稀土金属有机骨架材料荧光传感环境污染物的研究进展
Research Progress on Lanthanide Metal-Organic of Frameworks Fluorescent Sensing for Environmental Pollutants
DOI: 10.12677/JAPC.2023.123020, PDF, HTML, XML, 下载: 347  浏览: 1,307  国家自然科学基金支持
作者: 何顺生*, 陈 骏, 徐毅飞, 郭闯云, 胡心茹, 韦佳敏, 刘维桥, 杨廷海#:江苏理工学院化学化工学院,江苏 常州;翟永恒:江苏绿泰检测科技有限公司,江苏 无锡
关键词: 稀土金属有机骨架材料荧光传感传感机理环境污染物Lanthanide Metal-Organic of Frameworks Fluorescent Sensing Sensing Mechanism Environmental Pollutant
摘要: 稀土金属有机骨架材料(LnMOFs)由于其稀土金属离子(Ln3+)独特的电子结构和“天线效应”,具有优秀的光物理性质,包括尖锐的特征发射峰、大的斯托克斯位移值、长发光寿命和高量子效率等。LnMOFs材料由于与客体分子之间的相互作用而引起荧光性能的变化,从而实现对环境污染物的识别传感,因此在荧光传感应用方面得到了广泛的研究。本文我们综述了近年来LnMOFs在环境污染物识别和检测方面的研究进展,包括阴阳离子、有机溶剂分子、硝基芳香族化合物和农药。
Abstract: Lanthanide Metal-Organic of Frameworks (LnMOFs) have excellent photophysical properties, including sharp characteristic emission peak, large stokes shift value, long luminous lifetime and high quantum efficiency due to lanthanide metal ions (Ln3+) unique electronic structure and the “antenna effect”. LnMOFs materials have potential application in the field of fluorescence sensing due to changes in their fluorescence performance caused by interactions with guest molecules, thereby achieving recognition and sensing for environmental pollutants. In this paper, we review the progress of LnMOFs in fluorescent sensing of environmental pollutants, including anion and cationic ions, organic solvent molecules, nitro-aromatic compounds and pesticides.
文章引用:何顺生, 陈骏, 徐毅飞, 郭闯云, 胡心茹, 韦佳敏, 翟永恒, 刘维桥, 杨廷海. 稀土金属有机骨架材料荧光传感环境污染物的研究进展[J]. 物理化学进展, 2023, 12(3): 171-186. https://doi.org/10.12677/JAPC.2023.123020

1. 引言

金属有机框架材料(Metal-Organic Frameworks, MOFs),是一类由有机配体与金属离子通过配位作用组装而成的新型多孔材料,具有明确的拓扑网格结构 [1] [2] [3] 。相较于传统的多孔材料,MOFs材料通常具有孔隙率高、比表面积大、结构可调的优点,广泛应用于催化、气体吸附储存、药物传递和化学传感等领域 [4] - [9] 。在众多MOFs材料中,稀土金属有机骨架材料(LnMOFs)因其独特的发光性能而受到广泛的关注,包括大的斯托克斯值、高量子产率、长发光寿命和特征发射光谱等 [10] [11] [12] [13] 。特别是含Eu和Tb的MOF材料,在紫外光下发出肉眼可见的红光和绿光,其特征发射峰强度对外界环境十分敏感,有利于实现对污染物质的快速、高灵敏度响应。近年来,研究人员已经成功合成了各种新颖结构的LnMOFs材料,并广泛应用于阴阳离子、有机溶剂分子、硝基芳香族化合物和农药等环境污染物的荧光传感 [14] [15] [16] [17] [18] 。本文综述了LnMOFs材料在荧光传感环境污染物的研究进展,包括对阴阳离子、有机溶剂分子、硝基芳香族化合物和农药,并对未来LnMOFs在传感领域的发展进行了展望。

2. LnMOFs在传感领域的研究进展

2.1. 对离子的传感

2.1.1. 对金属阳离子的传感

金属阳离子与我们的生活环境关系密切,特别是一些重金属离子(Fe3+、Cu2+、Pb2+等),其对环境的污染已成为全球日益关注的严重问题。与有机污染物不同的是,重金属离子很难降解,因此会在生态系统和人体中积累。即使在低浓度下,有毒金属离子也会对人体和生态环境造成危害。因此,研究和开发对于重金属离子有高选择性、高灵敏度传感的荧光传感材料具有十分重要的意义。刘伟生课题组 [19] 报道了第一例基于LnMOFs检测金属阳离子的荧光传感器EuMOF,研究结果表明,Ag+会与配体上的氮杂环胺基团配位,提高化合物的刚性并引起顺磁自旋态的改变,使EuMOF的荧光强度增强。铁离子(Fe3+)作为人体必需元素,其在人体内的过量或缺乏都会扰乱身体的自我调节,导致多种严重的疾病。刘翔宇课题组 [20] 报道了一例基于2-(4-吡啶基)-对苯二甲酸配体的EuMOF,该化合物对水介质中的Fe3+表现为明显的发光淬灭(图1(A)),检测限为35 μmol/L。LnMOFs常常由于较弱的Ln-O键导致较差的水稳定性和发光稳定性,限制了其在化学传感领域的应用。苏忠民课题组 [21] 基于刚性配体和π-共轭体系的连接构建了两种新型水稳定性的LnMOFs,具有在不同水环境条件下检测Fe3+的潜力(图1(B))。姚兆全课题组 [22] 引入含有AIE活性分子的有机配体合成了Tb-MOF,由于Tb3+的高配位数和强配位键,该MOF在pH = 1~14以及350℃温度下都表现出优异的结构稳定性,在传感废水中Fe3+方面具有良好的应用前景。

铜、镉、汞(Cu2+、Cd2+、Hg2+)等都是具有毒性的的重金属离子,这些离子在生物体内的失衡会造成不可逆的危害。孙赞课题组 [23] 基于5-(3',5'-二羧基苯基)吡啶-2,6-二羧酸的EuMOF可以通过荧光淬灭效应选择性地检测水中的Cu2+离子,检测限分别为3.3 μmol/L,具有优秀的抗干扰和循环利用能力(图1(C))。Cu2+与非配位的羧基自由氧原子之间会发生弱配位作用,这会中断有机配体与Eu3+中心之间的能量迁移,进而导致了发光淬灭。比率型荧光传感是一种基于多金属中心发光的检测方法,具有自校准机制,有效克服了外界环境的干扰因素,因此能够得到更精确的传感结果。杨武课题组 [24] 报道了一例基于噻吩基团的比例荧光传感器Eu-Ca-MOF,在Eu-Ca-MOF悬浮液中加入Hg2+离子后,381 nm处配体的特征发射增强,而Eu3+在590 nm处的特征发射被淬灭(图1(D)),基于两个发射峰强度比率的变化(I381/I590)实现了对水中Hg2+的高灵敏度检测,检测限为2.6 nmol/L。

Figure 1. (A) EuMOF served as a luminescent sensor for Fe3+ ions detection [20] ; (B) Detection of Fe3+ ions by water-stabilized Eu-MOF and Tb-MOF [21] ; (C) Study on quenching sensing, anti-interference and cyclic performance of Cu2+ ions by EuMOF [23] ; (D) Response of ratio fluorescence sensor Eu-Ca-MOF to Hg2+ ions [24]

图1. (A) EuMOF用于Fe3+离子的检测 [20] ;(B) 水稳定的Eu-MOF和Tb-MOF对Fe3+的检测 [21] ;(C) EuMOF对Cu2+离子的淬灭传感及抗干扰、循环性能研究 [23] ;(D) 比率型荧光传感器Eu-Ca-MOF对Hg2+离子的识别 [24]

相比于常见的荧光淬灭型传感,荧光增强型传感的报道相对较少。在实际应用中,分析物对传感材料的荧光增强响应往往比荧光淬灭响应具备更强的抗干扰能力。这是由于除了分析物外,许多环境因素也会导致荧光淬灭的发生,这就削弱了荧光淬灭传感的特异性。因此,以荧光增强机制检测分析物的方法相对来说更具有优势。同济大学的闫冰课题组 [25] 报道了基于苯-1,2,4,5-四羧酸酯配体的Eu3+@MOF,这是第一例用于检测水中Cd2+离子的LnMOFs传感器。Eu3+@MOF在Cd2+的水溶液中发光强度增强约8倍,检出限为0.06 mmol/L,检测机理归因于Cd2+与Eu3+@MOF的配位作用。铅离子(Pb2+)作为毒性最强的重金属离子之一,广泛存在于我们的日常生活中,通常包含在电池、汽油和颜料中。Pb2+会通过多种途径进入人体,对人的肾脏、生殖系统、神经系统和脑细胞造成不可逆的损害。内蒙古大学的胡明课题组 [26] 基于4-(吡啶-3-氧基)-邻苯二甲酸和1,4-萘二甲酸的TbMOF在pH值为2~12的范围内展现出优异的发光稳定性,并实现了对Pb2+的荧光增强型传感,检测限为94.4 μmol/L。XPS光谱的结果表明在引入Pb2+离子后,属于醚键氧的能谱峰由534.11 eV位移到533.09 eV,这证明醚键氧与Pb2+离子之间存在成键作用,使配体–金属电荷转移(LMCT)的效率提高,从而增强了荧光。时鹏飞课题组 [27] 基于四(4-羧基苯基)卟啉配体制备的强绿光发射的Tb-TCPP,浸泡在含有Al3+离子的DMF溶液后荧光强度显著增加约10倍,检测限低至7.79 nmol/L,具有高选择性和高灵敏度。检测机制被证实为Tb-TCPP与Al3+离子之间的阳离子交换作用,显著增强了配体π*-π的能量转移。本文涉及的金属阳离子传感器如表1所示。

Table 1. Summary of LnMOFs sensor for metal cations detection in this paper

表1. 本文中用于金属阳离子检测的LnMOFs传感器总结

2.1.2. 对阴离子的传感

阴离子在生理过程中发挥着重要作用,用于检测环境和生物体内重要阴离子的传感器受到了广泛关注。氟离子(F)是这些阴离子中最具吸引力的目标之一,F的过量摄入会导致氟斑牙、肾衰竭或DNA损伤。四川大学的侯贤灯课题组 [28] 基于4,4',4-s-三嗪-2,4,6-三酰基三苯甲酸酯的Tb/Eu (TATB)是一种用于检测F离子的比率型荧光传感器,检测限为96 ppb。Tb/Eu (TATB)具有Eu3+和Tb3+两个发光中心,随着F的加入,由于F的取代作用,Eu3+在617 nm处(5D07F2)的特征峰相对强度增大,而Tb3+的545 nm处(5D47F5)特征峰强度显著降低,发射峰强度的比值(I545nm/I617nm)与F的浓度呈现良好的线性关系。此外,六价铬离子(Cr6+)作为众所周知的环境污染物质之一,在水中主要以 CrO 4 2 / Cr 2 O 7 2 的阴离子形式存在,具有高度致癌性和毒性。李波课题组 [29] 合成的两种同构的发光材料EuMOF和TbMOF都可以基于发光淬灭效应高选择性地检测水中的铬酸盐离子( CrO 4 2 / Cr 2 O 7 2 ),检测限分别为0.53/0.32 μmol/L和0.75/0.57 μmol/L,低于大多数已报道的MOF发光传感器。响应时间和检测限是荧光传感技术在实际应用中要重点考虑的影响因素。赵斌课题组 [30] 基于4,4'-二羧酸-2,2'-二吡啶配体制备了Tb-ZnMOF,该配合物是首次报道的用于检测水溶液中I离子的LnMOFs荧光探针,I能够高选择性的淬灭Tb-ZnMOF的发光(图2(A)),响应时间仅为10 s,检测限低至0.001 ppm。

在人们日常生活中,亚硝酸盐离子( NO 2 )常被用于腌制品的制作,人体在摄入的 NO 2 后会在体内生成致癌物质N-亚硝胺,导致食道癌和出生缺陷等医疗问题。程鹏课题组 [31] 基于螯合酸和草酸配体的Tb-MOF能够高灵敏度检测水和食物中的 NO 2 离子,检测限为28.25 nmol/L (图2(B))。配体的单重态和三重态能级的能隙值(ΔE)分别为12647 cm−1和10799 cm1,远高于Reinhold经验法则规定的5000 cm1,表明配体能够有效地进行系间窜越(ISC),Tb-MOF与 NO 2 之间发生动态淬灭,Tb3+4D5能级向 NO 2 发生能量转移,导致Tb3+的特征发射强度降低。磷酸根离子( PO 4 3 )与许多生理功能息息相关,如能量交换、细胞信号转导和矿物质代谢等。刘国栋课题组 [32] 通过原位掺杂法将Tb3+离子引入到无色柱状晶体MOF-Zn中,得到具有较强荧光性能的镧系复合材料Tb-MOF-Zn,作为理想的荧光传感器可用于检测水中的 PO 4 3 离子,检测限为4 nmol/L,具有高选择性和灵敏度(图2(C))。为了提高准确性,还基于Tb-MOF-Zn复合材料制备了微点阵列,实现了在紫外光照射下对 PO 4 3 的视觉检测。碳酸盐离子( CO 3 2 )主要来源于碳酸的水解,转化为碳酸盐离子或重碳酸盐离子,参与海洋酸化、气候变暖和岩石衰变。闫冰课题组 [33] 基于2,2-联吡啶-5,5-二羧酸的Eu/Pt-MOFs,分别在560 nm和614 nm处表现出配体和Eu3+的特征发射。随着 CO 3 2 的加入,Eu3+的发光增强,而配体的发光减弱,通过发射峰强度比值(I614/I560)的变化实现对 CO 3 2 离子的比率荧光传感(图2(D))。本文涉及的阴离子传感器如表2所示。

近年来,基于LnMOFs传感环境中阴阳离子的研究取得了重大进展,但其检测环境大多为水相,在实际应用中存在一定局限性,而选择有机溶剂制备的悬浮液往往在实际传感能力上大打折扣。大多数的传感器需要在一定范围内的紫外波段光激发下才能被肉眼所识别,在应用的便捷性上还需要改进。此外,部分荧光传感器对多种离子或其他环境因素都存在相同的荧光响应,极易对检测信号造成干扰,特异性识别能力较弱。因此,LnMOFs在离子传感的检测选择性、实用性和适用性等方面还需进一步优化和改进。

Figure 2. (A) Tb-ZnMOF served as a luminescent sensor for I ions detection [30] ; (B) Sensing of NO 2 by Tb-MOF [31] ; (C) Schematic illustration of preparing Tb-MOF-Zn composite and the principle of fluorescent assay of phosphate [32] ; (D) Response of ratio fluorescence sensor Eu/Pt-MOFs to PO 4 3 ions [33]

图2. (A) Tb-ZnMOF用于I离子的检测 [30] ;(B) Tb-MOF对 NO 2 的传感 [31] ;(C) 制备Tb-MOF-Zn复合材料的示意图及磷酸盐荧光测定原理 [32] ;(D) Eu/Pt-MOFs对 PO 4 3 离子的识别 [33]

Table 2. Summary of LnMOFs sensors for anions detection in this paper

表2. 本文中用于阴离子检测的LnMOFs传感器总结

2.2. 对有机溶剂分子的传感

在环境污染物质中,有机溶剂分子广泛应用于工业、农业和日常生活中,引起了许多环境和人体健康问题。刘伟生课题组 [34] 将2-(6羧基吡啶-3-基)对苯二甲酸构筑的TbMOF分散在不同的有机溶剂中得到稳定的悬浮液,并研究其传感特性。结果表明,不同溶剂对TbMOF在5D47F5处跃迁的强度有影响,尤其是丙酮,发生明显的淬灭现象,抗干扰实验证实,其他溶剂的存在对丙酮引起的发光淬灭没有明显的影响。杨燕课题组 [35] 合成的EuMOF基于发光淬灭效应实现了对丙酮分子的高灵敏度传感,更重要的是,Eu-MOF在pH = 3~11的水体系中具有出色的化学稳定性,是一种有潜力的化学传感器(图3(A))。此外,杨燕课题组 [36] 以四羧酸基-5,5'-(萘-1,5-二酰基)二对苯二甲酸为配体的EuMOF与DMF和丙酮溶剂制备成悬浮液后,有明显的发光变化。其中,DMF悬浮液的发射强度显著提高,约为水悬浮液的2.3倍,而丙酮悬浮液则几乎完全淬灭,淬灭效率约为99.998% (图3(B))。这种特别的荧光开启和关闭的发光响应使得EuMOF成为一种有潜力的双功能发光传感器。二甲基亚砜(DMSO)是一种含硫化合物,它不仅是一种常见的有机溶剂,而且是一种细胞保护剂。同时,DMSO也可以与蛋白质相互作用,导致蛋白质变性,从而对人体的肝脏和肾脏造成损害。朱苗力课题组 [37] 基于5,5'-((5-羧基-1,3苯基)双(氧))二对苯二甲酸的TbMOF,DMSO悬浮液的荧光强度是水悬浮液的18.85倍。作为第一例报道用于检测DMSO分子的LnMOFs探针材料,该化合物对于DMSO的传感高效且稳定(图3(C))。另外,乙酰丙酮也是一种常见的有机溶剂,用于配制润滑剂、杀虫剂等。孙长艳课题组 [38] 由4,4'-(4-氨基-1,2,4-三唑-3,5-二酰基)二苯甲酸构筑的化合物Tb-MOF能够基于荧光淬灭检测乙酰丙酮有机溶剂,检测限为0.559 mmol/L (图3(D))。本文涉及的有机溶剂传感器如表3所示。近年来用于检测有机溶剂小分子的LnMOFs传感器受到越来越多的关注,具有响应速度快、灵敏度高、检测限低等优点,但是所涉及的有机溶剂种类仍旧较少,同时还需要注意传感器在溶剂中的稳定性和分散程度对检测结果的影响。

Figure 3. (A) EuMOF with high pH stability for the detection of acetone [35] ; (B) Fluorescence response of dual-function sensor EuMOF to DMF and acetone [36] ; (C) Detection of DMSO solvent by TbMOF based on fluorescence enhancement [37] ; (D) Response of acetylacetone by Tb-MOF [38]

图3. (A) 高pH稳定性的EuMOF用于丙酮的检测 [35] ;(B) 双功能传感器EuMOF对DMF和丙酮的荧光响应 [36] ;(C) TbMOF基于荧光增强对DMSO溶剂的检测 [37] ;(D) TbMOF对乙酰丙酮的识别 [38]

Table 3. Summary of LnMOFs sensors for organic solvent molecules detection in this paper

表3. 本文中用于检测有机溶剂分子的LnMOFs传感器总结

2.3. 对硝基芳香族化合物的传感

硝基芳香族化合物(NACs)广泛应用于医药、染料中间体等行业,而且在生活和生产过程中来源广泛,是一类有毒的环境污染物。2,4,6-三硝基苯酚(TNP)又名苦味酸,不仅广泛用于制造地雷、火箭燃料、烟花和火柴,而且还经常用于皮革、制药和染料工业。环境中残留的TNP会通过水或食物进入人体内,进而诱发多种严重的疾病。陈小莉课题组 [39] 报道了Eu3+@ZnMOF和Eu3+@ZnNiMOF,均能在水溶液中定量地检测2,4,6-三硝基甲苯(TNP),检测限分别低至83 nmol/L和78 nmol/L在实际应用中能够准确地检测到环境中极低浓度的TNP残留(图4(A))。LnMOFs在荧光传感领域的应用常常会因为水稳定性差以及微晶粉末的形式而不能够大规模工业化应用,通过合成混合基质膜(MMMs)可以很好地克服上述问题。孙静课题组 [40] 基于2,3,5,6-四氯对苯二甲酸和1,10-菲罗啉构筑了二维的CUST-506,将其固定到琼脂糖水凝胶中制备出Eu基混合基质膜(CUST-506基MMMs),对TNP表现为荧光淬灭(图4(B)),检测限为175 nmol/L,具有响应速度快、发光变化直观和可重用性好的优点。

Figure 4. (A) Eu3+@ZnMOFwas used for the detection of TNP [39] ; (B) Fluorescence enhancement effect of CUST-506 mixed-matrix membranes on TNP under ultraviolet light [40] ; (C) Detection of nitrobenzene by Eu-MOF 1 based on fluorescence quenching [42]

图4. (A) Eu3+@ZnMOF用于TNP的检测 [39] ;(B) CUST-506混合基质膜在紫外光下对TNP的荧光增强效应 [40] ;(C) Eu-MOF 1基于荧光淬灭对硝基苯的检测 [42]

刘云凌课题组 [41] 基于2,3,5,6-四氯对苯二甲酸和1,10-菲罗啉配体的JLU-MOF201-Tb对2,4-二硝基苯酚(2,4-DNP)和4-硝基苯酚(4-NP)表现出显著的荧光淬灭效应,具有出色的抗干扰和循环利用能力,淬灭现象归因于JLU-MOF201-Tb与分析物之间发生的荧光共振能量转移。郑州大学的侯红卫课题组 [42] 基于4'-(1H-吡唑-3-基)-[1,1'-联苯]-3,5-二羧酸制备了Eu-MOF 1和Eu-MOF 2,Eu-MOF 1是基于配体苯环的π-π作用组装而成的三维超分子结构,而Eu-MOF 2是通过配体N原子与Eu3+离子之间的配位作用构成的三维结构。两种化合物与硝基苯(NB)共存时,Eu3+在617 nm处(5D07F2)的发射峰强度都显著地降低(图4(C)),这是由于NB含有缺电子的NO2基团,而含有吡唑基的Eu-MOF 1和Eu-MOF 2具有较强的给电子能力,因此两者间的电子转移可能导致了淬灭现象的发生。LnMOFs作为荧光传感器已广泛应用于硝基芳香族化合物(NACs)的痕量检测,具有优秀的选择性、抗干扰能力。本文涉及的NACs传感器如表4所示。很多研究表明,LnMOFs对NACs的识别通常涉及分析物和传感器间的能级匹配关系,通过光谱数据的测试以及能级的理论计算来判断电子转移机制,进而确定荧光传感的产生机理。

Table 4. Summary of LnMOFs sensors for detecting NACs in this paper

表4. 本文中用于检测硝基芳香族化合物的LnMOFs传感器总结

2.4. 对农药的传感

有机农药已经成为了现代农业中不可缺少的生产资料,由于农药的广泛使用,在人类的食物和生存环境中常常发现了农药的残留。吡虫啉和噻虫嗪是两种高效且广泛使用的新型烟碱类农药,应用于番茄、辣椒、香蕉等作物。虽然这两者已被确定为一种中等毒性和相对安全的杀虫剂,但一些研究表明,其毒性可能被低估,难降解的特性使它们在农业环境和农产品中大量残留。李夏课题组 [43] 基于草酸钾的多孔三维结构TbMOF具有37.585 m2/g的高比表面积,与吡虫啉或噻虫嗪共存时有明显荧光淬灭现象,检测限分别为13 μmol/L和7.3 μmol/L。化合物的激发光谱与两种分析物的紫外–可见吸收光谱有较大的面积重叠,使配体向Tb3+的能量转移效率降低,导致了发光淬灭。姜微波课题组 [44] 合成的新型发光材料UiO-66-NH2具有优异的发光性能,对新烟碱类农药的选择性实验中发现,吡虫啉和噻虫嗪的加入会增强UN的聚集诱导发射(AIE),表现为荧光增强,检测限分别为5.57 ppb和0.98 ppb,并建立了基于UN的发光传感平台,采用标准加入法检测果汁样品中的吡虫啉和噻虫嗪含量,在1~20,000 ppb范围内的农药浓度与UN发光强度值之间存在很好的线性关系。该传感策略具有低成本、快速、高灵敏度的优点,在食品环境安全领域具有很大的应用潜力。

3. 总结和展望

LnMOFs以其高比表面积、高孔隙率、结构和功能的可调性、多元的发光机制等优势,在构建高选择性、高灵敏度的荧光探针材料上有着广阔的应用前景。我们总结了近年来利用LnMOFs识别和检测环境污染物的最新进展,尽管已经设计出了多种LnMOFs传感器,但传感的目标仍然有限,特别是在生物分子传感方面还需要进行更多的研究。在生物传感方面,基于LnMOFs的传感器在传感完成前框架就发生了破裂,存在稳定性不足的问题,同时还需要考虑和解决生物相容性问题。与传统的单峰测量相比,比例传感可以有效消除环境因素的影响,并且表现出易于分辨的荧光响应,LnMOFs多元的发光中心也使其在比例传感器的设计中极具潜力。在材料合成方面,通过调控尺寸制备具有纳米形貌的LnMOFs传感器,提高其传感灵敏度、选择性、检测限和稳定性。LnMOFs传感器在应用范围和提高传感性能等方面仍有很大的提高空间,有待科研工作者的深入研究。

基金项目

江苏省高等学校自然科学研究项目(23KJA430007),江苏省研究生教育教学改革课题(JGKT22_C068),江苏省研究生实践创新计划项目(SJCX21_1328, SJCX23_1648)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Qin, Y., Wan, Y., Guo, J. and Zhao, M. (2022) Two-Dimensional Metal-Organic Framework Nanosheet Composites: Preparations and Applications. Chinese Chemical Letters, 33, 693-702.
https://doi.org/10.1016/j.cclet.2021.07.013
[2] Zhou, Z.-D., Wang, C.-Y., Zhu, G.-S., Du, B., Yu, B.-Y. and Wang, C.-C. (2022) Water-Stable Europium(III) and Terbium(III)-Metal Organic Frameworks as Fluorescent Sensors to Detect Ions, Antibiotics and Pesticides in Aqueous Solutions. Journal of Molecular Structure, 1251, Article ID: 132009.
https://doi.org/10.1016/j.molstruc.2021.132009
[3] Gao, L., Gao, T., Zhang, Y. and Hu, T. (2022) A Bifunctional 3D Porous Zn-MOF: Fluorescence Recognition of Fe3+ and Adsorption of Congo Red/Methyl Orange Dyes in Aqueous Medium. Dyes and Pigments, 197, Article ID: 109945.
https://doi.org/10.1016/j.dyepig.2021.109945
[4] Zhang, Y., Wei, J., Xing, L., Li, J., Xu, M., Pan, G. and Li, J. (2022) Superoxide Radical Mediated Persulfate Activation by Nitrogen Doped Bimetallic MOF (FeCo/N-MOF) for Efficient Tetracycline Degradation. Separation and Purification Technology, 282, Article ID: 120124.
https://doi.org/10.1016/j.seppur.2021.120124
[5] 王婷, 薛瑞, 魏玉丽, 王明玥, 郭昊, 杨武. 共价有机框架材料的发展与应用: 气体存储、催化与化学传感[J]. 化学进展, 2018, 30(6): 753-764.
[6] Chen, X., Xu, J., Li, Y., Zhao, T., Zhang, L., Bi, N., Gou, J. and Jia, L. (2022) Two Birds with One Stone: Visual Colorful Assessment of Dipicolinic Acid and Cu2+ by Ln-MOF Hybrid Attapulgite Nano-Probe. Applied Surface Science, 605, Article ID: 154665.
https://doi.org/10.1016/j.apsusc.2022.154665
[7] Shi, W.-J., Quan, Y.-J., Lan, G.-X., Ni, K.-Y., Song, Y., Jiang, X.-M., Wang, C. and Lin, W.-B. (2021) Bifunctional Metal-Organic Layers for Tandem Catalytic Transformations Using Molecular Oxygen and Carbon Dioxide. Journal of the American Chemical Society, 143, 16718-16724.
https://doi.org/10.1021/jacs.1c07963
[8] Wu, D., Zhang, P.-F., Yang, G.-P., Hou, L., Zhang, W.-Y., Han, Y.-F., Liu, P. and Wang, Y.-Y. (2021) Supramolecular Control of MOF Pore Properties for the Tailored Guest Adsorption/Separation Applications. Coordination Chemistry Reviews, 434, Article ID: 213709.
https://doi.org/10.1016/j.ccr.2020.213709
[9] Daglar, H., Gulbalkan, H.C., Avci, G., Aksu, G.O., Altundal, O.F., Altintas, C., Erucar, I. and Keskin, S. (2021) Effect of Metal-Organic Framework (MOF) Database Selection on the Assessment of Gas Storage and Separation Potentials of MOFs. Angewandte Chemie International Edition, 60, 7828-7837.
https://doi.org/10.1002/anie.202015250
[10] Mallakpour, S., Nikkhoo, E. and Hussain, C.M. (2022) Application of MOF Materials as Drug Delivery Systems for Cancer Therapy and Dermal Treatment. Coordination Chemistry Reviews, 451, Article ID: 214262.
https://doi.org/10.1016/j.ccr.2021.214262
[11] Li, Q., Wu, Z.-Q., Li, D., Liu, T.-H., Yin, H.-Y., Cai, X.-B., Zhu, W., Fan, Z.-L. and Li, R.-Z. (2023) A Tb3+-Anchored Zr(iv)-Bipyridine MOF to Promote Photo-Induced Electron Transfer and Simultaneously Enhance Photoluminescence Ability and Photocatalytic Reduction Efficiency towards Cr2O72−. Journal of Materials Chemistry A, 11, 2957-2968.
https://doi.org/10.1039/D2TA07769H
[12] Zhou, Z., Shang, M., Yao, Z. and Zhang, J. (2022) Eu-MOF Fluorescent Fiber Detector Based on Polyacrylonitrile: A Highly Selective and Sensitive Luminescence Sensor for Trace Amounts of Fe3+. Dyes and Pigments, 198, Article ID: 110016.
https://doi.org/10.1016/j.dyepig.2021.110016
[13] Jiang, Y., Huang, Y., Shi, X., Lu, Z., Ren, J., Wang, Z., Xu, J., Fan, Y. and Wang, L. (2021) Eu-MOF and Its Mixed-Matrix Membranes as a Fluorescent Sensor for Quantitative Ratiometric pH and Folic Acid Detection, and Visible Fingerprint Identifying. Inorganic Chemistry Frontiers, 8, 4924-4932.
https://doi.org/10.1039/D1QI00840D
[14] Liu, X., Ma, Q., Feng, X., Li, R. and Zhang, X. (2021) A Recycled Tb-MOF Fluorescent Sensing Material for Highly Sensitive and Selective Detection of Tetracycline in Milk. Microchemical Journal, 170, Article ID: 106714.
https://doi.org/10.1016/j.microc.2021.106714
[15] 刘维赛, 陈晓怡, 智文科, 王旭泉, 王飞. 镧系金属有机框架化合物在发光传感检测领域的研究进展[J]. 材料导报, 2023, 37(5): 132-143.
[16] Yu, H., Liu, Q., Li, J., Su, Z.-M., Li, X., Wang, X., Sun, J., Zhou, C. and Hu, X. (2021) A Dual-Emitting Mixed-Lanthanide MOF with High Water-Stability for Ratiometric Fluorescence Sensing of Fe3+ and Ascorbic Acid. Journal of Materials Chemistry C, 9, 562-568.
https://doi.org/10.1039/D0TC04781C
[17] Xiao, Y., Wang, Y., You, Z.-X., Guan, Q.-L., Xing, Y.-H., Bai, F.-Y. and Sun, L.-X. (2022) Self-Assembled Cd-MOF Material Supported by a Triazine Skeleton: Stimuli Response to Traces of Nitroaromatics and Amines. Crystal Growth & Design, 22, 6967-6976.
https://doi.org/10.1021/acs.cgd.2c00637
[18] Chen, L., Cheng, Z., Peng, X., Qiu, G. and Wang, L. (2021) Eu-Doped MOF-Based High-Efficiency Fluorescent Sensor for Detecting 2,4-Dinitrophenol and 2,4,6-Trinitrophenol Simultaneously. Analytical Methods, 14, 44-51.
https://doi.org/10.1039/D1AY01747K
[19] Liu, W., Jiao, T., Li, Y., Liu, Q., Tan, M., Wang, H. and Wang, L. (2004) Lanthanide Coordination Polymers and Their Ag+-Modulated Fluorescence. Journal of the American Chemical Society, 126, 2280-2281.
https://doi.org/10.1021/ja036635q
[20] Duan, L., Zhang, C., Cen, P., Jin, X., Liang, C., Yang, J. and Liu, X. (2020) Stable Ln-MOFs as Multi-Responsive Photoluminescence Sensors for the Sensitive Sensing of Fe3+, , and Nitrofuran. CrystEngComm, 22, 1695-1704.
https://doi.org/10.1039/C9CE01995B
[21] Yu, H., Fan, M., Liu, Q., Su, Z., Li, X., Pan, Q. and Hu, X. (2020) Two Highly Water-Stable Imidazole-Based Ln-MOFs for Sensing Fe(3+),Cr(2)O(7)(2−)/CrO(4)(2−) in a Water Environment. Inorganic Chemistry, 59, 2005-2010.
https://doi.org/10.1021/acs.inorgchem.9b03364
[22] Pang, J.-J., Du, R.-H., Lian, X., Yao, Z.-Q., Xu, J. and Bu, X.-H. (2021) Selective Sensing of CrVI and FeIII Ions in Aqueous Solution by an Exceptionally Stable TbIII-Organic Framework with an AIE-Active Ligand. Chinese Chemical Letters, 32, 2443-2447.
https://doi.org/10.1016/j.cclet.2021.01.040
[23] Sun, Z., Sun, J., Xi, L., Xie, J., Wang, X., Ma, Y. and Li, L. (2020) Two Novel Lanthanide Metal-Organic Frameworks: Selective Luminescent Sensing for Nitrobenzene, Cu2+, and . Crystal Growth & Design, 20, 5225-5234.
https://doi.org/10.1021/acs.cgd.0c00432
[24] HaoGuo, N.W., Peng, L., Chen, Y., Liu, Y., Li, C., Zhang, H. and Yang, W. (2022) A Novel Ratiometric Fluorescence Sensor Based on Lanthanide-Functionalized MOF for Hg(2+) Detection. Talanta, 250, Article ID: 123710.
https://doi.org/10.1016/j.talanta.2022.123710
[25] Hao, J.N. and Yan, B. (2015) A Water-Stable Lanthanide-Functionalized MOF as a Highly Selective and Sensitive Fluorescent Probe for Cd(2+). Chemical Communications (Cambridge), 51, 7737-7740.
https://doi.org/10.1039/C5CC01430A
[26] Li, Z., Zhan, Z. and Hu, M. (2020) A Luminescent Terbium Coordination Polymer as a Multifunctional Water-Stable Sensor for Detection of Pb2+ Ions, Ions, Ions, and Some Amino Acids. CrystEngComm, 22, 6727-6737.
https://doi.org/10.1039/D0CE01101K
[27] Fu, C., Sun, X., Zhang, G., Shi, P. and Cui, P. (2021) Porphyrin-Based Metal-Organic Framework Probe: Highly Selective and Sensitive Fluorescent Turn-On Sensor for M(3+) (Al(3+), Cr(3+), and Fe(3+)) Ions. Inorganic Chemistry, 60, 1116-1123.
https://doi.org/10.1021/acs.inorgchem.0c03268
[28] Zeng, X., Hu, J., Zhang, M., Wang, F., Wu, L. and Hou, X. (2020) Visual Detection of Fluoride Anions Using Mixed Lanthanide Metal-Organic Frameworks with a Smartphone. Analytical Chemistry, 92, 2097-2102.
https://doi.org/10.1021/acs.analchem.9b04598
[29] Dong, J.-P., Li, B., Jin, Y.-J. and Wang, L.-Y. (2021) Efficient Detection of Fe(III) and Chromate Ions in Water Using Two Robust Lanthanide Metal-Organic Frameworks. CrystEngComm, 23, 1677-1683.
https://doi.org/10.1039/D0CE01802C
[30] Shi, P.F., Hu, H.C., Zhang, Z.Y., Xiong, G. and Zhao, B. (2015) Heterometal-Organic Frameworks as Highly Sensitive and Highly Selective Luminescent Probes to Detect I(−) Ions in Aqueous Solutions. Chemical Communications, 51, 3985-3988.
https://doi.org/10.1039/C4CC09081K
[31] Min, H., Han, Z., Wang, M., Li, Y., Zhou, T., Shi, W. and Cheng, P. (2020) A Water-Stable Terbium Metal-Organic Framework as a Highly Sensitive Fluorescent Sensor for Nitrite. Inorganic Chemistry Frontiers, 7, 3379-3385.
https://doi.org/10.1039/D0QI00780C
[32] Fan, C., Lv, X., Tian, M., Yu, Q., Mao, Y., Qiu, W., Wang, H. and Liu, G. (2020) A Terbium(III)-Functionalized Zinc(II)-Organic Framework for Fluorometric Determination of Phosphate. Microchimica Acta, 187, 84.
https://doi.org/10.1007/s00604-019-4066-5
[33] Sun, N.-N. and Yan, B. (2017) Rapid and Facile Ratiometric Detection of Based on Heterobimetallic Metal-Organic Frameworks (Eu/Pt-MOFs). Dyes and Pigments, 142, 1-7.
https://doi.org/10.1016/j.dyepig.2017.03.014
[34] Zhang, Q., Wang, J., Kirillov, A.M., Dou, W., Xu, C., Xu, C., Yang, L., Fang, R. and Liu, W. (2018) Multifunctional Ln-MOF Luminescent Probe for Efficient Sensing of Fe(3+), Ce(3+), and Acetone. ACS Applied Materials & Interfaces, 10, 23976-23986.
https://doi.org/10.1021/acsami.8b06103
[35] Yang, Y., Chen, L., Jiang, F., Wu, M., Pang, J., Wan, X. and Hong, M. (2019) A Water-Stable 3D Eu-MOF Based on a Metallacyclodimeric Secondary Building Unit for Sensitive Fluorescent Detection of Acetone Molecules. CrystEngComm, 21, 321-328.
https://doi.org/10.1039/C8CE01875H
[36] Yang, Y., Li, L., Yang, H. and Sun, L. (2021) Five Lanthanide-Based Metal-Organic Frameworks Built from a π-Conjugated Ligand with Isophthalate Units Featuring Sensitive Fluorescent Sensing for DMF and Acetone Molecules. Crystal Growth & Design, 21, 2954-2961.
https://doi.org/10.1021/acs.cgd.1c00116
[37] Yang, D., Lu, L., Feng, S. and Zhu, M. (2020) First Ln-MOF as a Trifunctional Luminescent Probe for the Efficient Sensing of Aspartic Acid, Fe(3+) and DMSO. Dalton Transactions, 49, 7514-7524.
https://doi.org/10.1039/D0DT00938E
[38] Li, J., Yu, B., Fan, L., Wang, L., Zhao, Y., Sun, C., Li, W. and Chang, Z. (2022) A Novel Multifunctional Tb-MOF Fluorescent Probe Displaying Excellent Abilities for Highly Selective Detection of Fe3+, and Acetylacetone. Journal of Solid State Chemistry, 306, Article ID: 122782.
https://doi.org/10.1016/j.jssc.2021.122782
[39] Liu, L., Chen, X.-L., Shang, L., Cai, M., Cui, H.-L., Yang, H. and Wang, J.-J. (2022) Eu3+-Postdoped MOFs Are Used for Fluorescence Sensing of TNP, TC and Pesticides and for Anti-Counterfeiting Ink Application. Dyes and Pigments, 202, Article ID: 110253.
https://doi.org/10.1016/j.dyepig.2022.110253
[40] Yu, H., Liu, Q., Fan, M., Sun, J., Su, Z.-M., Li, X. and Wang, X. (2022) Novel Eu-MOF-Based Mixed Matrix Membranes and 1D Eu-MOF-Based Ratiometric Fluorescent Sensor for the Detection of Metronidazole and PA in Water. Dyes and Pigments, 197, Article ID: 109812.
https://doi.org/10.1016/j.dyepig.2021.109812
[41] Hu, Q., Xu, T., Gu, J., Zhang, L. and Liu, Y. (2022) A Series of Isostructural Lanthanide Metal-Organic Frameworks: Effective Fluorescence Sensing for Fe3+, 2,4-DNP and 4-NP. CrystEngComm, 24, 2759-2766.
https://doi.org/10.1039/D2CE00106C
[42] Li, H., Han, Y., Shao, Z., Li, N., Huang, C. and Hou, H. (2017) Water-Stable Eu-MOF Fluorescent Sensors for Trivalent Metal Ions and Nitrobenzene. Dalton Transactions, 46, 12201-12208.
https://doi.org/10.1039/C7DT02590D
[43] Cui, R., Li, R., Li, Z., Wei, M., Wang, X. and Li, X. (2021) A Tb-MOF Anion, Porous Coordination Framework Constructed with Oxalate Ligand: Crystal Structure, Adsorption Properties, and Luminescence Sensing. Dyes and Pigments, 195, Article ID: 109669.
https://doi.org/10.1016/j.dyepig.2021.109669
[44] Xu, Y., Pu, Y., Jiang, H., Huang, Y., Shen, C., Cao, J. and Jiang, W. (2022) Highly Sensitive Fluorescent Sensing Platform for Imidacloprid and Thiamethoxam by Aggregation-Induced Emission of the Zr(IV) Metal-Organic Framework. Food Chemistry, 375, Article ID: 131879.
https://doi.org/10.1016/j.foodchem.2021.131879