DOK家族在急性髓系白血病中的预后作用
Prognostic Role of the DOK Family in Acute Myeloid Leukemia
DOI: 10.12677/ACM.2023.1371696, PDF, HTML, XML, 下载: 238  浏览: 284 
作者: 周心怡:延安大学附属医院,陕西 延安
关键词: 急性髓系白血病DOK家族Acute Myeloid Leukemia DOK Family
摘要: 急性髓系白血病是一种异质性恶性血液学系统,其特征是骨髓和外周血中的白血病细胞浸润,其发病率和相关死亡率迅速增加,在过去的30年中几乎翻了一番。估计2年和5年总生存率分别为32.0%和24.0%,明显低于其他白血病亚型。主要驱动突变,共发突变和复杂的基因–基因交互作用是白血病异质性原因,并影响患者生活质量。基因突变和表达谱可以帮助识别不同的预后亚组。然而,关于预后的标准指南缺乏共识,随着测序技术和生物信息学资源的发展,迫切需要发现和评估新的标记物,为诊断评估、生存预测和治疗方案提供可靠的临床指导。酪氨酸激酶(DOK)蛋白的下游是一个多基因的衔接子家族;其中一些是免疫细胞信号传导的关键负调节剂。然而,DOK家族在AML中的表达和临床意义很少被研究。
Abstract: Acute myeloid leukemia is a heterogeneous hematologic malignancy characterized by infiltration of leukemia cells in bone marrow and peripheral blood, with rapidly increasing morbidity and associ-ated mortality, which has nearly doubled over the past 30 years. The estimated 2-year and 5-year overall survival rates were 32.0% and 24.0%, respectively, significantly lower than those of other leukemia subtypes. Major driver mutations, co-occurring mutations, and complex gene-gene inter-actions contribute to leukemic heterogeneity and affect patient quality of life. Gene mutations and expression profiles can help identify different prognostic subgroups. However, there is a lack of consensus on standard guidelines for prognosis, and with the development of sequencing technolo-gy and bioinformatics resources, there is an urgent need to discover and evaluate new markers to provide reliable clinical guidance for diagnostic assessment, survival prediction, and treatment op-tions. The downstream tyrosine kinase (DOK) protein is a multigene bridging subfamily; some of them are key negative regulators of immune cell signaling. However, the expression and clinical significance of the DOK family in AML have rarely been studied.
文章引用:周心怡. DOK家族在急性髓系白血病中的预后作用[J]. 临床医学进展, 2023, 13(7): 12094-12099. https://doi.org/10.12677/ACM.2023.1371696

1. DOK家族在急性髓系白血病中的作用

1.1. DOK家族简介

DOK (downstream of tyrosine kinase/Docking protein)家族蛋白是一类能应答部分RTK的胞浆信号蛋白,具有结构相似性,其结构特征包括NH2末端的PH结构域和中间的PTB结构域以及COOH末端的SH2目标基序。其家族的成员都具有典型的结构特征:N端的PH结构域,负责将蛋白定位到细胞膜上;中间的磷酸化酪氨酸结合结构域,介导DOK家族蛋白与磷酸化酪氨酸的结合;C端序列富含脯氨酸,可作为活化的蛋白酪氨酸激酶诱导的信号复合物组装的平台 [1] 。下游的酪氨酸激酶(DOK)家族蛋白已被证明在其中发挥重要作用具有适配器功能的免疫受体信号,DOK家族蛋白在肿瘤发生、神经系统发育、胰岛素抵抗、免疫调节等方面具有重要的调节作用。有趣的是,尽管DOK家族的所有成员都具有相似的结构,但它们根据周围环境发挥不同甚至相反的作用 [2] [3] [4] [5] 。作为一种适应者,由于信号蛋白的多个停靠位点,DOK蛋白既可作为致癌蛋白又可作为肿瘤抑制蛋白。最近,He等人证明DOK1/2的表达被其启动子甲基化失活,并且与AML的不良预后相关 [6] 。Fu等人的研究表明,增加的DOK4和DOK5表达与不良预后密切相关,而增加的DOK7表达与AML的良好预后相关 [7] 。

1.2. DOK1和DOK2在急性髓系白血病中的预后作用

DOK1作为第一个被发现的家族成员,DOK1和DOK2都有负向调节T细胞信号,并参与自身免疫性疾病的病因学 [8] 。在调节免疫细胞方面,它们参与了自然杀伤细胞和CD8+T细胞过度活化的负反馈通路 [9] [10] 。通过体内功能研究,发现DOK1/2失活导致骨髓祖细胞在不同阶段增生,并显著加速白血病。这些结果表明DOK1/2在白血病中作为肿瘤抑制因子的关键作用。DOK1和DOK2可拮抗p210bcr-abl引起的白血病和淋巴瘤生成。Yasuda等 [11] 也认为,DOK1和DOK2基因均剔除的小鼠容易发生骨髓增殖性疾病;DOK1和DOK2缺失的骨髓细胞对白细胞介素3、干细胞因子和粒细胞集落刺激因子等细胞因子刺激更敏感,而DOK1和DOK2协调作用可以抑制这些细胞因子引起的细胞外信号调节激酶和蛋白激酶B信号转导通路;DOK1和DOK2还可抑制慢性髓细胞样疾病的胚胎转化。总的来说,DOK1和DOK2可抑制细胞因子介导的骨髓细胞增殖和抗凋亡信号转导通路,并可拮抗白血病的生成以及慢性髓细胞样疾病的胚胎转化。然而两种在某方面也有不同,DOK2招募更多Ras gtp酶激活蛋白作为CD200受体信号通路的下游蛋白,DOK1通过招募CT10调节激酶样蛋白负调控RasGAP [12] 。值得注意的是,DOK2优先表达于髓系细胞和T细胞,而B细胞几乎不表达,而DOK1在所有三种免疫细胞中均表达 [1] 。除了在分子途径中发挥关键作用外,DOK2还与几种癌症预后相关。DOK2缺失可抑制化疗诱导的细胞凋亡,并导致卵巢癌对卡铂耐药 [13] ,此外,小鼠实验显示,小鼠体内的DOK1 DOK2双缺陷引发了类似于人类慢性髓系白血病的骨髓增值性疾病 [14] [15] 。有研究表示 [16] ,DOK2在急性髓系白血病细胞系和其他血液肿瘤中显著表达,并具有显著的甲基化水平。此外,DOK2在急性髓系白血病患者样本中的表达水平高于健康对照组。因此推测其在急性髓系白血病中的高表达不仅是髓系细胞中的优先表达,也是肿瘤的相关失调。同时进行了多个方面的功能分析,以确定潜在的生物学机制。DOK2及其相互作用或共表达的基因参与了广泛的免疫活性。通路分析证实了其在TCR信号通路中的重要作用 [8] ,基于TCR的免疫治疗是嵌合抗原受体T (CAR-T)细胞治疗后的一种新兴技术,DOK2作为负调节因子,可能有助于更好地理解TCR耐药的机制 [17] 。此外,DOK2可以调节Th17细胞的分化,DOK2与ssGSEA的Th17细胞浸润呈负相关。KEGG结果还强调了DOK2介导的富集通路,如PI3K-Akt、JAK-STAT、Ras和MAPK信号通路。这些通路在人类癌症中已被广泛研究,用于靶向抗癌药物治疗。例如,PI3K-Akt通路在AML中被认为过度激活,从而维持白血病进展,而相应的抑制剂可以阻止白血病细胞的发展 [18] [19] 。JAK/STAT信号通路活性的增加已被证明可维持白血病干细胞的生长和进展,特别是在高危AML中。通过抑制FLT3可以抑制异常的JAK/STAT信号活性 [20] ,DOK2的高表达增加了对所列药物的敏感性,这突显了它们在具有临床疗效的DOK2相关靶点中的药理价值。在AML和其他癌症中,绝大多数免疫相关基因与DOK2密切相关,这表明它们对肿瘤微环境的免疫活动产生了广泛的影响。浸润肥大细胞已被确定为AML生存不良的生物标志物和免疫治疗靶点 [21] 。在研究中,我们发现DOK2中枢记忆T细胞的浸润呈负相关。骨髓中央记忆T细胞耗竭可限制TCR库,阻碍效应T细胞功能,加重白血病负担,从而导致HSCT后早期复发 [22] 。此外,静息CD4+记忆T细胞的低浸润水平与DOK2高表达相关,导致患者结局不良。如上所述,这些研究结果表明,DOK2可能与白血病微环境中的免疫细胞浸润有关,并通过特异性免疫细胞浸润介导不良预后,有望成为急性髓系白血病新的免疫相关治疗靶点和独立预后因素。

1.3. DOK6在急性髓系白血病中的预后作用

DOK6下游被发现可通过N2A α1细胞中Ret介导的信号通路促进神经突生长 [23] 。Wei等人证明DOK6通过其PTB结构域以激酶活性依赖性方式选择性地与TrkC的NPQY基序结合,并参与NT 3介导的神经元发育 [24] 。此外,Leong和他的同事报告说,DOK6在多个信号通路的不同步骤中与各种成分结合,例如血小板衍生生长因子、神经生长因子、EGFR、RAS、血管内皮生长因子和RAF/MAP激酶 [25] ,DOK6通过Ret和神经营养蛋白3信号转导参与神经元发育 [23] [24] [26] 。Leong等人表明DOK6参与多种致癌信号转导通路并在胃癌中广泛发挥作用,并提供了与胃癌相关的功能相关性它与表皮生长因子受体(EGFR)的结合 [25] 。Tamara等人报道,DOK6在人类乳腺癌中表现为肿瘤抑制因子。而癌症特异性启动子甲基化有助于发现新的肿瘤抑制基因和/或肿瘤特异性预后生物标志物、开发新的治疗策略和预测治疗反应。众所周知,启动子CpG岛中的DNA甲基化在调节基因表达中起着至关重要的作用。最新研究发现 [27] ,DOK6在新发AML患者中显着降低,并且DOK6 表达降低与良好的结果相关。此外,细胞实验表明,5 azadC通过诱导DOK6启动子区域的去甲基化,增加白血病细胞THP 1中的DOK6表达。总之DOK6启动子甲基化是新发AML患者的常见分子事件,可以作为独立且综合的预后生物标志物。

1.4. DOK4在急性髓系白血病中的预后作用

DOK4被发现是胰岛素受体底物(Insulin receptor substrate, IRS),被命名为IRS-5;是丝裂原活化蛋白激酶(MAPK)通路的正调节因子 [28] ,DOK4广泛表达,最新研究表明DOK4参与髓鞘的早期形成以及雪旺细胞的迁移和增殖 [29] 。也被证明可以抑制多种酪氨酸激酶下游的Erk靶转录因子Elk-1的激活。DOK4蛋白质主要在非造血细胞中表达,并在PTK下游起作用。在研究中,显示这些基因在外周血T细胞中表达,这提高了DOK4蛋白在调节T细胞诱导的免疫反应中的作用的可能性。DOK4蛋白已在小鼠中被描述为cRet受体酪氨酸激酶的底物。DOK4不募集RasGAP蛋白并且可以增强MAP激酶活化 [30] 。在研究中 [7] ,我们发现DOK4的高表达是疾病的不良预后因素,其表达的增加降低了癌细胞对多种化疗药物的敏感性,因此DOK4可能在一些肿瘤的耐药性中发挥作用,并影响患者的生存 [31] 。DOK4的高表达更可能发生在年龄较大、风险较低的患者中,并且与复杂的核型、FLT3-ITD、TP53和RUNX1突变共存。有研究显示DNMT3A突变与较差的无病生存率和CN-AML和RUNX1中OS缩短的趋势相关突变是复杂核型AML中劣OS的强独立预测因子,因此高DOK4表达对EFS (生存期)和OS (总生存期)的不利影响,表明它们可能有助于白血病的发生 [7] 。PBK-TOPK是一种丝–苏氨酸蛋白激酶,是MAPK家族新的成员,PBK/TOPK通过激活p38MAPK和调节DNA损伤反应促进肿瘤细胞的增殖 [32] [33] ,已有研究表明,PBK/TOPK在血液肿瘤如白血病,淋巴瘤和骨髓瘤中过表达,而且其表达与肿瘤的恶性程度正相关 [33] [34] ,Jan Grimm [2] 等人在研究神经元分化时发现,DOK4可以活化MAP激酶信号路径,使ERK1/2磷酸化,通过酪氨酸激酶受体c-ret介导神经元分化,而Edward [35] 等人采用高通量亲和层析联合质谱的技术在HEK293T细胞中研究蛋白的互作关系中发现PBK和DOK4存在直接的互作关系,因此DOK4是否参与白血病发生有待进一步研究。

2. 结语

总之,DOK家族在急性髓系白血病中不仅是其预后指标,也可作为新的治疗靶点。因此,要深入了解DOK家族在多种酪氨酸激酶信号通路中的衔接功能所涉及的分子机制,以及它们在白血病发生中的作用,还需要进一步更大的前瞻性队列验证。

参考文献

[1] Mashima, R., Yamanashi, Y., Hishida, Y. and Tezuka, T. (2009) The Roles of Dok Family Adapters in Immunoreceptor Signaling. Immunological Reviews, 232, 273-285.
https://doi.org/10.1111/j.1600-065X.2009.00844.x
[2] Grimm, J., Sachs, M., Britsch, S., et al. (2001) Novel p62dok Family Members, dok-4 and dok-5, Are Substrates of the c-Ret Receptor Tyrosine Kinase and Mediate Neuronal Differentiation. Journal of Cell Biology, 154, 345-354.
https://doi.org/10.1083/jcb.200102032
[3] Okada, K., Inoue, A., Okada, M., et al. (2006) The Muscle Protein Dok-7 Is Essential for Neuromuscular Synaptogenesis. Science, 312, 1802-1805.
https://doi.org/10.1126/science.1127142
[4] Di Cristofano, A., Carpino, N., Dunant, N., et al. (1998) Molecular Cloning and Characterization of p56dok-2 Defines a New Family of RasGAP-Binding Proteins. Journal of Biological Chemistry, 273, 4827-4830.
https://doi.org/10.1074/jbc.273.9.4827
[5] Lemay, S., Davidson, D., Latour, S., et al. (2000) Dok-3, a Novel Adapter Molecule Involved in the Negative Regulation of Immunoreceptor Signaling. Molecular and Cellular Biology, 20, 2743-2754.
https://doi.org/10.1128/MCB.20.8.2743-2754.2000
[6] He, P.F., Xu, Z.J., Zhou, J.D., et al. (2018) Methyla-tion-Associated DOK1 and DOK2 Down-Regulation: Potential Biomarkers for Predicting Adverse Prognosis in Acute Myeloid Leukemia. Journal of Cellular Physiology, 233, 6604-6614.
https://doi.org/10.1002/jcp.26271
[7] Zhang, L., Li, R., Hu, K., et al. (2019) Prognostic Role of DOK Family Adapters in Acute Myeloid Leukemia. Cancer Gene Therapy, 26, 305-312.
https://doi.org/10.1038/s41417-018-0052-z
[8] Yasuda, T., Bundo, K., Hino, A., et al. (2007) Dok-1 and Dok-2 Are Negative Regulators of T Cell Receptor Signaling. International Immunology, 19, 487-495.
https://doi.org/10.1093/intimm/dxm015
[9] Celis-Gutierrez, J., Boyron, M., Walzer, T., et al. (2014) Dok1 and Dok2 Proteins Regulate Natural Killer Cell Development and Function. EMBO Journal, 33, 1928-1940.
https://doi.org/10.15252/embj.201387404
[10] Laroche-Lefebvre, C., Yousefi, M., Daudelin, J.F., et al. (2016) Dok-1 and Dok-2 Regulate the Formation of Memory CD8+ T Cells. The Journal of Immunology, 197, 3618-3627.
https://doi.org/10.4049/jimmunol.1600385
[11] 周瑜, 丁佑铭, 周文波. 酪氨酸激酶下游蛋白基因与肿瘤关系的研究进展[J]. 医学综述, 2016, 22(13): 2561-2564.
[12] Mihrshahi, R. and Brown, M.H. (2010) Downstream of Tyrosine Kinase 1 and 2 Play Opposing roles in CD200 Receptor Signaling. The Journal of Immunology, 185, 7216-7222.
https://doi.org/10.4049/jimmunol.1002858
[13] Lum, E., Vigliotti, M., Banerjee, N., et al. (2013) Loss of DOK2 Induces Carboplatin Resistance in Ovarian Cancer via Suppression of Apoptosis. Gynecologic Oncology, 130, 369-376.
https://doi.org/10.1016/j.ygyno.2013.05.002
[14] Niki, M., Di Cristofano, A., Zhao, M., et al. (2004) Role of Dok-1 and Dok-2 in Leukemia Suppression. Journal of Experimental Medicine, 200, 1689-1695.
https://doi.org/10.1084/jem.20041306
[15] Yasuda, T., Shirakata, M., Iwama, A., et al. (2004) Role of Dok-1 and Dok-2 in Myeloid Homeostasis and Suppression of Leukemia. Journal of Experimental Medicine, 200, 1681-1687.
https://doi.org/10.1084/jem.20041247
[16] Xu, J., Dong, X., Wang, R., et al. (2022) DOK2 Has Prognostic and Immunologic Significance in Adults with Acute Myeloid Leukemia: A Novel Immune-Related Therapeutic Target. Fron-tiers in Medicine (Lausanne), 9, Article ID: 842383.
https://doi.org/10.3389/fmed.2022.842383
[17] Chandran, S.S. and Klebanoff, C.A. (2019) T Cell Receptor-Based Cancer Immunotherapy: Emerging Efficacy and Pathways of Resistance. Immunological Reviews, 290, 127-147.
https://doi.org/10.1111/imr.12772
[18] Park, S., Chapuis, N., Tamburini, J., et al. (2010) Role of the PI3K/AKT and mTOR Signaling Pathways in Acute Myeloid Leukemia. Haema-tologica, 95, 819-828.
https://doi.org/10.3324/haematol.2009.013797
[19] Nepstad, I., Hatfield, K.J., Gronningsaeter, I.S., et al. (2020) The PI3K-Akt-mTOR Signaling Pathway in Human Acute Myeloid Leukemia (AML) Cells. International Journal of Molecular Sciences, 21, 2907.
https://doi.org/10.3390/ijms21082907
[20] Cook, A.M., Li, L., Ho, Y., et al. (2014) Role of Altered Growth Factor Receptor-Mediated JAK2 Signaling in Growth and Maintenance of Human Acute Myeloid Leukemia Stem Cells. Blood, 123, 2826-2837.
https://doi.org/10.1182/blood-2013-05-505735
[21] Jia, M., Zhang, H., Wang, L., et al. (2021) Identification of Mast Cells as a Candidate Significant Target of Immunotherapy for Acute Myeloid Leukemia. Hematology, 26, 284-294.
https://doi.org/10.1080/16078454.2021.1889158
[22] Noviello, M., Manfredi, F., Ruggiero, E., et al. (2019) Bone Marrow Central Memory and Memory Stem T-Cell Exhaustion in AML Patients Relapsing after HSCT. Nature Com-munications, 10, Article No. 1065.
https://doi.org/10.1038/s41467-019-08871-1
[23] Crowder, R.J., Enomoto, H., Yang, M., et al. (2004) Dok-6, a Novel p62 Dok Family Member, Promotes Ret-Mediated Neurite Outgrowth. Journal of Biological Chemistry, 279, 42072-42081.
https://doi.org/10.1074/jbc.M403726200
[24] Li, W., Shi, L., You, Y., et al. (2010) Downstream of Tyrosine Kinase/Docking Protein 6, as a Novel Substrate of Tropomyosin-Related Kinase C Receptor, Is Involved in Neurotrophin 3-Mediated Neurite Outgrowth in Mouse Cortex Neurons. BMC Biology, 8, Article No. 86.
https://doi.org/10.1186/1741-7007-8-86
[25] Leong, S.H., Lwin, K.M., Lee, S.S., et al. (2017) Chromosomal Breaks at FRA18C: Association with Reduced DOK6 Expression, Altered Oncogenic Signaling and Increased Gastric Cancer Survival. NPJ Precision Oncology, 1, Article No. 9.
https://doi.org/10.1038/s41698-017-0012-3
[26] Kurotsuchi, A., Murakumo, Y., Jijiwa, M., et al. (2010) Analysis of DOK-6 Function in Downstream Signaling of RET in Human Neuroblastoma Cells. Cancer Science, 101, 1147-1155.
https://doi.org/10.1111/j.1349-7006.2010.01520.x
[27] Sun, G.K., Tang, L.J., Zhou, J.D., et al. (2019) DOK6 Promoter Methylation Serves as a Potential Biomarker Affecting Prognosis in de Novo Acute Myeloid Leukemia. Cancer Medicine, 8, 6393-6402.
https://doi.org/10.1002/cam4.2540
[28] Gray, S.G., Stenfeldt, M.I. and De Meyts, P. (2003) The Insulin-Like Growth Factors and Insulin-Signalling Systems: An Appealing Target for Breast Cancer Thera-py? Hormone and Metabolic Research, 35, 857-871.
https://doi.org/10.1055/s-2004-814142
[29] Blugeon, C., Le Crom, S., Richard, L., et al. (2011) Dok4 Is Involved in Schwann Cell Myelination and Axonal Interaction in Vitro. Glia, 59, 351-362.
https://doi.org/10.1002/glia.21106
[30] Favre, C., Gerard, A., Clauzier, E., et al. (2003) DOK4 and DOK5: New Dok-Related Genes Expressed in Human T Cells. Genes & Immunity, 4, 40-45.
https://doi.org/10.1038/sj.gene.6363891
[31] Guan, Y., Li, M., Qiu, Z., et al. (2022) Comprehensive Analysis of DOK Family Genes Expression, Immune Characteristics, and Drug Sensitivity in Human Tumors. Journal of Advanced Research, 36, 73-87.
https://doi.org/10.1016/j.jare.2021.06.008
[32] Ohashi, T., Komatsu, S., Ichikawa, D., et al. (2017) Overexpression of PBK/TOPK Relates to Tumour Malignant Potential and Poor Outcome of Gastric Carcinoma. British Journal of Can-cer, 116, 218-226.
https://doi.org/10.1038/bjc.2016.394
[33] Ayllon, V. and O’Connor, R. (2007) PBK/TOPK Promotes Tumour Cell Proliferation through p38 MAPK Activity and Regulation of the DNA Damage Response. Oncogene, 26, 3451-3461.
https://doi.org/10.1038/sj.onc.1210142
[34] Sun, H., Zhang, L., Shi, C., et al. (2015) TOPK Is Highly Expressed in Circulating Tumor Cells, Enabling Metastasis of Prostate Cancer. Oncotarget, 6, 12392-12404.
https://doi.org/10.18632/oncotarget.3630
[35] Huttlin, E.L., Ting, L., Bruckner, R.J., et al. (2015) The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell, 162, 425-440.
https://doi.org/10.1016/j.cell.2015.06.043