经桡动脉途径动脉栓塞治疗在外周疾病中的临床应用及进展
Clinical Application and Progress of Transradial Arterial Embolization in the Treatment of Peripheral Diseases
DOI: 10.12677/ACM.2023.1381773, PDF, HTML, XML, 下载: 155  浏览: 308  科研立项经费支持
作者: 马雪琴, 谌 浩, 罗小平, 刘 曦*:重庆医科大学第二附属医院放射科,重庆
关键词: 外周血管疾病桡动脉股动脉Peripheral Vascular Disease Radial Artery Femoral Artery
摘要: 经股动脉途径(Transfemoral access, TFA)是大多数外周血管介入治疗中广泛使用的一线方法。自从在冠脉介入手术中引入经桡动脉通路(Transradial access, TRA)以来,其相对于TFA的几个优势已经被证明,如穿刺点并发症少、经济负担减轻、住院时间缩短,同时增加患者舒适度等。随着越来越多TRA在外周疾病血管介入治疗中特别是经动脉栓塞治疗中安全性和可行性的有利证实,TRA在外周疾病治疗中的推广和普及将越来越受到重视。本文对TRA在外周疾病血管介入中经动脉栓塞治疗的临床应用现状及进展予以阐述。
Abstract: Transfemoral access (TFA) is a widely used first-line method in most peripheral vascular interven-tions. Since the introduction of Transradial access (TRA) in coronary interventions, several ad-vantages over TFA have been demonstrated, such as fewer complications at the puncture site, re-duced economic burden, shorter hospital stay, and increased patient comfort. With more and more favorable confirmation of the safety and feasibility of TRA in vascular interventional therapy for pe-ripheral diseases, especially in arterial embolization therapy, the promotion and popularization of TRA in the treatment of peripheral diseases will be paid more and more attention. This article re-views the clinical application status and progress of TRA transarterial embolization in peripheral vascular intervention.
文章引用:马雪琴, 谌浩, 罗小平, 刘曦. 经桡动脉途径动脉栓塞治疗在外周疾病中的临床应用及进展[J]. 临床医学进展, 2023, 13(8): 12646-12654. https://doi.org/10.12677/ACM.2023.1381773

1. 引言

1953年Seldinger开创的Seldinger法经皮股动脉插管行血管造影术建立了血管介入的根基。传统动脉血管内血管介入手术通常以股动脉作为穿刺入路,其血管搏动强、体表易触摸、相对固定及管径粗直,穿刺成功率高,易于术者操作,因此目前血管介入的器材大多是按经股动脉途径设计的。自1989年加拿大医生Campeau [1] 首次报道使用经皮桡动脉穿刺行选择性冠状动脉造影,经过三十多年发展,越来越多的研究表明冠状动脉造影术中应用TRA的优势。桡动脉入路能够减少冠脉介入患者穿刺点并发症、死亡率、经济负担、住院时间,同时增加患者舒适度 [2] [3] [4] 。多个随机对照试验的分析表明,TRA术后重大血管并发症少见(0.2%) [5] ,在RIVAL试验中报道的重大血管并发症发生率为1.4% (49/3507) [6] 。在当前的欧洲心脏学协会指南中,TRA在急性冠脉综合征患者中已取代TFA成为I类推荐使用 [7] 。

目前大多数关于TRA的研究都是基于心脏介入的,在过去三十年发表了大量前瞻性随机对照试验的研究,而放射介入科医师在外周血管介入中采用TRA相对较少。在外周血管介入中,TRA一般不作为首选入路,而是TFA等入路的备选途径,其原因包括:1) 可能受到患者解剖结构的影响,例如:血管发育变异、身材高大、主动脉曲折或手臂长可能会影响TRA;2) 肿瘤化疗栓塞常需重复多次进行,而桡动脉相对细小、难以进行多次穿刺;3) 外周疾病介入治疗中涉及的介入术式、病种类型更为广泛、复杂,手术难度较股动脉穿刺高、操作和透视时间长;4) TRA相较于TFA较长的学习曲线 [8] [9] 。近几年来,国内外越来越多的介入诊疗中心选择TRA行外周介入,并逐渐积累了TRA在外周介入诊疗的临床应用经验。推广和规范TRA外周介入的应用可使更广泛的患者获益,但同时也更具挑战性。如今TRA途径已经逐渐应用肝脏、肺、肾、子宫动脉、前列腺和其他外周疾病治疗中,并且其可行性和安全性已经得到了临床医师们的广泛认可。现主要就TRA在外周疾病经动脉栓塞中的临床应用现状及进展予以阐述。

2. 桡动脉穿刺技术

2.1. 桡动脉的解剖结构

肱动脉发出桡动脉和尺动脉共同构成手部的双重血供。桡动脉行于前臂的外侧,仅由深筋膜、浅筋膜和皮肤覆盖,临近无重要静脉和神经;尺、桡动脉之间由掌深弓与掌浅弓相互沟通;同时桡动脉位置表浅,容易进行压迫止血,以上构成了经桡动脉途径行血管介入的解剖学基础 [10] 。根据桡动脉解剖特征和体表易触及部位,目前TRA穿刺点分为近端及远端两种穿刺位点 [10] [11] 。桡动脉沿着前臂外侧向手腕方向走形,在桡侧腕屈肌肌腱和桡骨前缘之间可触及,这是传统的桡动脉近端穿刺点 [12] 。在桡骨茎突下方桡动脉终支转向手背侧,穿过拇短伸肌腱和拇长展肌腱深面抵达解剖“鼻烟窝”区,这是远端桡动脉穿刺点 [12] 。多位学者经不同途径测量了桡动脉内径,证实采用6F鞘管进行血管介入是可行的。然而,远端桡动脉直径较细小,Hadjivassiliou等 [13] 研究中经超声测量“鼻烟窝”区域远端桡动脉直径平均值为2.34 mm (1.4~3.2 mm),对于不熟练的术者穿刺时间较长、穿刺难度增加,因此有必要提前评估远端桡动脉的血管直径 [14] 。

2.2. 桡动脉穿刺术前准备

术前桡动脉的准备主要包括两个方面:评估桡动脉的直径以及前臂桡动脉的侧支循环情况。改良Allen试验或Barbeau试验可简单快速地评估桡动脉的代偿情况。Allen实验:检查者用双手拇指同时按住患者的桡动脉和尺动脉,嘱患者用力握拳和伸开手掌5~7次,直至手掌颜色变白,然后解除对尺动脉的压迫,继续保持压迫桡动脉,观察手掌颜色变化。若手掌在15 S内迅速变红或恢复正常,表明尺动脉和桡动脉间存在良好的侧支循环,可以进行桡动脉穿刺;若15 S内手部皮肤颜色仍未恢复,则称为改良Allen试验阳性。Allen试验阳性的患者不适宜选择桡动脉入路。对于改良Allen试验阳性,又需要接受桡动脉穿刺后长时间或反复操作的患者,可采用彩色多普勒超声进行手部血管的全面评估,以避免发生桡动脉闭塞所致的相关严重并发症。Barbeau试验将指间脉氧仪置于拇指指间检测指间氧饱和度,波形稳定后,持续压迫桡动脉,观察氧饱和度波形情况。其分型为:A:在桡动脉压迫的2分钟内及松开后波形没有变化,氧饱和度测得出;B:波形幅度最初下降,2分钟后完全恢复,氧饱和度测得出;C:桡动脉压迫时,波形消失、血氧饱和度测不出,但在压迫2分钟后部分恢复,氧饱和度测得出;D:桡动脉压迫2分钟后始终无波形、且氧饱和度测不出。D型桡动脉不适宜桡动脉入路。

2.3. 桡动脉穿刺置管方法

患者取仰卧位,将患者上肢平放于臂托上,掌心向上并略外展,对前臂和上臂进行消毒,并完成铺巾操作。术者站于患者右侧,选桡骨茎突近端1~3 cm范围内搏动最明显的地方进行穿刺,局麻时采用少量2%利多卡因,以尖刀片切一小刀口方便入鞘,选用6F桡动脉穿刺套装,手持穿刺针以Seldinger穿刺法进行穿刺,穿刺成功后,置入桡动脉鞘,并立即经鞘注入含有血管扩张及抗凝药物的“鸡尾酒”,随后经导丝引入导管,按照既定手术方案完成手术。目前临床常用的“鸡尾酒”方案为:硝酸甘油100~200 ug + 利多卡因20 mg (或盐酸维拉帕米2.5 mg) + 肝素2000~5000 U,它能有效减少血管痉挛及桡动脉闭塞的发生,但是需注意部分患者因注入硝酸甘油等血管扩张药有血压下降现象。

2.4. 桡动脉穿刺的主要并发症

尽管TRA具有许多的优点,但桡动脉穿刺置管作为一项有创性操作,可能导致众多并发症,包括桡动脉闭塞(Radial artery occlusion, RAO)、血栓形成、桡动脉痉挛(Radial spasm, RAS)、局部血肿、假性动脉瘤及穿孔等。其中,RAO是经桡动脉入路常见的并发症,其发病隐匿,由于手部的血液双重供应和丰富的侧支循环网络,绝大多数桡动脉闭塞为无症状性。研究显示多种因素会导致RAO的发生,包括鞘与血管内径比例大于1、RAS、抗凝不足、中断性止血法、重复桡动脉穿刺、止血时间较长等 [15] [16] 。RAS是桡动脉入路术中较为常见的并发症,其形成主要与血管直径小、导管鞘较大、穿刺技术及血管变异等相关,RAS不仅会造成导管、导丝等在前进过程中受限,严重时可导致如动脉穿孔,骨筋膜室综合征等罕见并发症 [17] 。血栓形成是造成桡动脉置管后远端缺血的最主要原因。既往研究指出 [18] ,经桡动脉途径行血管介入术后会引起血管内皮和平滑肌功能障碍,使血管弹性功能减低。同时,穿刺针对血管壁完整性的破坏,也极易造成裸露的内皮下组织局部血小板的聚集而进一步形成血栓。江林海等 [9] 研究的742例手术中,并发症发生率为2.96%,3例次插管过程中出现RAS,9例次术后出现皮下小范围血肿或淤血,9例次术后出现桡动脉搏动减弱,1例次出现前臂疼痛,无重大并发症。研究表明 [15] ,减小鞘管尺寸、通畅性压迫方式、手术前后运用肝素预防血栓和硝酸甘油扩张血管、缩短压迫时间等尤为重要,能够减少并发症的发生。

3. TRA在外周疾病经动脉栓塞中的应用现状

TRA在解剖学、安全性、舒适性、便捷性与经济成本等方面具有多种优势,它提供了一种以患者为中心的新模型,代表了发展医疗保健领域的最佳实践 [19] 。但目前缺少适合TRA的外周介入器材,如多数导管或长度不足(如MIK)、或头端材质较硬、角度太小(如MPA),使得血管贴壁较差或难以进入血管远端。同时,桡动脉较为纤细,限制了需要使用 ≥ 7Fr导管鞘的患者治疗,并且存在解剖学变异几率较股动脉高。江海林 [9] 在回顾性分析了408例患者的762例次的TRA外周血管介入手术,得出结论TRA在外周血管介入中的应用是安全可行的,患者的接受度高。由此可见TRA在外周血管介入中具有十分广阔的应用前景。

3.1. 经动脉化疗栓塞治疗肝恶性肿瘤

经动脉化疗栓塞(transcatheterarterial chemoembolization, TACE)被广泛应用于治疗不可切除的肝细胞癌(hepatocellular carcinoma, HCC) [20] 。既往研究表明,TRA为患者提供了一种可行且安全的TFA替代方案。在接受TACE治疗HCC的患者中,患者满意度很重要,因为它可能会影响患者多次疗程的依从率 [21] 。在最近的研究中,Zhang X等 [22] 发现与TFA相比,TACE患者喜欢当前TRA进行后续手术的患者明显增加(90.8% vs. 24.6%; p < 0.001)。TRA对外周干预的另一个影响是,操作者通常需要克服从通路部位到目标动脉更大的解剖距离,这可能会危及程序变量,Hung等 [19] 的研究表明TRA进行外周干预的患者的透视时间显著长于通过TFA进行外周干预的时间。尽管如此,操作员的经验也是一重要影响因素,在一项TRA行肝癌TACE的操作员经验的研究显示,操作者的技术随着TRA穿刺次数的增加而愈加熟练,克服学习曲线的阈值是20例 [23] 。Jiang H等 [24] 进行了不同体位TRA及TFA的TACE操作者辐射剂量的对比研究,患者依据体位被分为了足先进经左侧桡动脉、头先进经左侧桡动脉、头先进经右侧桡动脉、头先进经右侧股动脉4组,证实了4组在透视时间(Fluoroscopy time, FT)、辐射剂量、剂量与面积乘积(dose-area product, DAP)及空气比释动能(air kerma, AK)上没有显著差异,然而通过足先进经左桡动脉并左臂外展70˚~90˚时,操作者的辐射剂量最小。肝癌TACE不同于心脏介入治疗,患者需要重复多次治疗,此时桡动脉穿刺的可重复性面临较大挑战。远端桡动脉通路可以降低RAO的风险,对于需反复栓塞的TACE病人中,最近有研究指出经远端桡动脉通路有效、安全,与TFA组大致相当 [25] 。

3.2. 子宫动脉栓塞术

子宫动脉栓塞术(Uterine artery embolization, UAE)是临床上对有症状的子宫平滑肌瘤患者避免手术干预的一种可行的治疗方案,其他情况如产后出血、子宫腺肌症、宫颈异位妊娠等均可受益 [26] 。经股动脉置管是UAE最经典和最常用的路径。随着TRA在外周血管中的推广应用,目前许多研究报道了经TRA进行UAE的优势:提高妊娠、肥胖或凝血功能障碍患者的安全性和可行性,提供早期行走和早期出院 [27] [28] [29] 。有研究表明 [30] ,TRA进行UAE的患者可以选择当日出院方案,患者返回医院的比例较低。同时,他们还指出了肌瘤位于黏膜下及术后疼痛是早期复发的预测因素。Khayrutdinov E等 [29] 的前瞻性随机研究表明TRA UAE与TFA UAE具有相同的疗效和安全性,这种通路减少了辐射暴露和手术持续时间,并且和患者与手术相关的生活质量的显着改善有关。他们还报道了TRA行盆腔手术的一些限制,这主要与更长的导管需求有关。如果女性非常高或手臂很长,即使是125 cm的导管也可能无法通过桡动脉到达子宫动脉。同时,较长的导管会降低导管的推送性及扭送性。因此,在针对较为高大患者、以及盆腔及下肢相关手术时,术前评估应根据可以利用的导管、导丝等器械,综合考虑决定手术穿刺入路。

3.3. 前列腺动脉栓塞术

前列腺动脉栓塞术(Prostatic Artery Embolization, PAE)是一种新兴的治疗良性前列腺增生的手术方法,被认为是经尿道前列腺电切术(Transurethral resection of the prostate, TURP)的替代方法 [31] [32] 。它通过超选择插管前列腺供血动脉,注入一定的栓塞材料,中断前列腺局部组织供血,导致细胞坏死,从而减轻患者临床症状 [33] 。在可行性及安全性方面,一些研究对TRA的PAE进行了初步描述,他们还指出这种方式允许在可能较长的手术中抬高腿部以减轻腰痛和早期行走以帮助排尿 [34] [35] [36] 。最近一项研究中报道了TRA在门诊PAE中应用,结果表明使用45分钟的止血时间是安全的,并且有助于缩短出院时间 [37] 。经桡动脉途径PAE术操作路径较长,患者桡动脉至髂内动脉的距离是能否施行经桡动脉途径PAE术的关键因素,导管长度及患者的身高限制范围还需进一步的研究。

3.4. 肾动脉栓塞术

经皮经导管动脉栓塞术(Transcatheter arterial embolization, TAE)是治疗肾出血的安全有效方法,常应用于医源性、外伤性、肿瘤性及血管畸形性肾出血中 [38] [39] 。最近的许多研究表明,经皮肾动脉造影和栓塞术可以采用TRA建立血管通路 [40] [41] [42] 。Cao C等 [41] 比较TRA或TFA接受RAE治疗医源性肾出血患者的技术和临床结局,结果表明通过TRA进行RAE治疗医源性肾出血是安全可行的,手术持续时间和辐射暴露与TFA行RAE相似。在Srinivasa等 [40] 的研究中,发现俯卧位TRA是一种安全可行的方法,无需重新定位即可进行动脉和经皮后路联合干预。最近,Hebert CA等 [43] 还报告了一例TRA行肾血管成形术和支架置入治疗重度单侧肾血管狭窄所致的全身性高血压。

3.5. 支气管动脉栓塞

大咯血可发生在慢性肺疾病(如结节病、肺结核、囊性纤维化)以及原发性和转移性肺癌患者中,当血块严重阻塞气道或出血量过多时可导致死亡。在咯血的患者中,责任血管多为支气管动脉,支气管动脉栓塞术(bronchial arterial embolism, BAE)为内科及支气管内镜治疗无效或失败时提供了新方法。目前针对肺鳞癌血管内介入治疗的主要方法还有经支气管动脉灌注化疗(bronchial artery infusion, BAI)、经支气管动脉灌注化疗栓塞(bronchial arterial infusion chemoembolization, BACE)。林志东等 [44] 对39例咯血病人右侧TRA进行BAE,术中插管总成功率为87.3%,表明桡动脉是股动脉的有效补充途径。在黄笑语等 [45] 对经桡动脉途径治疗恶性肿瘤相关出血的临床研究中,所有患者均成功插管,其中包括6例咯血病人,其中5人30天内无再出血,术后无严重并发症。宋飞等 [46] 行TRA与TFA支气管动脉介入治疗肺鳞癌的对比研究,结果显示TRA组(58例)和TFA组(64例)患者均成功行经支气管介入治疗,术后桡动脉、股动脉搏动正常,没有明显并发症。以上表明了TRA在肺癌治疗中具有广阔的应用前景。

3.6. TRA在其它外周血管疾病的应用

目前TRA在其他外周血管介入中的应用也逐渐增多,已有报道TRA应用于脾脏、膀胱、胃癌、骨肿瘤等的介入操作 [47] [48] [49] 。一些观察性研究、可行性研究、技术报告、病例报导等也表明,TRA已成功应用于治疗周围血管病变,包括颈内动脉、椎基底动脉、锁骨下和无名动脉、腹腔、肠系膜和股浅动脉病变等 [50] [51] [52] 。最近有研究 [53] 首次描述了使用3-Fr导管鞘(GS)对桡动脉直径小于2 mm的患者进行神经内干预。

4. TRA在外周疾病经动脉栓塞中的未来发展与憧憬

综上所述,各类外周疾病动脉栓塞术中TRA的技术和临床结局及并发症发生率与TFA相当。目前,TRA入路的外周介入手术已在国内外广泛开展,采用经桡动脉入路行外周介入具有更舒适、更少局部严重并发症、更低费用等优势。通过术者经验与技术的积累,TRA的学习曲线和辐射剂量与TFA相似。外周介入涉及的病人类型多样、靶血管位置与形态各异、手术器械种类多样,因此规范治疗流程十分重要。缺乏专用的器械是限制TRA外周介入治疗开展的重要因素,亟待研发TRA外周介入的专用器械。推广桡动脉入路在外周介入中的应用,能使更多的患者获益,这值得每位介入医生的不断探索与尝试。

致谢

感谢刘曦教授、罗小平教授对我综述选题的帮助与指导。

基金项目

重庆医科大学附属第二医院“宽仁英才”项目(kryc-gg-2104)。

NOTES

*通讯作者。

参考文献

[1] Campeau, L. (1989) Percutaneous Radial Artery Approach for Coronary Angiography. Catheterization and Cardiovas-cular Interventions, 16, 3-7.
https://doi.org/10.1002/ccd.1810160103
[2] Jahic, A., Mujanovic, E., Bajric, M., et al. (2023) Comparative Analysis of Transradial and Transfemoral Arterial Approach When Performing Diagnostic Coronary Angiography. Medical Archives, 77, 112-117.
https://doi.org/10.5455/medarh.2023.77.112-117
[3] Vranckx, P., Frigoli, E., Rothenbühler, M., et al. (2017) Ra-dial versus Femoral Access in Patients with Acute Coronary Syndromes with or without ST-Segment Elevation. Euro-pean Heart Journal, 38, 1069-1080.
https://doi.org/10.1093/eurheartj/ehx048
[4] Nguyen, D.V., Nguyen, Q.N., Pham, H.M., et al. (2023) Me-ta-Analysis on the Safety and Efficacy of Transradial Approach in Chronic Total Occlusion Percutaneous Coronary In-tervention. American Journal of Cardiology, 192, 245-254.
https://doi.org/10.1016/j.amjcard.2023.01.005
[5] Ibanez, B., James, S., Agewall, S., et al. (2018) 2017 ESC Guidelines for the Management of Acute Myocardial Infarction in Patients Presenting with ST-Segment Elevation: The Task Force for the Management of Acute Myocardial Infarction in Patients Presenting with ST-Segment Elevation of the European Society of Cardiology (ESC). European Heart Journal, 39, 119-177.
https://doi.org/10.1093/eurheartj/ehx393
[6] Ferrante, G., Rao, S.V., Jüni, P., Da Costa, B.R. and Reimers, B. (2016) Radial versus Femoral Access for Coronary Interventions across the Entire Spectrum of Patients with Coronary Artery Disease: A Meta-Analysis of Randomized Trials. JACC. Cardiovascular Interventions, 9, 1419-1434.
https://doi.org/10.1016/j.jcin.2016.04.014
[7] Jolly, S.S., Yusuf, S., Cairns, J., Niemelä, K. and Xavier, D. (2011) Radial versus Femoral Access for Coronary Angiography and Intervention in Patients with Acute Coronary Syndromes (RIVAL): A Randomised, Parallel Group, Multicentre Trial. The Lancet (London, England), 377, 1409-1420.
https://doi.org/10.1016/S0140-6736(11)60404-2
[8] Mercuri, M., Mehta, S., Xie, C., et al. (2011) Radial Artery Access as a Predictor of Increased Radiation Exposure during a Diagnostic Cardiac Catheterization Procedure. JACC: Cardiovascular Interventions, 4, 347-352.
https://doi.org/10.1016/j.jcin.2010.11.011
[9] 江海林, 孟小茜, 廖华强, 等. 经桡动脉途径行外周介入的安全性与可行性[J]. 介入放射学杂志, 2018, 27(11): 1027-1030.
[10] Sgueglia, G.A., Di, Giorgio, A., Gaspardone, A., et al. (2018) Anatomic Basis and Physiological Rationale of Distal Radial Artery Access for Percutaneous Coronary and Endovascular Procedures. JACC: Cardiovascular Interventions, 11, 2113-2119.
https://doi.org/10.1016/j.jcin.2018.04.045
[11] van Dam, L., Geeraedts, T., Bijdevaate, D., et al. (2019) Distal Ra-dial Artery Access for Noncoronary Endovascular Treatment Is a Safe and Feasible Technique. Journal of Vascular and Interventional Radiology, 30, 1281-1285.
https://doi.org/10.1016/j.jvir.2019.01.011
[12] Achim, A., Kákonyi, K., Jambrik, Z., et al. (2021) Distal Radial Ar-tery Access for Coronary and Peripheral Procedures: A Multicenter Experience. Journal of Clinical Medicine, 10, Article 5974.
https://doi.org/10.3390/jcm10245974
[13] Hadjivassiliou, A., Cardarelli-Leite, L., Jalal, S., et al. (2020) Left Distal Transradial Access (ldTRA): A Comparative Assessment of Conventional and Distal Radial Artery Size. Cardio-Vascular and Interventional Radiology, 43, 850-857.
https://doi.org/10.1007/s00270-020-02485-7
[14] Park, S.E., Cho, S.B., Baek, H.J., et al. (2020) Clinical Experi-ence with Distal Transradial Access for Endovascular Treatment of Various Noncoronary Interventions in a Multicenter Study. PLOS ONE, 15, e0237798.
https://doi.org/10.1371/journal.pone.0237798
[15] Hashmi, K.A., Iqbal, Z., Hashmi, A.A., et al. (2020) The Fre-quency of Radial Artery Occlusion Following Cardiac Catheterization with the Use of Transradial Pneumatic Compres-sion Band. BMC Research Notes, 13, Article No. 486.
https://doi.org/10.1186/s13104-020-05323-8
[16] da Silva, R.L., de Andrade, P.B., Abizaid, A.A.C., et al. (2020) Comparison of Minimum Pressure and Patent Hemostasis on Radial Artery Occlusion after Transradial Catheterization. Journal of Invasive Cardiology, 32, 147-152.
[17] Sandoval, Y., Bell, M.R. and Gulati, R. (2019) Transradial Artery Access Complications. Circulation: Cardiovascular Interventions, 12, e007386.
https://doi.org/10.1161/CIRCINTERVENTIONS.119.007386
[18] Heiss, C., Balzer, J., Hauffe, T., et al. (2009) Vascular Dysfunction of Brachial Artery after Transradial Access for Coronary Catheterization: Impact of Smoking and Catheter Changes. JACC: Cardiovascular Interventions, 2, 1067-1073.
https://doi.org/10.1016/j.jcin.2009.09.010
[19] Hung, M.L., Lee, E.W., McWilliams, J.P., et al. (2019) A Reality Check in Transradial Access: A Single-Centre Comparison of Transradial and Transfemoral Access for Abdominal and Peripheral Intervention. European Radiology, 29, 68-74.
https://doi.org/10.1007/s00330-018-5580-2
[20] European Association for the Study of the Liver (2018) EASL Clinical Practice Guidelines: Management of Hepatocellular Carci-noma. Journal of Hepatology, 69, 182-236.
[21] Yamada, R., Bracewell, S., Bassaco, B., et al. (2018) Transradial ver-sus Transfemoral Arterial Access in Liver Cancer Embolization: Randomized Trial to Assess Patient Satisfaction. Journal of Vascular and Interventional Radiology, 29, 38-43.
https://doi.org/10.1016/j.jvir.2017.08.024
[22] Zhang, X., Luo, Y., Tsauo, J., et al. (2022) Transradial versus Transfemoral Access without Closure Device for Transarterial Che-moembolization in Patients with Hepatocellular Carcinoma: A Randomized Trial. European Radiology, 32, 6812-6819.
https://doi.org/10.1007/s00330-022-09038-1
[23] Iezzi, R., Posa, A., Merlino, B., et al. (2019) Operator Learning Curve for Transradial Liver Cancer Embolization: Implications for the Initiation of a Transradial Access Program. Diag-nostic and Interventional Radiology, 25, 368-374.
https://doi.org/10.5152/dir.2019.18437
[24] Jiang, H., Chen, Y., Liao, H., et al. (2022) Operator Radiation Dose during Trans-Hepatic Arterial Chemoembolization: Different Patients’ Positions via Transradial or Transfemoral Access. Diagnostic and Interventional Radiology, 28, 376-382.
https://doi.org/10.5152/dir.2022.211327
[25] Minici, R., Serra, R., Giurdanella, M., et al. (2023) Efficacy and Safety of Distal Radial Access for Transcatheter Arterial Chemoembolization (TACE) of the Liver. Journal of Personal-ized Medicine, 13, Article 640.
https://doi.org/10.3390/jpm13040640
[26] Keung, J.J., Spies, J.B. and Caridi, T.M. (2018) Uterine Artery Emboli-zation: A Review of Current Concepts. Best Practice and Research in Clinical Obstetrics and Gynaecology, 46, 66-73.
https://doi.org/10.1016/j.bpobgyn.2017.09.003
[27] Himiniuc, L.M.M., Murarasu, M., Toma, B., et al. (2021) Transradial Embolization, an Underused Type of Uterine Artery Embolization Approach: A Systematic Review. Medicina (Kaunas), 57, Article 83.
https://doi.org/10.3390/medicina57020083
[28] Nakhaei, M., Mojtahedi, A., Faintuch, S., et al. (2020) Transradial and Transfemoral Uterine Fibroid Embolization Comparative Study: Technical and Clinical Outcomes. Journal of Vascu-lar and Interventional Radiology, 31, 123-129.
https://doi.org/10.1016/j.jvir.2019.08.016
[29] Khayrutdinov, E., Vorontsov, I., Arablinskiy, A., et al. (2021) A Randomized Comparison of Transradial and Transfemoral Access in Uterine Artery Embolization. Diagnostic and Inter-ventional Radiology, 27, 59-64.
https://doi.org/10.5152/dir.2020.19574
[30] Sher, A., Garvey, A., Kamat, S., et al. (2021) Single-System Experi-ence with Outpatient Transradial Uterine Artery Embolization: Safety, Feasibility, Outcomes, and Early Rates of Return. American Journal of Roentgenology, 216, 975-980.
https://doi.org/10.2214/AJR.20.23343
[31] Abt, D., Hechelhammer, L., Müllhaupt, G., et al. (2018) Comparison of Prostatic Artery Embolisation (PAE) versus Transurethral Resection of the Prostate (TURP) for Benign Prostatic Hyper-plasia: Randomised, Open Label, Non-Inferiority Trial. BMJ, 361, k2338.
https://doi.org/10.1136/bmj.k2338
[32] Knight, G.M., Talwar, A., Salem, R., et al. (2021) Systematic Review and Meta-Analysis Comparing Prostatic Artery Embolization to Gold-Standard Transurethral Resection of the Prostate for Benign Prostatic Hyperplasia. CardioVascular and Interventional Radiology, 44, 183-193.
https://doi.org/10.1007/s00270-020-02657-5
[33] Jiang, Y., Bai, X., Zhang, X., et al. (2020) Comparative Study of the Effectiveness and Safety of Transurethral Bipolar Plasmakinetic Enucleation of the Prostate and Transurethral Bipolar Plasmakinetic Resection of the Prostate for Massive Benign Prostate Hyperplasia (>80 ml). Medical Science Monitor, 26, e921272.
https://doi.org/10.12659/MSM.921272
[34] Isaacson, A.J., Fischman, A.M. and Burke, C.T. (2016) Technical Feasibility of Prostatic Artery Embolization from a Transradial Approach. American Journal of Roentgenology, 206, 442-444.
[35] 胡晓钢, 杨晓仙, 郭晓华, 等. 经桡动脉途径前列腺动脉栓塞术可行性及安全性研究[J]. 介入放射学杂志, 2017, 26(5): 399-402.
[36] Gil, R., Shim, D.J., Kim, D., et al. (2022) Prostatic Artery Embolization for Lower Urinary Tract Symptoms via Transradial versus Transfemoral Artery Access: Single-Center Technical Outcomes. Korean Journal of Radiology, 23, 548-554.
https://doi.org/10.3348/kjr.2021.0934
[37] 杨晓东, 刘强, 彭玉萍. 肾动脉栓塞术治疗不同原因肾出血的临床效果分析[J]. 中国临床医学影像杂志, 2022, 33(6): 441-445.
[38] Amouyal, G., Tournier, L., de Margerie-Mellon, C., et al. (2022) Feasibility of Outpatient Transradial Prostatic Artery Embolization and Safety of a Shortened Deflation Pro-tocol for Hemostasis. Journal of Personalized Medicine, 12, Article 1138.
https://doi.org/10.3390/jpm12071138
[39] Muller, A. and Rouvière, O. (2015) Renal Artery Emboliza-tion-Indications, Technical Approaches and Outcomes. Nature Reviews Nephrology, 11, 288-301.
https://doi.org/10.1038/nrneph.2014.231
[40] Srinivasa, R.N., Chick, J.F.B., Gemmete, J.J., et al. (2018) Prone Transradial Catheterization for Combined Single-Session Endovascular and Percutaneous Interventions: Approach, Tech-nical Success, Safety, and Outcomes in 15 Patients. Diagnostic and Interventional Radiology, 24, 276-282.
https://doi.org/10.5152/dir.2018.18050
[41] Cao, C., Kim, S.Y., Kim, G.H., et al. (2021) Comparison of Transra-dial and Transfemoral Access for Transcatheter Arterial Embolization of Iatrogenic Renal Hemorrhage. PLOS ONE, 16, e0256130.
https://doi.org/10.1371/journal.pone.0256130
[42] Ruzsa, Z., Tóth, K., Jambrik, Z., et al. (2014) Transradial Ac-cess for Renal Artery Intervention. Interventional Medicine and Applied Science, 6, 97-103.
https://doi.org/10.1556/imas.6.2014.3.1
[43] Hebert, C.A., Rosenthal, R.L. and Schussler, J.M. (2023) Transradial Renal Angioplasty and Stent Placement for Systemic Hypertension Caused by Severe Unilateral Renovascular Stenosis. Cureus, 15, e34781.
https://doi.org/10.7759/cureus.34781
[44] 林志东, 文宠佩, 王宾, 等. 经右侧桡动脉途径介入治疗咯血39例[J]. 海南医学, 2018, 29(2): 250-252.
[45] 黄笑语. 经桡动脉入路动脉栓塞治疗恶性肿瘤相关出血的临床效果观察[D]: [硕士学位论文]. 北京: 北京协和医学院, 2020.
[46] 宋飞, 向盈盈, 张纪贵, 等. 经桡动脉途径与股动脉途径介入治疗肺鳞癌的对比[J]. 昆明医科大学学报, 2021, 42(9): 134-137.
[47] 贺帅杰. 经不同途径行血管介入的临床应用研究[D]: [硕士学位论文]. 石河子: 石河子大学, 2021.
[48] 李亚威, 曹家玮, 张晓武, 等. 经桡动脉途径行外周血管介入的临床研究[J]. 中华肿瘤杂志, 2021, 43(1): 143-146.
[49] 赵瑞峰, 朱旭瑶, 信嘉轩, 等. 经桡动脉途径脾动脉栓塞术经验探讨[J]. 中国卫生标准管理, 2020, 11(16): 76-79.
[50] Guo, X., Wang, L., Liu, J., et al. (2022) Transradial Approach Using a Distal Access Catheter without Guiding Support for Symptomatic Intracranial Vertebral Artery and Basilar Artery Stenosis: A Multicenter Experience and Technical Procedure. Journal of NeuroIn-terventional Surgery, 14, 511-5165.
https://doi.org/10.1136/neurintsurg-2021-017635
[51] Patel, T., Shah, S., Pancholy, S., et al. (2015) Utility of Transradial Approach for Peripheral Vascular Interventions. Journal of Invasive Cardiology, 27, 277-282.
[52] van Dijk, L.J.D., van Noord, D., van Mierlo, M., et al. (2020) Single-Center Retrospec-tive Comparative Analysis of Transradial, Transbrachial, and Transfemoral Approach for Mesenteric Arterial Procedures. Journal of Vascular and Interventional Radiology, 31, 130-138.
https://doi.org/10.1016/j.jvir.2019.08.026
[53] Fuga, M., Tanaka, T., Tachi, R., et al. (2022) A Novel 3-Fr Guiding Sheath for Transradial Access in Aneurysm Embolization: Technical Note. Interventional Neuroradiology.
https://doi.org/10.1177/15910199221142093