逆转结肠癌奥沙利铂耐药的研究进展
Research Progress on Reversing Oxaliplatin Resistance in Colon Cancer
DOI: 10.12677/ACM.2023.1381779, PDF, HTML, XML, 下载: 231  浏览: 414  科研立项经费支持
作者: 荣远哲*:西安医学院研究生院,陕西 西安;刘 屹:陕西省人民医院肿瘤内科,陕西 西安;王建华#:陕西省人民医院普外二科,陕西 西安
关键词: 结肠癌奥沙利铂化疗耐药逆转耐药Colon Cancer Oxaliplatin Chemotherapy Resistance Reversal of Drug Resistance
摘要: 结直肠癌是在全球发病率居第三位,死亡率居第二位的恶性肿瘤,严重威胁人类的身体健康。化疗是结肠癌常见的治疗方法,化疗耐药是影响结肠癌患者疗效和预后的主要因素。奥沙利铂作为结肠癌术后辅助及晚期一线治疗的基石药物,为广大结肠癌患者带来生存获益,但其耐药也是不可避免的。这也是结肠癌患者临床化疗失败并导致肿瘤复发和转移的主要原因之一。因此,探究结肠癌奥沙利铂耐药的分子机制并逆转其耐药,对提高结肠癌患者治疗疗效、改善患者预后具有重大意义。本文将较为详尽地阐明近年来关于逆转结肠癌奥沙利铂耐药的最新研究进展,以为临床进一步治疗及研究提供参佐。
Abstract: Colorectal cancer is a malignant tumor with the third highest incidence and the second highest mortality in the world, which is a serious threat to the health of patients. Chemotherapy is a com-mon treatment for colon cancer, and chemotherapy resistance is the main factor affecting the effi-cacy and prognosis of patients with colon cancer. As a cornerstone drug of postoperative adjuvant and advanced line therapy for colon cancer, oxaliplatin brings survival benefits for the majority of colon cancer patients, but its drug resistance is also inevitable. This is also the main reason for the failure of clinical chemotherapy in patients with colon cancer and leading to tumor recurrence and metastasis. Therefore, to explore the molecular mechanism of oxaliplatin resistance in colon cancer and reverse its drug resistance is of great significance to improve the therapeutic efficacy and prognosis of patients with colon cancer. This article will clarify in detail the latest research progress on reversing oxaliplatin resistance in colon cancer in recent years, so as to provide reference for further clinical treatment and research.
文章引用:荣远哲, 刘屹, 王建华. 逆转结肠癌奥沙利铂耐药的研究进展[J]. 临床医学进展, 2023, 13(8): 12687-12695. https://doi.org/10.12677/ACM.2023.1381779

1. 引言

近年来,结直肠癌(CRC)的发病率和死亡率逐年攀升,严重威胁着人类健康。根据全球肿瘤流行病统计数据库(GLOBOCAN)的数字,2015年中国大陆新增CRC患者共有37万例;到2018年,CRC已成为最常见的胃肠道癌症,在全球范围内占180万例和88.1万例死亡,占癌症病例和死亡人数的十分之一 [1] 。其中,中国大陆的发病人数已经达到52万之多(521,490),这也使其远远超越了胃癌,居我国恶性肿瘤发病人数的第二位 [2] 。同时,我国的CRC死亡人数居世界之首,占全球28.1%,其中男女平均死亡率均高于世界平均水准,位列我国恶性肿瘤死亡人数的第五位 [3] 。2020年,根据世界卫生组织全球癌症观察最新报告,全球新增CRC病例超过190万例,其中结肠癌(CC)病例1148,515例,尽管近年来许多新的治疗方法改善了CC患者的预后,但其五年相对生存率却仍然较低,仅为64.7% [4] 。其中,超过三分之一的CC患者将演变为转移性疾病,这类患者的五年生存率仅为10% [5] 。

2. 结肠癌奥沙利铂耐药

大多数的结肠癌患者在确诊时都有严重的症状,已形成晚期肿瘤和远处转移。目前,结肠癌的主要治疗方法仍是手术切除联合化疗,对于不能手术切除的患者,建议在手术前或手术后进行全身化疗,以减少肿瘤复发和转移,并提高五年生存率。奥沙利铂(OXA)是一种二氨基环己烷(DACH)铂类药物,也是第三代铂类抗肿瘤药物 [6] ,使用奥沙利铂进行化疗可提高晚期或转移性结肠癌患者的总体生存率(OS) [7] 。不幸的是,奥沙利铂耐药仍然是晚期结肠癌预后不良的主要因素。在化疗或靶向治疗中幸存下来的结肠癌细胞具有高度的适应性,并激活相关生存信号通路,导致耐药性 [8] 。奥沙利铂是高危复发和淋巴结转移患者的首选化疗方法,然而,它的耐药性却导致许多患者的治疗失败,许多研究者均试图了解奥沙利铂耐药的机制,主要集中在药物外排、药物靶点突变、DNA损伤修复和细胞死亡逃逸等方面 [9] 。结肠肿瘤治疗的耐药性仍然是一个重大挑战,逆转奥沙利铂耐药对于结肠肿瘤治疗具有重要意义 [10] 。目前,许多临床前和临床研究都集中在相关方面,以期克服奥沙利铂的耐药性,改善结肠癌患者的预后。

3. 通过信号通路及靶点逆转结肠癌奥沙利铂耐药

3.1. PIK3/AKT通路

磷脂酰肌醇3-激酶(PI3K)是一种在细胞内传递信号、级联和调节多种细胞过程的脂蛋白激酶。PI3K被认为是癌症治疗中化疗耐药的重要原因。蛋白激酶B (Protein Kinase B, AKT)也是PI3K信号通路的重要下游效应者,它调节多种途径,包括抑制细胞凋亡、刺激细胞生长和调节细胞代谢 [11] 。PI3K/AKT信号通路的异常激活是调节多药耐药的关键环节。PI3K/AKT信号通路作为人类癌症中经常被激活的关键途径,常与细胞转化、肿瘤发生、肿瘤进展和耐药有关 [12] 。

RECQL4在体外通过激活PI3K/AKT信号通路增强结肠腺癌对奥沙利铂的耐药性 [12] 。RecQ-like helicase 4 (RECQL4)是RecQ解旋酶家族的成员之一,作为DNA解离解旋酶家族,RecQ解旋酶深入参与DNA复制、转录、重组和修复 [13] [14] 。ZHOU F等人详细阐明了RECQL4缺失可能是体外通过抑制P13K/AKT途径逆转结肠癌对奥沙利铂抗性的重要机制 [12] ,从而为克服结肠癌对奥沙利铂的抗性提供了新的靶点。

高尔基体磷酸蛋白3 (GOLPH3),在多种实体肿瘤中均有扩增,与肿瘤分化程度低、临床分期高、恶性程度高、预后差呈正相关 [15] [16] [17] 。此外,GOLPH3被证明与肿瘤细胞对化疗的耐药性有关 [18] 。重要的是,有证据表明GOLPH3过表达可以激活PI3K/AKT通路,参与多种肿瘤细胞的增殖、分化、凋亡和微血管生成 [19] [20] 。YU T等人的研究表明,GOLPH3抑制奥沙利铂耐药的结肠癌细胞增殖,促进细胞凋亡,逆转奥沙利铂的耐药性,其机制可能与抑制P13K/AKT/mTOR通路有关 [6] 。

B7-H3是一种免疫分子,表达在抗原提呈细胞(APC)或巨噬细胞中,调节T细胞的功能。研究表明,B7-H3的高表达在结肠癌中与侵袭和转移呈正相关。XRCC1是一种支架蛋白,可促进DNA单链断裂的有效修复。ZHANG PF等人研究证实了B7-H3通过PI3K/AKT通路上调XRCC1的表达,促进结肠癌细胞对奥沙利铂的耐药性 [21] 。

3.2. lncRNA

lncRNA是一种长度大于200bp的非编码RNA,近年来,在各种癌症相关过程中的作用,包括在耐药中的作用,已经被广泛研究。因此,研究lncRNA在奥沙利铂耐药中的作用及其特定的调控机制是非常重要的,可以验证新的治疗靶点和结肠癌对奥沙利铂的敏感性 [22] 。

PGM5-AS1是一种lncRNA,在一项研究中,已证实奥沙利铂耐药细胞和组织存在异常低的PGM5-AS1表达 [23] [24] 。HUI BQ等进行了进一步研究,阐明了PGM5-AS1的上调可使奥沙利铂耐药细胞对奥沙利铂更敏感,提示该lncRNA参与了奥沙利铂耐药的诱导及其作为治疗靶点的潜在应用 [22] 。

此外,LI QG等人发现了一个新的lncRNA,lnc-RP11-536 K7.3。它与奥沙利铂耐药有关,并预测患者的存活率较低。LNC-RP11-536 K7.3基因敲除抑制了细胞的增殖、糖酵解和血管生成,而增强了体外和体内耐药有机物和移性结肠癌细胞的化疗敏感性。此外,LNC-RP11-536 K7.3招募SOX2转录激活USP7mRNA的表达。积聚的USP7导致HIF-1α去泛素化和稳定化,从而促进对奥沙利铂的耐药性,为移性结肠癌的治疗提供了新的靶点 [25] 。

OIP5-AS1基因是位于人类染色体15q15.1上的一个lncRNA,在多种肿瘤中表达上调并促进癌症的发展 [26] 。LIANG J等人得出结论,OIP5-AS1在结肠癌中高表达,可影响结肠癌细胞的生物学行为,并可通过介导microRNA-137 (miR-137)的表达来调节结肠癌细胞对L-OHP的耐药性 [27] 。

3.3. MicroRNAs

MicroRNAs (MiRNAs)是一类长度为19~24个核苷酸的单链非编码小RNA分子,在造血和实体肿瘤的耐药中发挥重要作用 [28] 。MiR-506是X染色体连锁的miRNA簇的一个组成部分,据报道,它既是癌基因,也是肿瘤进展的抑制因子,包括结肠癌 [29] 。

在ZHOU F等人的一项研究中,证实miR-506在化疗耐药的结肠癌组织中表达下调,并与预后不良有关。进一步研究发现,miR506通过下调Wnt/β-catenin通路来逆转结肠癌细胞对奥沙利铂的耐药性。这些结果加深了我们对结肠癌耐药的分子机制的理解,并提示miR-506可能是耐药结肠癌的治疗靶点 [30] 。

3.4. HIF-1α

缺氧是肿瘤微环境的一个共同特征,它激活了癌细胞中的HIF信号通路。在缺氧的情况下,HIF在各种癌细胞中过表达,并与许多不同的肿瘤实体的进展和不良临床结果有关,包括结肠癌。HIF基因调控许多与血管生成、肿瘤生长、转移、代谢重编程和治疗耐药相关的基因的表达 [31] [32] 。鉴于其作为低氧诱导耐药的主要调节因子的重要性,低氧诱导转录因子1α (HIF-1α)已被认为是肿瘤治疗的一个有吸引力的治疗靶点。

XU K等人的研究结果揭示了HIF-1α/miR-338-5p/IL-6反馈通路在结肠癌耐药中的潜在作用,并提供了证据,证明每个参与成员都可能成为逆转这种耐药的新靶点,并证明了HIF-1α抑制剂PX-478在避免结肠癌耐药方面的临床潜力 [33] 。此外,WEI TT的研究同样证明了HIF-1α羟基化的增加可以克服奥沙利铂耐药性以增强抗结肠癌治疗 [34] 。

3.5. ZEB1

上皮间充质转化(EMT)与化疗耐药密切相关,接受EMT的恶性细胞获得迁移和抗药性特征 [35] [36] ,ZEB是一类转录因子,参与EMT的发生,其中,ZEB1参与胚胎形成和细胞分化。而新的研究表明,ZEB1参与了EMT的发生,并与人类癌症的不良预后有关 [37] 。

GUO C等人证实敲低ZEB1通过反转EMT有效地恢复了奥沙利铂灵敏度,明确了ZEB1可能是预防结肠癌奥沙利铂耐药性的潜在治疗靶点 [9] 。

3.6. TRIM29

在结肠癌患者中,超过60%的患者存在p53突变 [38] [39] [40] ,且p53突变表明结肠癌的临床分期、预后和耐药性较差 [41] 。临床研究还表明,突变型p53增加了结肠癌的耐药性 [42] 。

TRIM29基因主要存在于细胞质中,与多种细胞骨架蛋白结合。研究发现,TRIM29可以与P53结合,负向调节P53的核转录,阻断其功能。此外,TRIM29在体内促进肿瘤生长和转移,在许多肿瘤中高表达,并可促进肿瘤生长 [43] 。

LEI GQ等利用TRIM29成功地逆转了HT29-OX抗性细胞模型对奥沙利铂的耐药性。在突变的P53结肠癌细胞HT29中,TRIM29大大提高了HT29对奥沙利铂的敏感性和逆转的奥沙利铂耐药性。潜在的机制是TRIM29可能通过阻断突变体P53的转录功能来增加HT29对奥沙利铂的敏感性,从而抑制其下游基因(如MDR1)的转录功能 [44] 。

3.7. 外泌体

外泌体是由细胞分泌的直径为70~120 nm的胞外小泡,可以运输细胞内的蛋白质、核酸等物质,从而参与细胞间的通讯。越来越多的研究表明,外切体可以调节生理和病理过程 [45] ;由于其免疫原性低、稳定性好、毒性低、生物屏障通透性高,因此具有很大的输送药物或功能核酸的潜力,从而达到治疗肿瘤等疾病的目的。

IRGD多肽是一种外泌体,促进肿瘤的外渗和特异性穿透,有巨大的肿瘤靶向潜力 [46] 。肉碱棕榈酰转移酶1A (CPT1A)是脂肪酸氧化的关键酶,在多种癌症中表达上调,已被认为是癌症治疗的一个有前景的靶点 [47] 。LIN D等人成功证实了iRGD修饰的外泌体能有效地将CPT1A siRNA递送到结肠癌细胞,通过调节脂肪酸氧化来逆转奥沙利铂耐药性,这不仅为治疗奥沙利铂耐药的结肠癌提供了一种有效的方法,而且推动了siRNA在临床上的应用 [48] 。

HUI BQ等也在原有的研究基础上,进一步提出包裹奥沙利铂和PGM5-AS1的外泌体能够逆转耐药 [22] 。

3.8. 糖酵解

癌细胞通常表现为糖酵解增加,并依赖这种代谢途径来产生能量,化疗耐药细胞株表现出有氧糖酵解升高和有氧乳酸产生上调。在这些结果的基础上,了解糖酵解与耐药癌细胞特性之间的关系对于规避耐药性和提高治疗水平具有重要意义。

糖酵解抑制剂2-DG是一种合成的葡萄糖类似物,已被证明通过干扰糖酵解抑制多种癌症类型的癌细胞生长。2-DG主要阻止己糖激酶对葡萄糖的磷酸化,导致ATP耗竭,增强化疗药物的疗效。在肿瘤细胞内积累的磷酸化2-DG阻止糖酵解代谢生成ATP,导致细胞周期进展受阻和体外细胞死亡。ADAM家族蛋白在多种人类肿瘤中过表达,也与肿瘤进展和缺氧诱导的耐药性有关。

Park GB等人的结果表明,糖酵解增加通过激活ADMA10和ADAM17促进结肠癌化疗耐药和迁移活性。此外,2-DG介导的ADAM家族调控可能是治疗晚期耐药或肿瘤转移的潜在策略 [8] 。

4. 通过药物逆转结肠癌奥沙利铂耐药

4.1. 毛兰素

毛兰素是一种天然的联苯类化合物,是中药石斛中最重要的天然成分之一,以往研究表明,其对多种人类癌细胞具有很强的抗肿瘤活性,包括人肝细胞癌和肺癌等 [49] [50] 。SUN YH等证实毛兰素可抑制结肠癌细胞生长并促进吞噬功能 [51] 。SU C进一步研究证明毛兰素能够显著抑制人结肠癌奥沙利铂耐药细胞的增殖,并将细胞周期阻滞在G2/M期,表明毛兰素具有逆转奥沙利铂耐药的作用。其作用机制可能与抑制JAK2/STAT3信号通路,降低药物排外蛋白P-gp的表达有关 [52] 。

4.2. 人参皂苷

人参皂苷Rh2 (G-Rh2)是人参的主要活性成分之一,具有抗肿瘤活性 [53] 。据报道,G-Rh2在多种恶性疾病中发挥抗癌作用,并已被发现具有诱导细胞凋亡和抑制癌细胞增殖的强大能力。MA J等人的研究表明,G-Rh2能有效逆转结肠癌细胞对奥沙利铂的耐药性,其机制可能与抑制细胞增殖、促进细胞凋亡和耐药基因的改变有关 [54] 。这些结果表明,G-Rh2可能是治疗结肠癌化疗耐药的一种有前途的方法。

4.3. 土木香内酯

土木香内酯(ALT)是从旋覆花根中分离得到的一种化合物,是STAT3的选择性抑制剂,是一种具有强烈抗炎和抗肿瘤活性的中草药成分 [55] 。CAO PH等人发现了ALT在体外和体内都能增强奥沙利铂的作用,并首次证明ALT通过诱导活性氧(ROS)的产生而协同奥沙利铂的抗肿瘤作用。这些发现为ALT与奥沙利铂协同作用的分子机制提供了新的见解,并表明这种联合治疗可能成为一种更有效的结肠癌治疗方案 [56] 。

4.4. 二甲双胍

糖尿病被认为是结肠癌的重要预后因素,根据大量研究,结肠癌的风险与糖尿病密切相关。胰岛素抵抗是指由慢性高胰岛素血症引起的病理状况。这种适应过程的潜在分子机制之一涉及胰岛素受体底物1 (IRS-1)的磷酸化状态的变化。这种转变可能触发许多下游信号通路,如细胞外信号调节激酶(ERK),促进细胞增殖、细胞存活和增强癌症的化疗耐受性。例如,慢性高胰岛素血症可导致化疗耐药,特别是对奥沙利铂。在结肠癌患者中,长期的胰岛素治疗被证明与接受化疗的患者预后不良有关 [57] [58] 。

胰岛素诱导的奥沙利铂抵抗通过二甲双胍介导的AMPK激活逆转。因此,二甲双胍可能使糖尿病患者对用于治疗结肠癌的化疗药物敏感。LIU C等人对长期胰岛素处理的HCT116细胞的研究表明,二甲双胍可以通过AMPK/Erk信号通路抑制Bcl-2的表达和线粒体的移位,从而促进线粒体的凋亡。二甲双胍可能通过将IRS-1的磷酸化位点从Ser307改变为Tyr632,并通过AMPK激活放大ERK去磷酸化来减轻奥沙利铂诱导的细胞凋亡。这进一步证明了二甲双胍联合奥沙利铂的增敏作用。这项研究的结果应该会促使临床医生和研究人员追寻二甲双胍作为一种具有临床意义的新药物在治疗患有II型糖尿病的结肠癌患者中的前景 [59] 。

4.5. 二氢杨梅素

二氢杨梅素(DMY)是从中草药欧亚葡萄叶中提取的一种独特的2,3-二氢黄酮醇化合物,已被证明具有抗肿瘤活性 [60] 。

WANG ZY发现DMY通过抑制结肠癌细胞系中的MRP2表达及其启动子活性来恢复化学敏感性,包括奥沙利铂和长春新碱。并进一步证明了奥沙利铂和DMY的组合在体内具有协同的肿瘤抑制作用,为临床提供了DMY增强结肠癌化疗敏感性的新方法 [61] 。

5. 小结与展望

由于结肠癌细胞对化疗药物,特别是奥沙利铂产生的耐药性,导致许多患者在多次有效的化疗后仍不可避免地发生复发和转移,这种化疗耐药性给结肠癌患者的康复和生存带来了巨大的障碍。所以,探究结肠癌奥沙利铂耐药的机制,进而逆转其耐药提高治疗疗效,对改善结肠癌患者的预后具有重要意义。如今,关于逆转结肠癌奥沙利铂耐药的研究越来越多,这些研究均从不同层面探究了其发生、发展的过程,并试图寻找各种方法来逆转其耐药。未来相信随着临床研究的进一步推进,这些成果能够得到广泛的开发和应用,也将会形成更多样的方法解决结肠癌化疗耐药的发生,以改善患者预后,提高患者生活质量,使患者更大程度获益。

基金项目

西安市第一批科技计划项目(项目编号:21YXYJ0091);陕西省人民医院科技人才支持计划(项目编号:2022BJ-05)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Arnold, M., Abnet, C.C., Neale, R.E., et al. (2020) Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastro-enterology, 159, 335-349.e15.
https://doi.org/10.1053/j.gastro.2020.02.068
[2] (2020) Erratum: Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 70, 313.
https://doi.org/10.3322/caac.21609
[3] Zhou, J., Zheng, R., Zhang, S., et al. (2021) Colorectal Cancer Burden and Trends: Comparison between China and Major Burden Countries in the World. Chinese Journal of Cancer Research, 33, 1-10.
https://doi.org/10.21147/j.issn.1000-9604.2021.01.01
[4] Chuang, J.P., Tsai, H.L., Chen, P.J., et al. (2022) Com-prehensive Review of Biomarkers for the Treatment of Locally Advanced Colon Cancer. Cells, 11, Article 3744.
https://doi.org/10.3390/cells11233744
[5] Fabregas, J.C., Ramnaraign, B. and George, T.J. (2022) Clinical Up-dates for Colon Cancer Care in 2022. Clinical Colorectal Cancer, 21, 198-203.
https://doi.org/10.1016/j.clcc.2022.05.006
[6] Yu, T., An, Q., Cao, X.L., et al. (2020) GOLPH3 Inhibition Re-verses Oxaliplatin Resistance of Colon Cancer Cells via Suppression of PI3K/AKT/mTOR Pathway. Life Sciences, 260, Article 118294.
https://doi.org/10.1016/j.lfs.2020.118294
[7] Arredondo, J., Baixauli, J., Pastor, C., et al. (2017) Mid-Term On-cologic Outcome of a Novel Approach for Locally Advanced Colon Cancer with Neoadjuvant Chemotherapy and Sur-gery. Clinical and Translational Oncology, 19, 379-385.
https://doi.org/10.1007/s12094-016-1539-4
[8] Park, G.B., Chung, Y.H. and Kim, D. (2017) 2-Deoxy-D-Glucose Suppresses the Migration and Reverses the Drug Resistance of Colon Cancer Cells through ADAM Expression Regulation. Anti-Cancer Drugs, 28, 410-420.
https://doi.org/10.1097/CAD.0000000000000472
[9] Guo, C., Ma, J., Deng, G., et al. (2017) ZEB1 Promotes Oxaliplatin Resistance through the Induction of Epithelial-Mesenchymal Transition in Colon Cancer Cells. Journal of Cancer, 8, 3555-3566.
https://doi.org/10.7150/jca.20952
[10] Zhang, C., Liu, X., Jin, S., et al. (2022) Ferroptosis in Cancer Therapy: A Novel Approach to Reversing Drug Resistance. Molecular Cancer, 21, Article 47.
https://doi.org/10.1186/s12943-022-01530-y
[11] Liu, R., Chen, Y., Liu, G., et al. (2020) PI3K/AKT Pathway as a Key Link Modulates the Multidrug Resistance of Cancers. Cell Death & Disease, 11, Article 797.
https://doi.org/10.1038/s41419-020-02998-6
[12] Zhou, F., Wang, L., Jin, K., et al. (2021) RecQ-Like Helicase 4 (RECQL4) Exacerbates Resistance to Oxaliplatin in Colon Adenocarcinoma via Activation of the PI3K/AKT Signaling Pathway. Bioengineered, 12, 5859-5869.
https://doi.org/10.1080/21655979.2021.1964156
[13] Lu, H., Fang, E.F., Sykora, P., et al. (2014) Senescence In-duced by RECQL4 Dysfunction Contributes to Rothmund-Thomson Syndrome Features in Mice. Cell Death & Disease, 5, e1226.
https://doi.org/10.1038/cddis.2014.168
[14] Popuri, V., Tadokoro, T., Croteau, D.L., et al. (2013) Hu-man RECQL5: Guarding the Crossroads of DNA Replication and Transcription and Providing Backup Capability. Criti-cal Reviews in Biochemistry and Molecular Biology, 48, 289-299.
https://doi.org/10.3109/10409238.2013.792770
[15] Arriagada, C., Luchsinger, C., González, A.E., et al. (2019) The Knocking Down of the Oncoprotein Golgi Phosphoprotein 3 in T98G Cells of Glioblastoma Multiforme Disrupts Cell Migration by Affecting Focal Adhesion Dynamics in a Focal Adhesion Kinase-Dependent Manner. PLOS ONE, 14, e0212321.
https://doi.org/10.1371/journal.pone.0212321
[16] Lu, J., Zhong, F., Sun, B., et al. (2019) Diagnostic Utility of Serum Golgi Phosphoprotein 3 in Bladder Cancer Patients. Medical Science Monitor, 25, 6736-6741.
https://doi.org/10.12659/MSM.915950
[17] Rizzo, R., Parashuraman, S., D’Angelo, G., et al. (2017) GOLPH3 and Oncogenesis: What Is the Molecular Link? Tissue and Cell, 49, 170-174.
https://doi.org/10.1016/j.tice.2016.06.008
[18] Tang, S., Pan, H., Wei, W., et al. (2017) GOLPH3: A Novel Bi-omarker That Correlates with Poor Survival and Resistance to Chemotherapy in Breast Cancer. Oncotarget, 8, 105155-105169.
https://doi.org/10.18632/oncotarget.21927
[19] Liu, Y., Sun, Y. and Zhao, A. (2017) Mi-croRNA-134 Suppresses Cell Proliferation in Gastric Cancer Cells via Targeting of GOLPH3. Oncology Reports, 37, 2441-2448.
https://doi.org/10.3892/or.2017.5488
[20] Zhou, X., Xue, P., Yang, M., et al. (2014) Protein Kinase D2 Promotes the Proliferation of Glioma Cells by Regulating Golgi Phosphoprotein 3. Cancer Letters, 355, 121-129.
https://doi.org/10.1016/j.canlet.2014.09.008
[21] Zhang, P., Chen, Z., Ning, K., et al. (2017) Inhibition of B7-H3 Reverses Oxaliplatin Resistance in Human Colorectal Cancer Cells. Biochemical and Biophysical Research Communica-tions, 490, 1132-1138.
https://doi.org/10.1016/j.bbrc.2017.07.001
[22] Hui, B., Lu, C., Wang, J., et al. (2022) Engineered Exosomes for Co-Delivery of PGM5-AS1 and Oxaliplatin to Reverse Drug Resistance in Colon Cancer. Journal of Cellular Physiology, 237, 911-933.
https://doi.org/10.1002/jcp.30566
[23] Xie, C., Zhang, L.Z., Chen, Z.L., et al. (2020) A hMTR4-PDIA3P1-miR-125/124-TRAF6 Regulatory Axis and Its Function in NF kappa B Signaling and Chemo-resistance. Hepatology, 71, 1660-1677.
https://doi.org/10.1002/hep.30931
[24] Cai, Q., Wang, S., Jin, L., et al. (2019) Long Non-Coding RNA GBCDRlnc1 Induces Chemoresistance of Gallbladder Cancer Cells by Activating Autophagy. Molecular Cancer, 18, Article No. 82.
https://doi.org/10.1186/s12943-019-1016-0
[25] Li, Q., Sun, H., Luo, D., et al. (2021) Lnc-RP11-536 K7.3/SOX2/HIF-1α Signaling Axis Regulates Oxaliplatin Resistance in Patient-Derived Colorectal Can-cer Organoids. Journal of Experimental & Clinical Cancer Research, 40, Article No. 348.
https://doi.org/10.1186/s13046-021-02143-x
[26] Sun, W.L., Kang, T., Wang, Y.Y., et al. (2019) Long Noncoding RNA OIP5-AS1 Targets Wnt-7b to Affect Glioma Progression via Modulation of miR-410. Bioscience Reports, 39, BSR20180395.
https://doi.org/10.1042/BSR20180395
[27] Liang, J., Tian, X.F. and Yang, W. (2020) Effects of Long Non-Coding RNA Opa-Interacting Protein 5 Antisense RNA 1 on Colon Cancer Cell Resistance to Oxaliplatin and Its Regulation of microRNA-137. World Journal of Gastroenterology, 26, 1474-1489.
https://doi.org/10.3748/wjg.v26.i13.1474
[28] Li, P.L., Zhang, X., Wang, L.L., et al. (2015) MicroRNA-218 Is a Prognostic Indicator in Colorectal Cancer and Enhances 5-Fluorouracil-Induced Apoptosis by Targeting BIRC5. Car-cinogenesis, 36, 1484-1493.
https://doi.org/10.1093/carcin/bgv145
[29] Zhang, Z., Ma, J., Luan, G., et al. (2015) MiR-506 Suppresses Tumor Proliferation and Invasion by Targeting FOXQ1 in Nasopharyngeal Carcinoma. PLOS ONE, 10, e0122851.
https://doi.org/10.1371/journal.pone.0122851
[30] Zhou, H., Lin, C., Zhang, Y., et al. (2017) miR-506 Enhances the Sensitivity of Human Colorectal Cancer Cells to Oxaliplatin by Suppressing MDR1/P-gp Expression. Cell Prolifera-tion, 50, e12341.
https://doi.org/10.1111/cpr.12341
[31] Oh, E.T, Kim, J.W., Kim, J.M., et al. (2016) NQO1 Inhib-its Proteasome-Mediated Degradation of HIF-1α. Nature Communications, 7, Article No. 13593.
https://doi.org/10.1038/ncomms13593
[32] Tang, Y.A., Chen, Y.F., Bao, Y., et al. (2018) Hypoxic Tumor Micro-environment Activates GLI2 via HIF-1α and TGF-β2 to Promote Chemoresistance in Colorectal Cancer. Proceedings of the National Academy of Sciences of the United States of America, 115, E5990-E5999.
https://doi.org/10.1073/pnas.1801348115
[33] Xu, K., Zhan, Y., Yuan, Z., et al. (2019) Hypoxia Induces Drug Resistance in Colorectal Cancer through the HIF-1α/miR-338-5p/IL-6 Feedback Loop. Molecular Therapy, 27, 1810-1824.
https://doi.org/10.1016/j.ymthe.2019.05.017
[34] Wei, T.T., Lin, Y.T., Tang, S.P., et al. (2020) Metabolic Target-ing of HIF-1α Potentiates the Therapeutic Efficacy of Oxaliplatin in Colorectal Cancer. Oncogene, 39, 414-427.
https://doi.org/10.1038/s41388-019-0999-8
[35] Elaskalani, O., Razak, N.B., Falasca, M., et al. (2017) Epitheli-al-Mesenchymal Transition as a Therapeutic Target for Overcoming Chemoresistance in Pancreatic Cancer. World Jour-nal of Gastrointestinal Oncology, 9, 37-41.
https://doi.org/10.4251/wjgo.v9.i1.37
[36] Lazarova, D. and Bordonaro, M. (2017) ZEB1 Mediates Drug Re-sistance and EMT in p300-Deficient CRC. Journal of Cancer, 8, 1453-1459.
https://doi.org/10.7150/jca.18762
[37] Zhang, P., Sun, Y. and Ma, L. (2015) ZEB1: At the Crossroads of Epitheli-al-Mesenchymal Transition, Metastasis and Therapy Resistance. Cell Cycle, 14, 481-487.
https://doi.org/10.1080/15384101.2015.1006048
[38] Nakayama, M. and Oshima, M. (2019) Mutant p53 in Colon Cancer. Journal of Molecular Cell Biology, 11, 267-276.
https://doi.org/10.1093/jmcb/mjy075
[39] Therachiyil, L., Haroon, J., Sahir, F., et al. (2020) Dysregulated Phos-phorylation of p53, Autophagy and Stemness Attributes the Mutant p53 Harboring Colon Cancer Cells Impaired Sensi-tivity to Oxaliplatin. Frontiers in Oncology, 10, Article 1744.
https://doi.org/10.3389/fonc.2020.01744
[40] Wu, J., Liang, Y., Tan, Y., et al. (2020) CDK9 Inhibitors Reactivate p53 by Downregulating iASPP. Cellular Signalling, 67, Ar-ticle 109508.
https://doi.org/10.1016/j.cellsig.2019.109508
[41] Huang, Y., Liu, N., Liu, J., et al. (2019) Mutant p53 Drives Cancer Chemotherapy Resistance Due to Loss of Function on Activating Transcription of PUMA. Cell Cycle, 18, 3442-3455.
https://doi.org/10.1080/15384101.2019.1688951
[42] He, C., Li, L., Guan, X., et al. (2017) Mutant p53 Gain of Function and Chemoresistance: The Role of Mutant p53 in Response to Clinical Chemotherapy. Chemo-therapy, 62, 43-53.
https://doi.org/10.1159/000446361
[43] Kanno, Y., Watanabe, M., Kimura, T., et al. (2014) TRIM29 as a Novel Prostate Basal Cell Marker for Diagnosis of Prostate Cancer. Acta Histochemica, 116, 708-712.
https://doi.org/10.1016/j.acthis.2013.12.009
[44] Lei, G., Liu, S., Yang, X., et al. (2021) TRIM29 Reverses Oxali-platin Resistance of P53 Mutant Colon Cancer Cell. Canadian Journal of Gastroenterology and Hepatology, 2021, Arti-cle ID: 8870907.
https://doi.org/10.1155/2021/8870907
[45] Zhou, Y., Tian, T., Zhu, Y., et al. (2017) Exosomes Transfer among Different Species Cells and Mediating miRNAs Delivery. Journal of Cellular Biochemistry, 118, 4267-4274.
https://doi.org/10.1002/jcb.26077
[46] Zheng, Z., Li, Z., Xu, C., et al. (2019) Folate-Displaying Exosome Mediated Cytosolic Delivery of siRNA Avoiding Endosome Trapping. Journal of Controlled Release, 311-312, 43-49.
https://doi.org/10.1016/j.jconrel.2019.08.021
[47] Ma, Y., Temkin, S.M., Hawkridge, A.M., et al. (2018) Fatty Acid Oxidation: An Emerging Facet of Metabolic Transformation in Cancer. Cancer Letters, 435, 92-100.
https://doi.org/10.1016/j.canlet.2018.08.006
[48] Lin, D., Zhang, H., Liu, R., et al. (2021) iRGD-Modified Exo-somes Effectively Deliver CPT1A siRNA to Colon Cancer Cells, Reversing Oxaliplatin Resistance by Regulating Fatty Acid Oxidation. Molecular Oncology, 15, 3430-3446.
https://doi.org/10.1002/1878-0261.13052
[49] Yang, L., Hu, Y., Zhou, G., et al. (2020) Erianin Suppresses Hepa-tocellular Carcinoma Cells through Down-Regulation of PI3K/AKT, p38 and ERK MAPK Signaling Pathways. Biosci-ence Reports, 40, BSR20193137.
https://doi.org/10.1042/BSR20193137
[50] Chen, P., Wu, Q., Feng, J., et al. (2020) Erianin, a Novel Dibenzyl Compound in Dendrobium Extract, Inhibits Lung Cancer Cell Growth and Migration via Calcium/Calmodulin-Dependent Ferroptosis. Signal Transduction and Targeted Therapy, 5, Article No. 51.
https://doi.org/10.1038/s41392-020-0149-3
[51] Sun, Y., Li, G., Zhou, Q., et al. (2020) Dual Targeting of Cell Growth and Phagocytosis by Erianin for Human Colorectal Cancer. Drug Design, Development and Therapy, 14, 3301-3313.
https://doi.org/10.2147/DDDT.S259006
[52] Su, C., Liu, S., Ma, X., et al. (2021) The Effect and Mechanism of Erianin on the Reversal of Oxaliplatin Resistance in Human Colon Cancer Cells. Cell Biology Internation-al, 45, 2420-2428.
https://doi.org/10.1002/cbin.11684
[53] Xu, F.Y., Shang, W.Q., Yu, J.J., et al. (2016) The An-titumor Activity Study of Ginsenosides and Metabolites in Lung Cancer Cell. American Journal of Translational Re-search, 8, 1708-1718.
[54] Ma, J., Gao, G., Lu, H., et al. (2019) Reversal Effect of Ginsenoside Rh2 on Oxali-platin-Resistant Colon Cancer Cells and Its Mechanism. Experimental and Therapeutic Medicine, 18, 630-636.
https://doi.org/10.3892/etm.2019.7604
[55] Chun, J., Li, R.J., Cheng, M.S., et al. (2015) Alantolactone Selectively Suppresses STAT3 Activation and Exhibits Potent Anticancer Activity in MDA-MB-231 Cells. Cancer Letters, 357, 393-403.
https://doi.org/10.1016/j.canlet.2014.11.049
[56] Cao, P., Xia, Y., He, W., et al. (2019) Enhancement of Oxali-platin-Induced Colon Cancer Cell Apoptosis by Alantolactone, a Natural Product Inducer of ROS. International Journal of Biological Sciences, 15, 1676-1684.
https://doi.org/10.7150/ijbs.35265
[57] Baricevic, I., Roberts, D.L. and Renehan, A.G. (2014) Chronic Insulin Ex-posure Does Not Cause Insulin Resistance but Is Associated with Chemo-Resistance in Colon Cancer Cells. Hormone and Metabolic Research, 46, 85-93.
https://doi.org/10.1055/s-0033-1354414
[58] Yang, I.P., Miao, Z.F., Huang, C.W., et al. (2019) High Blood Sugar Levels but Not Diabetes Mellitus Significantly Enhance Oxaliplatin Chemoresistance in Patients with Stage III Colorectal Cancer Receiving Adjuvant FOLFOX6 Chemotherapy. Therapeutic Advances in Medical Oncology, 11.
https://doi.org/10.1177/1758835919866964
[59] Liu, C., Liu, Q., Yan, A., et al. (2020) Metformin Revert Insu-lin-Induced Oxaliplatin Resistance by Activating Mitochondrial Apoptosis Pathway in Human Colon Cancer HCT116 Cells. Cancer Medicine, 9, 3875-3884.
https://doi.org/10.1002/cam4.3029
[60] Zhang, J., Chen, Y., Luo, H., et al. (2018) Recent Update on the Pharma-cological Effects and Mechanisms of Dihydromyricetin. Frontiers in Pharmacology, 9, Article 1204.
https://doi.org/10.3389/fphar.2018.01204
[61] Wang, Z., Sun, X., Feng, Y., et al. (2021) Dihydromyricetin Re-verses MRP2-Induced Multidrug Resistance by Preventing NF-κB-Nrf2 Signaling in Colorectal Cancer Cell. Phytomedi-cine, 82, Article 153414.
https://doi.org/10.1016/j.phymed.2020.153414