别是RNU6B,被广泛用作miRNAs的标准化剂;然而,已有研究表明,它可以在血清样本中以一种疾病特异性的方式发生变化。因此,它可能不是一个很好的标准化剂 [40] 。所以应用外泌体miRNA作为肺结核诊断标志物仍任重而道远,未来仍需大量的研究来支持。

NOTES

*通讯作者。

参考文献

[1] World Health Organization (2018) Global Tuberculosis Report 2018.
[2] World Health Organization (2019) Global Tuberculosis Report 2019.
[3] Narasimhan, P., Wood, J., Macintyre, C.R. and Mathai, D. (2013) Risk Factors for Tu-berculosis. Pulmonary Medicine, 2013, Article ID: 828939.
https://doi.org/10.1155/2013/828939
[4] Bhatt, K. and Salgame, P. (2007) Host Innate Immune Response to Mycobacterium Tuberculosis. Journal of Clinical Immunology, 27, 347-362.
https://doi.org/10.1007/s10875-007-9084-0
[5] Liu, P.T. and Modlin, R.L. (2008) Human Macrophage Host Defense against Mycobacterium Tuberculosis. Current Opinion in Immunology, 20, 371-376.
https://doi.org/10.1016/j.coi.2008.05.014
[6] Frahm, M., Goswami, N., Owzar, K., et al. (2011) Discriminating between Latent and Active Tuberculosis with Multiple Biomarker Responses. Tuberculosis, 91, 250-256.
https://doi.org/10.1016/j.tube.2011.02.006
[7] Lin, J., Li, J., Huang, B., et al. (2015) Review Article Exosomes: Novel Biomarkers for Clinical Diagnosis. The Scientific World Journal, 2015, Article ID: 657086.
https://doi.org/10.1155/2015/657086
[8] Raposo, G. and Stoorvogel, W. (2013) Extracellular Vesicles: Exosomes, Microvesicles, and Friends. Journal of Cell Biology, 200, 373-383.
https://doi.org/10.1083/jcb.201211138
[9] Cheng, L., Sharples, R., Scicluna, B.J. and Hill, A.F. (2014) Exosomes Provide a Protective and Enriched Source of miRNA for Biomarker Profiling Compared to Intracellular and Cell-Free Blood. Journal of Extracellular Vesicles, 3, Article 23743.
https://doi.org/10.3402/jev.v3.23743
[10] Mathivanan, S. and Simpson, R.J. (2009) ExoCarta: A Compendium of Exosomal Proteins and RNA. Proteomics, 9, 4997-5000.
https://doi.org/10.1002/pmic.200900351
[11] Tickner, J.A., Urquhart, A.J., Stephenson, S.A., Richard, D.J. and O’Byrne, K.J. (2014) Functions and Therapeutic Roles of Exosomes in Cancer. Frontiers in Oncology, 4, Article 127.
https://doi.org/10.3389/fonc.2014.00127
[12] Sun, T., Kalionis, B., Lv, G.Y., Xia, S.J. and Gao, W. (2015) Role of Exosomal Noncoding RNAs in Lung Carcinogenesis. Biomed Research International, 2015, Article ID 125807.
https://doi.org/10.1155/2015/125807
[13] Eldh, M. (2013) Exosomes and Exosomal RNA—A Way of Cell-to-Cell Communication. Master’s Thesis, Sahlgrenska Academy at University of Gothenburg, Göteborg.
[14] Drain, P.K., Ba-jema, K.L., Dowdy, D., et al. (2018) Incipient and Subclinical Tuberculosis: A Clinical Review of Early Stages and Pro-gression of Infection. Clinical Microbiology Reviews, 31.
https://doi.org/10.1128/CMR.00021-18
[15] Abel, L., Fellay, J., Haas, D., et al. (2018) Genetics of Human Susceptibility to Active and Latent Tuberculosis: Present Knowledge and Future Perspectives. The Lancet Infectious Diseases, 18, E64-E75.
https://doi.org/10.1016/S1473-3099(17)30623-0
[16] Guo, W.R., Li, J.T., Pan, X., Wei, L.P. and Wu, J.Y. (2010) Candidate Mycobacterium Tuberculosis Genes Targeted by Human MicroRNAs. Protein & Cell, 1, 419-421.
https://doi.org/10.1007/s13238-010-0056-4
[17] Bhatnagar, S. and Schorey, J. (2007) Exosomes Released from Infected Macrophages Contain Mycobacterium avium Glycopeptidolipids and Are Proinflammatory. Journal of Biologi-cal Chemistry, 282, 25779-25789.
https://doi.org/10.1074/jbc.M702277200
[18] Bhatnagar, S., Shinagawa, K., Castellino, F. and Schorey, J.S. (2007) Exosomes Released from Macrophages Infected with Intracellular Pathogens Stimulate a Proinflammatory Response in vitro and in vivo. Blood, 110, 3234-3244.
https://doi.org/10.1182/blood-2007-03-079152
[19] Giri, P.K. and Schorey, J.S. (2008) Exosomes Derived from M. bovis BCG Infected Macrophages Activate Antigen- Specific CD4+ and CD8+ T Cells in Vitro and in Vivo. PLOS ONE, 3, e2461.
https://doi.org/10.1371/journal.pone.0002461
[20] Ramachandra, L., Qu, Y., Wang, Y., et al. (2010) Mycobacte-rium Tuberculosis Synergizes with ATP to Induce Release of Microvesicles and Exosomes Containing Major Histo-compatibility Complex Class II Molecules Capable of Antigen Presentation. Infection and Immunity, 78, 5116-5125.
https://doi.org/10.1128/IAI.01089-09
[21] Giri, P.K., Kruh, N.A., Dobos, K.M. and Schorey, J.S. (2010) Proteo-mic Analysis Identifies Highly Antigenic Proteins in Exosomes from M. tuberculosis-Infected and Culture Filtrate Pro-tein-Treated Macrophages. Proteomics, 10, 3190- 3202.
https://doi.org/10.1002/pmic.200900840
[22] Kruh-Garcia, N.A., Schorey, J.S. and Dobos, K.M. (2012) Exosomes: New Tuberculosis Biomarkers Prospects from the Bench to the Clinic. In: Cardona, P.J., Ed., Understanding Tuberculosis, 395-410.
[23] Anand, P., Anand, E., Bleck, C., Anes, E. and Griffiths, G. (2010) Exosomal Hsp70 Induces a Pro-Inflammatory Response to Foreign Particles Including Myco-bacteria. PLOS ONE, 5, e10136.
https://doi.org/10.1371/journal.pone.0010136
[24] Singh, P.P., Lemaire, C., Tan, J.C., Zeng, E.L. and Schorey, J.S. (2011) Exosomes Released from M. tuberculosis Infected Cells Can Suppress IFN-γ Mediated Activation of Naïve Macrophages. PLOS ONE, 6, e18564.
https://doi.org/10.1371/journal.pone.0018564
[25] Pieters, J. (2008) Mycobacterium Tuberculosis and the Macro-phage: Maintaining a Balance. Cell Host & Microbe, 3, 399-407.
https://doi.org/10.1016/j.chom.2008.05.006
[26] Banerjee, J., Roy, S., Dhas, Y. and Mishra, N. (2019) Senes-cence-Associated miR-34a and miR-126 in Middle-Aged Indians with Type 2 Diabetes. Clinical and Experimental Medi-cine, 20, 149-158.
https://doi.org/10.1007/s10238-019-00593-4
[27] Gareev, I., Beylerli, O., Yang, G., et al. (2020) The Current State of MiRNAs as Biomarkers and Therapeutic Tools. Clinical and Experimental Medicine, 20, 349-359.
https://doi.org/10.1007/s10238-020-00627-2
[28] Hu, Y., Lan, W. and Miller, D. (2017) Next-Generation Se-quencing for MicroRNA Expression Profile. In: Huang, J., et al. Eds., Bioinformatics in MicroRNA Research, Humana Press, New York, 169-177.
https://doi.org/10.1007/978-1-4939-7046-9_12
[29] Zhou, X.H., Fang, S.Q., Wang, M., et al. (2019) Diagnostic Value of Circulating miRNA-122 for Hepatitis B Virus and/or Hepatitis C Virus-Associated Chronic Viral Hepatitis. Bi-oscience Reports, 39, BSR20190900.
https://doi.org/10.1042/BSR20190900
[30] Peng, Z.L., Chen, L. and Zhang, H. (2020) Serum Proteomic Analysis of Mycobacterium Tuberculosis Antigens for Discriminating Active Tuberculosis from Latent Infection. Journal of In-ternational Medical Research, 48.
https://doi.org/10.1177/0300060520910042
[31] Ma, F., Xu, S., Liu, X.G., et al. (2011) The microRNA miR-29 Controls Innate and Adaptive Immune Responses to Intracellular Bacterial Infection by Targeting Interferon-γ. Nature Immunology, 12, 861-869.
https://doi.org/10.1038/ni.2073
[32] Lin, J., Wang, Y., Zou, Y.Q., et al. (2016) Differential miRNA Expression in Pleural Effusions Derived from Extracellular Vesicles of Patients with Lung Cancer, Pulmonary Tuberculosis, or Pneu-monia. Tumor Biology, 37, 15835- 15845.
https://doi.org/10.1007/s13277-016-5410-6
[33] Dale, G. and Noren-berg, S. (1989) Time-Dependent Loss of Adenosine S’-Monophosphate Deaminase Activity May Explain Elevated Adenosine 5’-Triphosphate Levels in Senescent Erythrocytes. Blood, 74, 2157-2160.
[34] Zhang, D.F., Yi, Z. and Fu, Y.R. (2018) Downregulation of miR-20b-5p Facilitates Mycobacterium tuberculosis Survival in RAW 264.7 Macro-phages via Attenuating the Cell Apoptosis by Mcl-1 Upregulation. Journal of Cellular Biochemistry, 120, 5889-5896.
https://doi.org/10.1002/jcb.27874
[35] Morin, R.D., Bainbridge, M., Fejes, A., et al. (2008) Profiling the HeLa S3 Transcriptome Using Randomly Primed cDNA and Massively Parallel Short-Read Sequencing. BioTechniques, 45, 81-94.
https://doi.org/10.2144/000112900
[36] Thomson, J.M., Parker, J., Perou, C. and Hammond, S.M. (2004) A Custom Microarray Platform for Analysis of microRNA Gene Expression. Nature Methods, 1, 47-53.
https://doi.org/10.1038/nmeth704
[37] Chen, C.F., Ridzon, D., Broomer, A., et al. (2005) Real-Time Quantification of microRNAs by Stem-Loop RT-PCR. Nucleic Acids Research, 33, e179.
https://doi.org/10.1093/nar/gni178
[38] Schwarzenbach, H., da Silva, A.M., Calin, G. and Pantel, K. (2015) Data Normalization Strategies for MicroRNA Quantification. Clinical Chemistry, 61, 1333-1342.
https://doi.org/10.1373/clinchem.2015.239459
[39] Faraldi, M., Gomarasca, M., Sansoni, V., et al. (2019) Nor-malization Strategies Differently Affect Circulating miRNA Profile Associated with the Training Status. Scientific Reports, 9, Article No. 1584.
https://doi.org/10.1038/s41598-019-38505-x
[40] Benz, F., Roderburg, C., Vargas Cardenas, D., et al. (2013) U6 Is Unsuitable for Normalization of Serum miRNA Levels in Patients with Sepsis or Liver Fibrosis. Experimental & Mo-lecular Medicine, 45, e42.
https://doi.org/10.1038/emm.2013.81