免疫检查点抑制剂治疗黑色素瘤患者的疗效
Efficacy of Immune Checkpoint Inhibitors in Treating Patients with Melanoma
摘要: 黑色素瘤是一种起源于黑色素细胞的恶性肿瘤,它是仅次于基底细胞癌和鳞状细胞癌的第三大常见皮肤恶性肿瘤,也是最具侵袭性的皮肤癌,易发生转移而具有较高的致死率。晚期黑色素瘤在历史上一直是一种难以治疗的疾病,因为系统性的治疗方案很少。然而,在过去的几年里,科学的进步导致了新型治疗方法的批准,改变了晚期黑色素瘤的一线管理,其中免疫检查点抑制可以说在黑色素瘤肿瘤学领域和其他领域产生了最大的兴奋。细胞毒性t淋巴细胞相关蛋白4 (CTLA-4)和程序性死亡受体(PD-1)是一种免疫检查点分子,是公认的抗体的靶点,是治疗恶性黑色素瘤的免疫疗法,其功能是控制免疫反应的起始、持续时间和幅度。靶向CTLA-4和PD-1的ICIs已经彻底改变了晚期黑色素瘤和许多其他恶性肿瘤的管理。本文对免疫检查点抑制剂(ICIs)治疗恶性黑色素瘤的疗效进行综述。
Abstract: Melanoma is a malignant tumor that originates from melanocytes. It is the third most common skin malignancy after basal cell carcinoma and squamous cell carcinoma, and is also the most aggressive skin cancer with a high lethality rate due to its tendency to metastasize. Advanced melanoma has historically been a difficult disease to treat because there are few systemic treatment options. However, in the past few years, scientific advances have led to the approval of novel therapeutic ap-proaches that have transformed the first-line management of advanced melanoma, with immune checkpoint inhibition arguably generating the most excitement in the field of melanoma oncology and beyond. Cytotoxic t lymphocyte-associated protein 4 (CTLA-4) and programmed death receptor (PD-1) are immune checkpoint molecules that are recognized targets of antibodies and immuno-therapies for the treatment of malignant melanoma, which function to control the initiation, dura-tion and magnitude of the immune response. ICIs targeting CTLA-4 and PD-1 have revolutionized the management of advanced melanoma and many other malignancies. This article reviews the ef-ficacy of immune checkpoint inhibitors (ICIs) for the treatment of malignant melanoma.
文章引用:马玉婷. 免疫检查点抑制剂治疗黑色素瘤患者的疗效[J]. 临床医学进展, 2023, 13(7): 11691-11698. https://doi.org/10.12677/ACM.2023.1371638

1. 引言

恶性黑色素瘤(malignant melanoma)是一种高度侵袭性肿瘤,对人类健康和生命构成较大威胁。据统计,每年全世界估计有超过28万新发患者,死亡病例6万多 [1] 。全球范围内,发病率和死亡率差异显著,据调查,恶性黑色素瘤发病率仅占皮肤恶性肿瘤的5%左右,但却构成其死亡率的75%,主要与发现和处理的时机有关。早期病变,完全可以通过手术方式处理;晚期病变,治疗手段有限,且疗效常常差强人意。回顾黑色素瘤的发生历程,其常与MAPK通路和 PI3K-AKT-mTOR 通路异常有关,若从肿瘤免疫的角度看,则常与机体免疫系统失衡有关 [2] 。传统治疗转移性黑色素瘤的主要方法有达卡巴嗪,替莫唑胺,福莫司汀或紫杉烷类等药物进行化疗。但是,这些化疗的方法并不能显著增加患者生存率。随着免疫检查点抑制剂的出现,利用免疫系统的力量和有效治疗转移性黑色素瘤患者的潜力终于被实现了。在过去的十年中以免疫检查点抑制剂为首的免疫治疗可显著延长患者OS,降低死亡及复发风险,改善无进展生存期 [3] 。人们早就知道,免疫系统在黑色素瘤的自然史中发挥着作用,其通过抑制t细胞表面的负性免疫调节分子的功能,增强t细胞的抗肿瘤免疫应答,进而产生抗肿瘤的免疫效应。原发性黑色素瘤的自发性部分或完全消退是有充分记录的,并被认为是相当常见的发生。晚期转移性疾病的完全消退并不常见,但已经被描述了很多次,文献报道的病例早在19世纪晚期的 [4] 。

目前在黑色素瘤治疗中研究最广泛的免疫检查点有细胞毒性t淋巴细胞相关蛋白(Cytotoxic t lymphocyte-associated protein, CTLA-4)和程序性细胞死亡蛋白1 (Programmed cell death protein, PD-1)等 [5] 。

2. ICIs生物学

免疫检查点的一个重要方面是它们在维持自我耐受性方面的作用——即避免自身免疫,而这对于防止在对感染的免疫反应过程中对正常组织的损害是必要的。有多个免疫检查点可以导致激活和抑制信号,因此它们形成一个复杂的调节网络。虽然免疫检查点在一些免疫细胞上表达,但在过去的三十年里,研究的一个主要焦点是它们在t淋巴细胞功能中的作用。逃避免疫系统是癌症生长所需的许多特征之一;颠覆免疫检查点是这种情况发生的一种方式,从而为治疗操作提供了机会。两个最与临床相关的检查点,CTLA-4和PD-1作为抗癌免疫反应的刹车。在动物模型中,这些受体的抑制剂可以消除肿瘤 [6] 。此外,由于它们在t细胞激活中不同但互补的作用点,联合阻断增加了肿瘤效应t细胞浸润和效应t细胞与髓系来源的抑制细胞比例的增加,以及同时产生干扰素(IFN)-γ和肿瘤坏死因子(TNF)-α的CD8阳性t细胞的数量。这些观察结果表明,肿瘤特异性t细胞可以通过抑制PD-1或CTLA-4检查点,或两者都被扩展和刺激来执行抗肿瘤功能。为了防止自身免疫,许多免疫检查点通路在免疫反应过程中的多个步骤中调节t细胞的激活 [7] [8] 。其中一些检查点与t细胞的激活有关。其中一种蛋白B7在apc表面表达,它与t细胞上表达的CD28相互作用导致t细胞活化。其他的蛋白质也参与了免疫反应的下调。细胞毒性t淋巴细胞相关蛋白4 (CTLA-4)在活化的t细胞上表达,并与APCs上的B7相互作用,导致t细胞抑制 [9] [10] 。有证据表明CTLA-4信号也参与了t细胞发育的早期 [11] 。体内研究表明,阻断CTLA-4的抗体导致t细胞活化增加,对肿瘤的免疫反应增加,这在体外得到了证实 [12] [13] 。另一个抑制性检查点涉及到程序性死亡蛋白1 (PD-1)及其配体PD-L1和PD-L2的相互作用。PD-1是CD28家族的成员,参与免疫抑制并与t细胞衰竭相关 [14] [15] [16] 。PD-1与PD-L1和PD-L2结合,导致效应t细胞反应的限制 [17] 。虽然CTLA-4和PD-1是目前免疫检查点相互作用,但免疫系统中存在许多刺激和抑制性相互作用。人们不断努力针对这些新的检查点,并继续更好地理解在免疫系统内发生的信号。研究表明,CTLA-4和PD-1导致t细胞激活变化的机制存在差异 [18] 。这些检查点通路的差异为联合治疗提供了机会。

3. CTLA-4抗体

CTLA-4是一种免疫球蛋白细胞表面受体,是t细胞活化 [19] [20] 的抑制剂。在被幼稚t细胞 [21] 和FoxP3激活后,它主要在幼稚的t细胞上表达 + 调节性t细胞(Tregs) [22] 。t细胞的激活不仅依赖于TCR与通过APC呈递的抗原结合,还依赖于共刺激第二信号的存在,通常是通过将t细胞上表达的CD28与APC上发现的CD80/86结合。这种次级信号的缺失可能导致t细胞识别所呈现的肽为“自身抗原”或对该抗原产生耐受性。CTLA-4是CD28的竞争性同源物,与CD28 [23] 相比,对CD80 (B7-1)的亲和力更高,CD86 (B72)的程度较低,导致t细胞共刺激的抑制TCR信号通路可立即上调细胞的表达表面CTLA-4表达,在 [21] [22] [24] 激活后2~3天达到峰值,在t细胞激活时提供一个负反馈回路。在t细胞激活 [25] 后,细胞内囊泡内的CTLA-4也被快速运输到免疫突触。在免疫突触上,CTLA-4通过CD80/CD86的结合来稳定,使其能够收集和抑制CD28的结合。CTLA-4限制CD28下游信号通路,抑制PI3K和AKT通路 [26] CTLA-4与CD80/86的结合,介导了一个细胞内的负反馈通路,通过酪氨酸磷酸酶SHP-2和丝氨酸/苏氨酸磷酸酶PP2A来实现,去磷酸化信号激酶进一步下游。此外,CTLA-4作用于细胞外,从附近的细胞中去除CD28配体CD80/86。通过体内的反内吞作用,包括APCs,进一步抑制t细胞活化 [27] 。

伊匹单抗治疗不可切除的III期或IV期黑色素瘤的有效性最初在两项随机III期临床试验中得到证实。在一项对既往接受过转移性疾病治疗的患者的研究中,676名受试者按3:1:1的比例随机接受伊匹单抗加糖蛋白100疫苗(gp100)、单独使用伊匹单抗或单独使用gp100 [28] 。伊匹单抗每3周给予一次,连续4个周期,剂量为3 mg/kg体重。伊匹单抗 + gp100组的中位总生存期为10.0个月,单独伊匹单抗组为10.1个月,单独gp100组为6.4个月。伊匹单抗单独组的最佳总缓解效率为10.9%,而gp100单独组为1.5%。在接受伊匹单抗治疗的患者中,高达15%的患者发生了3%或4级免疫相关不良事件,3%的患者单独使用gp100治疗时发生了3级免疫相关不良事件。(3级或4级不良事件严重危及生命或致残,经常需要干预)。有14例与研究药物相关的死亡(2.1%),其中7例是由于免疫相关的不良事件。该试验的结果导致伊匹单抗于2011年在美国获得批准,随后也在包括欧洲和澳大利亚在内的其他司法管辖区获得批准 [28] 。与伊匹单抗相关的毒性也非常不同,并遵循与传统化疗非常不同的模式。自身免疫性毒性包括结肠炎、垂体炎、肝炎、胰腺炎和许多其他毒性被记录。这些毒性的治疗包括使用类固醇的免疫抑制或其他免疫抑制。这些毒性的模式也很新颖,在患者开始治疗后几周至几个月就会出现严重的副作用 [29] 。伊匹单抗是第一个在晚期黑色素瘤治疗中显示出生存获益的治疗方法,并成为后续治疗方法开发的标准疗法。

一项包括10项前瞻性和2项回顾性研究中1861例接受伊匹单抗治疗的黑色素瘤的汇总分析显示,3年后的生存平台期为21% [30] 。随后,在一项随机III期研究中,伊匹单抗采用两种不同的治疗方案(10 mg/kg和3 mg/kg)进行测试 [31] 。接受10 mg/kg治疗的患者获得了更长的OS (15.7个月对11.5个月),但经历了更高的毒性率,主要表现为腹泻、结肠炎、肝炎和垂体炎 [31] 。此外,伊匹单抗在脑受累患者中的疗效得到了证实:无症状和有症状的类固醇治疗患者的疾病控制率分别为18%和5% [32] 。在无症状的中枢神经系统(Central Nervous System, CNS)转移的患者中,伊匹单抗联合福莫司汀联合治疗为3年。操作系统率为27.8% [33] 。

4. PD-1和PDL-1的抗体

PD-1是由活化的t细胞和B细胞表达的CD28家族的免疫抑制受体。它有两个配体,PD-L1和PD-L2,它们是B7家族的成员。这些配体在免疫细胞如巨噬细胞和单核细胞等免疫细胞上表达。非免疫细胞也可以表达PD-1的配体,主要是PD-L1,肿瘤细胞可以利用这种机制来避免免疫攻击 [34] 。针对PD-1和PD-L1的单克隆抗体已经被开发出来来中断这一免疫抑制途径,并激活t细胞对肿瘤细胞的反应。与在引流淋巴结的t细胞启动期起作用的CTLA-4抑制剂相比,PD-1/PD-L1抑制剂通过在肿瘤水平上阻断t细胞–肿瘤抑制相互作用而在效应期发挥作用。这些抗体对多种肿瘤类型表现出显著的临床活性。黑色素瘤是这些药物的突出的测试案例,因为它通常过表达PD-L1,而且除了针对50%BRAF突变的肿瘤外,很少有其他有效的全身药物治疗。

阻断PD-1以克服免疫抵抗成为黑色素瘤研究的一个活跃领域,几乎同时产生了两种抗体。尼鲁单抗和派姆单抗是对PD-1有直接活性的抗体。Nivolumab最初在一项I期研究中进行了测试,该研究招募了黑色素瘤、非小细胞肺癌、去势耐药前列腺癌、肾细胞癌或结肠直肠癌患者。共纳入296例患者,94例晚期黑色素瘤患者的缓解率为28%。此外,毒性发生率较低,只有14%的3级或4级药物相关不良事件 [35] 。派姆单抗最初在135例晚期黑色素瘤患者中进行了测试,应答率为38%。此外,观察到大多数患者的反应是持久的。不良事件总体上主要为1级或2 [36] 。这两种药物在晚期黑色素瘤中的III期试验进展。在一项对405名对伊匹单抗难治性的晚期黑色素瘤患者的研究中,将尼鲁单抗与化疗进行了比较。本研究的患者随机以2:1选择尼鲁单抗,尼鲁单抗组的应答率为31.7%,而化疗组为10.6% [37] 。另一项研究观察了未经治疗的无BRAF突变的晚期黑色素瘤患者。本研究随机将418名患者分为尼鲁单抗或达卡巴嗪。尼鲁单抗组的应答率为40%,而达卡巴嗪组为13.9%。此外,该试验还显示了总体生存率的获益尼鲁单抗组的1年总生存率为72.9%,而达卡巴嗪组为42.1% [38] 。这些研究的毒性率同样有利于早期试验。

派姆单抗在一项3期研究中进行了评估,该研究比较了派姆单抗与伊匹单抗的两种给药方案。共纳入834例晚期黑色素瘤患者,并按1:1:1的比例随机分组。2个派姆单抗给药组的总缓解率分别为33.7%和32.9%,而伊匹单抗组的总缓解率分别为11.9%。派姆单抗组的12个月生存率分别为74.1%和68.4%,而伊匹单抗组分别为58.2%。毒性较低,在派姆单抗组中,分别有13.3%和10.1%的患者出现3~5级毒性。这些研究将尼鲁单抗和派姆单抗作为转移性黑色素瘤在一线或其他癌症指导治疗后的标准治疗选择 [39] 。此外,他们显示了良好的毒性和罕见但显著的自身免疫副作用。Weber在CheckkMate037随机III期研究中比较了尼鲁单抗(3 mg/kg q2 w)和研究人员选择的化疗(达卡巴嗪或卡铂加紫杉醇)。该研究纳入了405名既往在BRAF突变时接受伊匹单抗和抗BRAF药物治疗的患者 [40] 。抗PD-1治疗的OS为16个月,化疗为14个月,ORR为27%和10%,中位反应持续时间(DOR)为32个月和13个月 [41] 。有9%的患者报告了G3/G4 AEs。

5. 联合使用抗PD-1和抗CTLA-4

早期观察显示,CTLA-4抑制和PD-1抑制之间存在差异。这两种受体调节t细胞激活的机制是不同的 [42] 。此外,这些不同受体的活性位置表明,它们在淋巴结中发挥了更多的CTLA-4信号,在组织或肿瘤中有更多的PD-1信号。CTLA-4和PD-1是共抑制分子,然而,有证据表明,它们通过不同的非冗余机制抑制t细胞的激活,可能在t细胞进化的不同位置和时间点发挥作用。与单药治疗相比,抗CTLA-4和抗PD-1联合治疗可能会提高临床结果。在0673期研究中,945例IV期或不可切除的III期患者被随机分配到尼鲁单抗 + 伊匹单抗联合或尼鲁单抗单药治疗或伊匹单抗单药治疗。在31.1%的患者中检测到BRAF突变。该研究旨在评估尼鲁单抗 + 伊匹单抗与伊匹单抗和尼鲁单抗与伊匹单抗之间的优越性,但没有预先确定尼鲁单抗 + 伊匹单抗和单独使用尼鲁单抗之间的直接比较。经过36个月的随访,与伊匹单抗相比,尼鲁单抗 + 治疗PFS、OS和RR (57.6% vs 19%)。5该研究报道了尼鲁单抗 + 伊匹单抗的中位PFS为11个月,单独抗PD-1为6.9个月,单独抗CTLA-4为2.9个月。对于PD-L1阳性患者,联合组和单药尼鲁单抗组的mPFS均为14.0个月,但在PD-L1阴性患者中,mPFS为11。尼鲁单抗 + 伊匹单抗2个月,尼鲁单抗5.3个月。联合组G3/G4 AEs发生率为55%,单独尼鲁单抗为16.3%,单药伊匹单抗为27.3%;联合组为36.4%患者,尼鲁单抗组为7.7%,伊匹单抗组为14.8%患者因毒性中断治疗 [43] 。3年后,联合治疗组58%的患者存活,尼鲁单抗组52%的患者存活,伊匹单抗组34%的患者存活 [44] 。5年后,尼鲁单抗 + 伊匹单抗保持其疗效,与单独使用尼鲁单抗36.9个月和单独使用伊匹单抗19.9个月相比,mOS未达到 [45] 。抗CTLA-4和抗PD-1联合治疗提供了潜在的优越疗效,这可能归因于每种药物以互补甚至协同的方式发挥作用。

6. ICI毒性

然而,改变免疫系统可能随后导致特定临床谱的各种自身免疫表现的发展,称为免疫相关不良事件(irAEs)。因为这些作用被认为是来自于整体免疫增强,所以它们可能潜在地影响身体的任何系统,但主要涉及皮肤、结肠、肺、内分泌腺和肝脏 [46] 。器官特异性、irAEs的发生率和严重程度因每种特定药物及其剂量而异,但它们也因肿瘤类型而异 [47] 。对于联合ICI治疗,3~4级irAEs的发生率明显更高:Check Mate-067试验报告了59%的3~4级不良事件,这些不良事件发生于ipilimumab 3 mg/kg加nivolumab 1 mg/kg (每3周给药4次),随后是nivolumab 3 mg/kg (每2周给药1次) (用于未治疗的黑色素瘤) [48] 。在相同的情况下,对于进行性小细胞肺癌患者,CheckMate-032在ipilimumab 1 mg/kg加nivolumab 3 mg/kg (每3周一次)的四个剂量队列中占19%的严重irAEs,在ipilimumab 3 mg/kg加nivolumab 1 mg/kg (每3周一次)的四个剂量队列中占30%的严重irAEs (两个队列均每2周服用nivolumab 3 mg/kg) [49] 。

由抗PD-1抗体引起的irAEs的发生时间尚不明确,但它显示出比抗CTLA-4毒性稍晚的趋势。在 对接受nivolumab治疗的患者进行的汇总分析中,皮肤性irae的发病时间约为5周,胃肠道为7周,肝脏为8周,肺部为9周,内分泌为10周,肾毒性为15周 [50] [51] 。然而,抗PD1 irAEs的发生率并未在多项ple试验中显示出一致的时间表,目前尚不清楚。

7. 结论

免疫检查点抑制剂通过靶向t细胞中的免疫调节途径以增强抗肿瘤免疫应答,从而杀死肿瘤细胞。ICI联合治疗为癌症患者提供了新的治疗方式选择并且有可能达到治愈。黑色素瘤患者通过ICI联合治疗有明显的生存获益。ICI已成为癌症治疗的核心支柱,具有持久的反应以及通常可控制的毒性,因此成为癌症患者一种极具吸引力且广泛使用的治疗选择。在临床实践和未来黑素瘤患者的研究设计中应考虑ICI联合治疗的方式。免疫检查点抑制在治疗黑色素瘤的过程中已经牢固确立,并有可能继续扩大。

参考文献

[1] Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[2] Schadendorf, D., Van Akkooi, A.C.J., Berking, C., et al. (2018) Melano-ma. The Lancet, 392, 971-984.
https://doi.org/10.1016/S0140-6736(18)31559-9
[3] Zaremba, A., Zimmer, L., Griewank, K.G., et al. (2020) Im-munotherapy Beim Malignant Melanoma. Der Internist, 61, 669-675.
https://doi.org/10.1007/s00108-020-00812-1
[4] Bennet, W.H. (1899) Some Peculiarities in the Behaviour of Certain Malignant and Innocent Growths. The Lancet, 153, 3-7.
https://doi.org/10.1016/S0140-6736(01)78943-X
[5] Petrova, V., Arkhypov, I., Weber, R., et al. (2020) Modern Aspects of Immunotherapy with Checkpoint Inhibitors in Melanoma. International Journal of Molecular Sciences, 21, Article 2367.
https://doi.org/10.3390/ijms21072367
[6] Curran, M.A., Montalvo, W., Yagita, H. and Allison, J.P. (2010) PD-1 and CTLA-4 Combination Blockade Expands Infiltrating T Cells and Reduces Regulatory T and Myeloid Cells within B16 Melanoma Tumors. Proceedings of the National Academy of Sciences of the United States of America, 107, 4275-4280.
https://doi.org/10.1073/pnas.0915174107
[7] Goldrath, A.W. and Bevan, M.J. (1999) Selecting and Maintaining a Diverse T-Cell Repertoire. Nature, 402, 255-262.
https://doi.org/10.1038/46218
[8] Fife, B.T. and Bluestone, J.A. (2008) Control of Peripheral T-Cell Tolerance and Autoimmunity via the CTLA-4 and PD-1 Pathways. Immunological Reviews, 224, 166-182.
https://doi.org/10.1111/j.1600-065X.2008.00662.x
[9] Walunas, T.L., Lenschow, D.J., Bakker, C.Y., et al. (1994) CTLA-4 Can Function as a Negative Regulator of T Cell Activation. Immunity, 1, 405-413.
https://doi.org/10.1016/1074-7613(94)90071-X
[10] Krummel, M.F. and Allison, J.P. (1995) CD28 and CTLA-4 Have Opposing Effects on the Response of T Cells to Stimulation. Journal of Experimental Medicine, 182, 459-465.
https://doi.org/10.1084/jem.182.2.459
[11] Brunner, M.C., Chambers, C.A., Chan, F.K., et al. (1999) CTLA-4-Mediated Inhibition of Early Events of T Cell Proliferation. The Journal of Immunology, 162, 5813-5820.
https://doi.org/10.4049/jimmunol.162.10.5813
[12] Leach, D.R., Krummel, M.F. and Allison, J.P. (1996) En-hancement of Antitumor Immunity by CTLA-4 Blockade. Science, 271, 1734-1736.
https://doi.org/10.1126/science.271.5256.1734
[13] Van Elsas, A., Hurwitz, A.A. and Allison, J.P. (1999) Combi-nation Immunotherapy of B16 Melanoma Using Anti-Cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4) and Granulocyte/Macrophage Colony-Stimulating Factor (GM-CSF)-Producing Vaccines Induces Rejection of Subcutaneous and Metastatic Tumors Accompanied by Autoimmune Depigmentation. Journal of Experimental Medicine, 190, 355-366.
https://doi.org/10.1084/jem.190.3.355
[14] Koga, N., Suzuki, J., Kosuge, H., et al. (2004) Blockade of the Interac-tion between PD-1 and PD-L1 Accelerates Graft Arterial Disease in Cardiac Allografts. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 2057-2062.
https://doi.org/10.1161/01.ATV.0000145015.23656.e4
[15] Hirano, F., Kaneko, K., Tamura, H., et al. (2005) Blockade of B7-H1 and PD-1 by Monoclonal Antibodies Potentiates Cancer Therapeutic Immunity. Cancer Research, 6, 1089-1096.
https://doi.org/10.1158/0008-5472.1089.65.3
[16] Day, C.L., Kaufmann, D.E., Kiepiela, P., et al. (2006) PD-1 Expression on HIV-Specific T Cells Is Associated with T-Cell Exhaustion and Disease Progression. Nature, 443, 350-354.
https://doi.org/10.1038/nature05115
[17] Keir, M.E., Butte, M.J., Freeman, G.J., et al. (2008) PD-1 and Its Ligands in Tolerance and Immunity. Annual Review of Immunology, 26, 677-704.
https://doi.org/10.1146/annurev.immunol.26.021607.090331
[18] Parry, R.V., Chemnitz, J.M., Frauwirth, K.A., et al. (2005) CTLA-4 and PD-1 Receptors Inhibit T-Cell Activation by Distinct Mechanisms. Molecular and Cellular Bi-ology, 25, 9543-9553.
https://doi.org/10.1128/MCB.25.21.9543-9553.2005
[19] Krummel, M.F. and Allison, J.P. (1996) CTLA-4 En-gagement Inhibits IL-2 Accumulation and Cell Cycle Progression Upon Activation of Resting T Cells. Journal of Ex-perimental Medicine, 183, 2533-2540.
https://doi.org/10.1084/jem.183.6.2533
[20] Walunas, T.L., Lenschow, D.J., Bakker, C.Y., Linsley, P.S., Freeman, G.J., Green, J.M., Thompson, C.B., et al. (1994) CTLA-4 Can Function as a Negative Regulator of T Cell Activation. Immunity, 1, 405-413.
https://doi.org/10.1016/1074-7613(94)90071-X
[21] Alegre, M.L., Noel, P.J., Eisfelder, B.J., Chuang, E., Clark, M.R., Reiner, S.L. and Thompson, C.B. (1996) Regulation of Surface and Intracellular Expression of CTLA4 on Mouse T Cells. The Journal of Immunology, 157, 4762-4770.
https://doi.org/10.4049/jimmunol.157.11.4762
[22] Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., Mak, T.W., et al. (2000) Immunologic Self-Tolerance Maintained by CD25+CD4+ Regulatory T Cells Constitutively Expressing Cytotoxic T Lymphocyte-Associated Antigen 4. Journal of Experimental Medicine, 192, 303-310.
https://doi.org/10.1084/jem.192.2.303
[23] Sansom, D.M. (2000) CD28, CTLA-4 and Their Ligands: Who Does What and to Whom? Immunology, 101, 169-177.
https://doi.org/10.1046/j.1365-2567.2000.00121.x
[24] Linsley, P.S., Bradshaw, J., Greene, J., Peach, R., Bennett, K.L. and Mittler, R.S. (1996) Intracellular Trafficking of CTLA-4 and Focal Localization towards Sites of TCR Engage-ment. Immunity, 4, 535-543.
https://doi.org/10.1016/S1074-7613(00)80480-X
[25] Egen, J.G. and Allison, J.P. (2002) Cytotoxic T Lymphocyte Antigen-4 Accumulation in the Immunological Synapse Is Regulated by TCR Signal Strength. Immunity, 16, 23-35.
https://doi.org/10.1016/S1074-7613(01)00259-X
[26] Nishimura, H., Okazaki, T., Tanaka, Y., Nakatani, K., Hara, M., Matsumori, A., Sasayama, S., et al. (2001) Autoimmune Dilated Cardiomyopathy in PD-1 Receptor-Deficient Mice. Science, 291, 319-322.
https://doi.org/10.1126/science.291.5502.319
[27] Qureshi, O.S., Zheng, Y., Nakamura, K., Attridge, K., Manzotti, C., Schmidt, E.M., Baker, J., et al. (2011) Trans-Endocytosis of CD80 and CD86: A Molecular Basis for the Cell-Extrinsic Function of CTLA-4. Science, 332, 600-603.
https://doi.org/10.1126/science.1202947
[28] Hodi, F.S., O’day, S.J., Mcdermott, D.F., et al. (2010) Improved Survival with Ipilimumab in Patients with Metastatic Mela-noma. The New England Journal of Medicine, 363, 711-723.
[29] Cybulska-Stopa, B., et al. (2020) Efcacy of Ipili-mumab after Anti-PD-1 Therapy in Sequential Treatment of Metastatic Melanoma Patients-Real World Evidence. Ad-vances in Medical Sciences, 65, 316-323.
https://doi.org/10.1016/j.advms.2020.05.005
[30] Shrikant, P., Khoruts, A. and Mescher, M.F. (1999) CTLA-4 Blockade Reverses CD8+T Cell Tolerance to Tumor by a CD4+ T Cell- and IL-2-Dependent Mechanism. Immunity, 11, 483-493.
https://doi.org/10.1016/S1074-7613(00)80123-5
[31] Hodi, F.S., O’Day, S.J., McDermott, D.F., Weber, R.W., Sosman, J.A., Haanen, J.B., Gonzalez, R., Robert, C., Schadendorf, D., Hassel, J.C., et al. (2010) Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. The New England Journal of Medicine, 363, 711-723.
https://doi.org/10.1056/NEJMoa1003466
[32] Namikawa, K., Kiyohara, Y., Takenouchi, T., Uhara, H., Uchi, H., Yoshikawa, S., Takatsuka, S., Koga, H., Wada, N., Minami, H., et al. (2018) Efficacy and Safety of Nivolumab in Com-bination with Ipilimumab in Japanese Patients with Advanced Melanoma: An Open-Label, Single-Arm, Multicentre Phase II Study. European Journal of Cancer, 105, 114-126.
https://doi.org/10.1016/j.ejca.2018.09.025
[33] McDermott, D., Haanen, J., Chen, T.T., Lorigan, P. and O’Day, S. (2013) Efficacy and Safety of Ipilimumab in Metastatic Melanoma Patients Surviving More than 2 Years Following Treatment in a Phase III Trial (MDX010-20). Annals of Oncology, 24, 2694-2698.
https://doi.org/10.1093/annonc/mdt291
[34] Zou, W. and Chen, L. (2008) Inhibitory B7-Family Molecules in the Tumour Microenvironment. Nature Reviews Immunology, 8, 467-477.
https://doi.org/10.1038/nri2326
[35] Tsutsumida, A., et al. (2019) Japanese Real-World Study of Sequential Nivolumab and Ipilimumab Treament in Melanoma. The Journal of Dermatology, 46, 947-955.
https://doi.org/10.1111/1346-8138.15073
[36] Fujisawa, Y., et al. (2018) Retrospective Study of Advanced Mela-noma Patients Treated with Ipilimumab after Nivolumab: Analysis of 60 Japanese Patients. Journal of Dermatological Science, 89, 60-66.
https://doi.org/10.1016/j.jdermsci.2017.10.009
[37] Muto, Y., et al. (2019) Investigation of Clinical Factors Asso-ciated with Longer Overall Survival in Advanced Melanoma Patients Treated with Sequential Ipilimumab. The Journal of Dermatology, 46, 498-506.
https://doi.org/10.1111/1346-8138.14865
[38] Baron, K., et al. (2020) Comparative Effectiveness of Second-Line Ipilimumab vs Nivolumab in Combination with Ipilimumab in Patients with Advanced Melanoma Who Received Front-line Anti-PD-1 Antibodies. Journal of Oncology Pharmacy Practice, 27, 555-559.
https://doi.org/10.1177/1078155220924719
[39] Mehmi, I. and Hill, J. (2018) Ipilimumab with Anti PD-1 (Nivovlumab or Pembrolizumab) after Progression on First Line Anti-PD-1 Therapy for Advanced Melanoma. Journal of Clinical Oncology, 36, e21552.
https://doi.org/10.1200/JCO.2018.36.15_suppl.e21552
[40] Schadendorf, D., Hodi, F.S., Robert, C., Weber, J.S., Margolin, K., Hamid, O., Patt, D., Chen, T.T., Berman, D.M. and Wolchok, J.D. (2015) Pooled Analysis of Long-Term Survival Data from Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. Journal of Clinical Oncology, 33, 1889-1894.
https://doi.org/10.1200/JCO.2014.56.2736
[41] Ascierto, P.A., Del Vecchio, M., Robert, C., Mackiewicz, A., Chi-arionSileni, V., Arance, A., Lebbé, C., Bastholt, L., Hamid, O., Rutkowski, P., et al. (2017) Ipilimumab 10 mg/kg versus Ipilimumab 3 mg/kg in Patients with Unresectable or Metastatic Melanoma: A Randomised, Doubleblind, Multicentre, Phase 3 Trial. The Lancet Oncology, 18, 611-622.
https://doi.org/10.1016/S1470-2045(17)30231-0
[42] Institute, N.C. (2017) Common Terminology Criteria for Adverse Events (CTCAE) v5.0.
https://ctep.cancer.gov/protocolDevelopment/ electronic_applications/docs/CTCAE_v5_Quick_Reference _5x7.pdf
[43] Robert, C., Long, G.V., Brady, B., Dutriaux, C., Maio, M., Mortier, L., Hassel, J.C., Rutkowski, P., McNeil, C., Kalinka-Warzocha, E., et al. (2015) Nivolumab in Previously Untreated Melanoma without BRAF Mutation. The New England Journal of Medicine, 372, 320-330.
https://doi.org/10.1056/NEJMoa1412082
[44] Sullivan, R.J., Hamid, O., Gonzalez, R., Infante, J.R., Patel, M.R., Hodi, F.S., Lewis, K.D., Tawbi, H.A., Hernandez, G., Wongchenko, M.J., et al. (2019) Atezolizumab plus Cobimetinib and Vemurafenib in BRAF-Mutated Melanoma Patients. Nature Medicine, 25, 929-935.
[45] Ascierto, P.A., Long, G.V., Robert, C., Brady, B., Dutriaux, C., Di Giacomo, A.M., Mortier, L., Hassel, J.C., Rutkowski, P., McNeil, C., et al. (2019) Survival Outcomes in Patients with Previously Untreated Brafwild-Type Advanced Melanoma Treated with Nivolumab Therapy: Three-Year Follow-Up of a Randomized Phase 3 Trial. JAMA Oncology, 5, 187-194.
https://doi.org/10.1001/jamaoncol.2018.4514
[46] Michot, J.M., Bigenwald, C., Champiat, S., et al. (2016) Immune-Related Adverse Events with Immune Checkpoint Blockade: A Comprehensive Review. Euro-pean Journal of Cancer, 54, 139-148.
https://doi.org/10.1016/j.ejca.2015.11.016
[47] Marrone, K.A., Ying, W. and Naidoo, J. (2016) Immunerelated Adverse Events from Immune Checkpoint Inhibitors. Clinical Pharmacology & Therapeutics, 100, 242-251.
https://doi.org/10.1002/cpt.394
[48] Wolchok, J.D., Chiarion-Sileni, V., Gonzalez, R., et al. (2017) Overall Surviv-al with Combined Nivolumab and Ipilimumab in Advanced Melanoma. The New England Journal of Medicine, 377, 1345-1356.
https://doi.org/10.1056/NEJMoa1709684
[49] Antonia, S.J., Lopez-Martin, J.A., Bendell, J., et al. (2016) Nivolumab Alone and Nivolumab plus Ipilimumab in Recurrent Small-Cell Lung Cancer (CheckMate032): A Multicentre, Open-Label, Phase 1/2 Trial. The Lancet Oncology, 17, 883-895.
https://doi.org/10.1016/S1470-2045(16)30098-5
[50] Weber, J.S., Hodi, F.S., Wolchok, J.D., et al. (2017) Safety Profile of Nivolumab Monotherapy: A Pooled Analysis of Patients with Advanced Melanoma. Journal of Clinical On-cology, 35, 785-792.
https://doi.org/10.1200/JCO.2015.66.1389
[51] Larkin, J., Lao, C.D., Urba, W.J., et al. (2015) Efficacy and Safety of Nivolumab in Patients with BRAF V600 Mutant and BRAF Wild-Type Advanced Melanoma: A Pooled Analysis of 4 Clinical Trials. JAMA Oncology, 1, 433-440.
https://doi.org/10.1001/jamaoncol.2015.1184