lncRNA在骨肉瘤发病机制中的作用
The Role of lncRNA in the Pathogenesis of Osteosarcoma
DOI: 10.12677/ACM.2023.13102240, PDF, HTML, XML, 下载: 203  浏览: 316 
作者: 许翔宇*:内蒙古医科大学骨科学,内蒙古 呼和浩特;白 锐#:内蒙古医科大学第二附属医院小儿骨科,内蒙古 呼和浩特
关键词: 骨肉瘤lncRNA分子机制促进抑制Osteosarcoma lncRNA Molecular Mechanism Promotion Inhibition
摘要: 骨肉瘤是最常见的原发性骨肿瘤类型,主要发生在青少年和年轻人。由于骨肉瘤的恶性程度高,治疗效果差,严重影响了患者的健康和生命。长链非编码RNA (lncRNA)是一类没有或较低蛋白质的编码能力的RNA,可以调节染色质功能以及无膜核体的结构和功能,改变细胞质mRNA的稳定性和翻译,并干扰信号通路。近年来,lncRNA对骨肉瘤的研究报道越来越多,本文对当前较主流的lncRNA对骨肉瘤的作用机制进行了综述。
Abstract: Osteosarcoma is the commonest type of primary bone tumor, which mainly occurs in adolescents and young people. Due to the high degree of malignancy and poor treatment effect of osteosarcoma, it has seriously affected the health and life of patients. Long chain noncoding RNA (lncRNA) is a kind of RNA with no or low protein coding ability. It can regulate chromatin function and the structure and function of membranous nucleosomes, change the stability and translation of cytoplasmic mRNA, and interfere with signal pathways. In recent years, there are more and more reports on the research of lncrna on osteosarcoma. This paper reviews the mechanism of lncRNA on osteosarcoma.
文章引用:许翔宇, 白锐. lncRNA在骨肉瘤发病机制中的作用[J]. 临床医学进展, 2023, 13(10): 16037-16047. https://doi.org/10.12677/ACM.2023.13102240

1. 引言

骨肉瘤(Osteosarcoma, OS)是青少年中最常见的一种原发性恶性的骨肿瘤,其特点是死亡率高,治疗效果差。在20岁以下的青少年恶性骨肿瘤中,骨肉瘤的发病率为55%,其中超过20%的骨肉瘤患者在诊断时已经发生远处转移,40%的患者在治疗期间出现转移。大约10%~25%的患者发生肺转移 [1] 。骨肉瘤的发病机制可能是多种因素共同作用的,但我们对其知之甚少,为深入探究,我们需进一步研究归纳该病的发病机制,进而寻找新的早期诊断及治疗方法 [2] 。

长链非编码RNA (lncRNA)的广泛表达在基因调控过程中起到关键作用。根据lncRNA的定位及其与DNA、RNA和蛋白质的特异性作用,可以调节染色质功能以及无膜核体的结构和功能,改变细胞质mRNA的稳定性和翻译,并干扰信号通路 [3] 。长链非编码RNA作为一种长度大于200个nt的非编码RNA,可以在不同的肿瘤中作为起始因子和启动子,其不能直接编码蛋白质,但可以在转录或转录后进行水平调节基因的表达,从而实现生物学功能 [4] 。随着对lncRNA的深入研究,越来越多的lncRNA已被证实在骨肉瘤中异常表达,上调或下调lncRNA与骨肉瘤的发生及发展密切相关。

2. 对骨肉瘤的发生、发展起促进作用的lncRNA

2.1. MALAT1

MALAT1 (肺癌转移相关转录本1)又名核富集常染色体转录产物2,位于人类染色体11q13.1,具有高度保守性,其最早被发现于2003年的在非小细胞肺癌的研究中。近年来研究发现,MALAT1能够特异性的招募到SR蛋白家族的成员,参与进细胞周期和表观遗传等调控中;同时也高度表达在多种肿瘤细胞中,进一步促进肿瘤细胞增殖、侵袭及转移 [5] 。MALAT1与miR-205存在靶向调控效应,miR-205可以抑制骨肉瘤细胞的侵袭能力,并且MALAT1存在时可有效逆转此抑制效应、促进骨肉瘤细胞的侵袭能力。此外,最近研究发现miR376A可以通过MALAT1 3’UTP内的miR376A结合位点相互作用,通过降低miR376A表达的水平,进一步使TGF-α的表达增加,从而促进骨肉瘤的进展 [6] 。

2.2. KCNQ1OTl

KCNQlOTl (钾电压门控通道亚家族Q成员1反向转录物1),位于人类染色体11p11.5上的KCNQ1族,KCNQlOTl是在钾电压门控通道亚家族Q成员1 (KCNQl)基因座中发现的长链非编码RNA。KCNQlOTl RNA是一个91 kb的转录本,从KCNQl基因内含子10的高度保守和差异甲基化区域(Kcnq1 ICR, KvDMR或IC2)反义方向表达 [7] 。KCNQlOTl是骨肉瘤中一种新的Warburg效应的启动子,所谓Warburg效应是指,癌细胞主要使用糖解作用取代有氧循环的现象。它通过miR-34c-5p直接靶向作用ALDOA (一种关键的糖酵解酶)的3’UTP,ALDOA催化1,6-二磷酸果糖可逆地转化为3-磷酸甘油醛(GAP)和磷酸二羟丙酮(DHAP),从而促进骨肉瘤细胞的增殖、转移及侵袭 [8] 。过表达的KCNQlOTl作为miR-4458的竞争性内源性RNA (ceRNA),增强了靶基因CCND2的表达,进而促进骨肉瘤的发展 [9] 。

2.3. HOTAIR

HOTAIR (HOX转录反义基因间RNA)于2007年首次报道,它是一种丰富的核长链非编码RNA,长度为2158 bp,在染色体12q13.13上的HOX基因座表达。HOTAIR的活性主要表现在与(SUZ12、E2H2、和EED)三个组分的多梳抑制复合物2 (PRC2)的相互影响中,增强了HDXD基因座的组蛋白H3赖氨酸27 (H3K27)三甲基化以减少来自HDXD多个基因的表达 [10] 。AKT/mTOR信号通路与多种肿瘤相关,活化的AKT可参与细胞生长、细胞周期进程和细胞凋亡。mTOR是AKT下游的之中蛋白质。在骨肉瘤细胞中,HOTAIR呈高表达,促进mTOR及其上游激酶AKT的磷酸化,进而促进OS细胞的增殖 [11] 。

2.4. HULC

HULC,首先于人肝细胞肝癌(HCC)中被发现过度表达的一种非编码RNA,位于染色体6p24.3,长约1600个核酸,并具有两个外显子。其转录的RNA没有相当大的开放阅读框,不产生任何蛋白质 [12] 。研究表明,骨肉瘤组织中HULC的高表达和骨肉瘤患者的预后不良有着密切相关性。一般HULC高表达患者的5年总生存率为26.0%,而低表达的患者为75.4%。HULC能作为miRNA海绵结合并抑制一部分的miRNA的表达,包括miR-372;其中miR-372出现下调能上调miR-372的靶点分子PRKACB的表达,诱导发生CREB磷酸化,进一步导致组蛋白甲基化和脱乙酰化的方式出现改变,使得染色质重组,最终影响骨肉瘤基因表达 [13] 。

2.5. H19

H19是最早发现的lncRNA之一,亦是目前研究最多的lncRNA。H19作为miR-675.62的前体,其位于染色体11p15.5区域的父系基因,长度为2.3 kb,由RNA聚合酶II转录、剪接和多聚腺苷酸化,H19表达被被p53蛋白抑制,其基因位于胰岛素样生长因子2 (IGF2)的基因位点下游,两者有相同的印记机制 [14] 。Liu等 [15] 通过荟萃分析证明了,高表达的H19与预后不良和临床病理学呈正相关。较高的H19与人类实体瘤中较短的OS和潜在较差的DFS显著相关。此外,还证实过度表达的H19与骨肉瘤分化不良和晚期临床分期呈正相关。H19可以作为竞争性内源性RNA来降低骨肉瘤中的miR-200的活性并增加癌症转移的风险 [16] 。在Hao等人的研究也发现,H19可以靶向作用miR-29a-3p,激活LIM和SH3结构蛋白1,调节OS细胞表型。并且H19还可以通过与miR-29a-3p直接相互作用并间接影响下游miR-29a-3p靶标的LASP1的表达来抑制miR-29a-3p的表达。该途径可能为骨肉瘤靶向治疗提供新的思路 [17] 。

2.6. EWSAT1

EWSAT1 (尤文氏肉瘤转录本1)又被称为LINC00277 (长链非编码RNA-277),位于15号染色体上两个蛋白质编码基因(GLCE和NOX5)之间,被发现在尤因肉瘤(第二常见的高度侵袭性恶性骨肿瘤)中,其高表达具有致癌作用 [18] 。通过蛋白质阵列分析和RNA免疫测定,EWSAT1通过与异质核核糖核蛋白相互作用来调节基因表达 [19] 。EWSAT1在骨肉瘤中的作用方式十分复杂,Sun等 [20] 通过获得与丧失功能测定证明了EWSAT1促进了OS细胞的增殖、侵袭和转移。并发现EWSAT1在转录水平上正向调节lncRNA MEG3的表达,从而促进OS细胞的增殖和转移。Tao等 [21] 研究还发现EWSAT1可以通过EWSAT1/miR-326/KRasceRNA途径调节Akt-and Erk信号,显著促进OS细胞的增殖、转移、集落形成和存活。这是由携带EWSAT1的Exos诱导的血管内皮细胞敏感性增加和EWSAT1诱导的OS细胞非血管生成因子分泌增加的共同作用,EWSAT1通过两种途径调节OS诱导的血管生成,称为“双重叠加效应”。此外,EWSAT1可以通过海绵化miR-24-3p,促进ROCK1介导的转移和肌动蛋白应力纤维的形成,进而促进了骨肉瘤细胞的肺转移。

2.7. SNHG家族

SNHG属于小RNA的大型非编码基因家族,小核仁RNA (snoRNAs)及微小RNA (miRNA, miR)通常位于宿主基因的内含子中。lncRNA对miRNA具有海绵吸附作用,可作为一种竞争性的内源性RNA与miRNA相互作用,共同参与靶向基因的调控,进而影响肿瘤发生和发展 [22] 。SNHG家族的lncRNA多作为竞争性RNA来影响骨肉瘤的。SNHG1能提高酵母基因Noblp人类同源基因(NOB1)表达,并充当竞争性内源性RNA (ceRNA)抑制miR-326的活性,最终促进的骨肉瘤细胞的生长、转移和侵袭 [23] 。同时SNHG1还可以通过下调miRNA-101-3p的表达,并增强rho相关卷曲螺旋形成蛋白激酶1 (ROCK1)的表达,从而促进OS细胞的增殖、转移和侵袭 [24] 。目前发现SNGH12对骨肉瘤作用方式有2种。SNHG12可以通过海绵化miR-195-5p调节Notch2的表达,激活骨肉瘤中的Notch信号通路,进而促进骨肉瘤细胞的增殖、侵袭和转移 [25] 。SNHG12还可以通过调控miR-195-5p/IGF1R轴来促进骨肉瘤的增殖和转移 [26] 。此外,研究发现SNHG14可以通过海绵化miR-433-3p促进FBXO22表达,从而促进骨肉瘤细胞的增殖、侵袭和转移 [27] 。本综述对当前发现的SNHG家族对骨肉瘤的作用机制进行了归纳(见表1)。

Table 1. The mechanism of action of the SNHG family on osteosarcoma

表1. SNHG家族对骨肉瘤的作用机制

2.8. PVT1

PVT1 (lncRNA浆细胞瘤变异易位1)长约1716核苷酸,位于染色体8q24.21区域。PVT1最初被认定是小鼠患有白血病的病毒所诱导T淋巴瘤中一个常见的逆转录病毒的整合位点 [40] 。研究发现,PVT1的过表达可以使葡萄糖摄取、乳酸产生和骨肉瘤细胞中HK2的表达增加,PVT1与HK2的过表达可以促进细胞增殖、转移和细胞周期进程。并且PVT1可以通过海绵化miR-497,抑制miR-497促进葡萄糖消耗和乳酸产生。即骨肉瘤细胞中的PVT1的上调通过miR-497/HK2轴来增加糖酵解,最终促进骨肉瘤细胞的增殖和转移 [41] 。最近Chen等 [42] 人研究发现,N6-甲基腺苷(m6A)去甲基酶ALKBH5可与PVT1结合并抑制其降解。ALKBH5减少PVT1的m6A修饰,从而抑制PVT1中YTHDF2的结合,因此ALKBH5介导的PVT1上调促进了骨肉瘤细胞增殖。

2.9. CRNDE

CRNDE (结直肠肿瘤差异表达)是一种编码在人类16号染色体上的lncRNA,长为1910核苷酸,在结直肠癌(CRC)中高水平表达。Ding等 [43] 结果表明,CRNDE在OS组织和细胞系中表达较高,且SP1可部分诱导CRNDE的表达。敲除CRNDE可降低OS细胞的增殖和侵袭能力,诱导增加细胞的凋亡和G0/G1的阻滞。此外,间充质标志物N-cadherin, Snail和Vimentin表达的下调,而上皮标志物E-cadherin和ZO-1由于敲除CRNDE而上调。CRNDE促进糖原合酶激酶-3β磷酸化以激活Wnt/β-catenin通路,进而促进骨肉瘤增殖、侵袭和上皮间质转化 [44] 。最近Yu等 [45] 人首次提出了CRNDE可以作为骨肉瘤患者的独立不良预后因素,且高表达的CRNDE与骨肉瘤患者的远处转移和淋巴结转移阶段相关。并发现通过抑制miR-335-3p,可以促进骨肉瘤细胞的增殖、侵袭和转移。

2.10. HOTTIP

HOTTIP (远端的同源框A转录本)是从同源框A (HOXA)基因座的5’端转录的lncRNA,它控制HOXA的基因表达。最初发现于人类远端的成纤维细胞,如包皮、足部或手部的成纤维细胞 [46] 。Li等 [47] 的研究发现了HOTTIP促进骨肉瘤细胞增殖的机制是由于HOTTIP过表达,其能够促进细胞周期的相关蛋白,如周期蛋白CDK4、D1及Wnt/β链等蛋白信号通路中的重要分子β链蛋白的表达增加,其中Wnt/β链蛋白通路的激活能够促进周期蛋白和其配体CKD4的表达,使得细胞周期加速。在此基础上,Yang等 [48] 研究发现敲除HOTTIP使β-catenin和c-Myc在mRNA和蛋白质水平上的表达降低了。并且c-Myc过表达增加了HOTTIP的表达,在HOTTIP与c-Myc之间形成了一个正反馈环,进而促进骨肉瘤细胞体外转移、侵袭和EMT。此外,Yao等 [49] 人发现,KHSRP的过表达可以抵消敲除HOTTIP对Wnt/β-catenin通路的抑制作用,证实了HOTTIP通过体外调节PTBP1/KHSRP轴借助Wnt/β-catenin通路促进骨肉瘤的进展。

2.11. HCP5

HCP5 (人类组织相容性白细胞抗原复合物P5)位于MHCI类链相关基因(MHCI)区域的MHCI类多肽相关序列A (MICA)和MHCI类多肽相关序列B (MICB)基因之间,在多种自身免疫性疾病和恶性肿瘤中表达 [50] 。功能测试证实HCP5可以作为骨肉瘤的癌基因并被转录因子1 (SP1)激活,从而上调HCP5的表达,进一步促进了骨肉瘤的发展 [51] 。并且HCP5通过竞争性靶向作用miR-101促进Ephrin受体7 (RPHA7)的表达,促进骨肉瘤的侵袭、增殖和转移 [52] 。

2.12. UCAl

UCAl (尿路上皮癌胚抗原1)位于19号染色体的p13.12区域,长度为2314 bp,含有3个外显子 [53] 。它是因在膀胱癌细胞中的特异性表达而被发现的一种长链非编码RNA。有研究结果证明:UCA1的高表达和肿瘤分级、远处转移、肿瘤大小、临床分期有显著相关性,且高表达的UCA1促进骨肉瘤细胞的增殖,抑制细胞凋亡,促进细胞的侵袭和迁移 [54] 。此外,UCAI还可以受到其他因素的调控而影响骨肉瘤细胞的增殖。如,高表达的GAS8-AS1可以导致骨肉瘤中UCA1的表达下调,从而抑制骨肉瘤的发展 [55] ;UCA1的表达可以受到巨噬细胞来源的CCL8的调控而影响骨肉瘤的增殖和迁移 [56] 。

3. 对骨肉瘤的发生、发展起抑制作用的lncRNA

3.1. LncRNA HIF2PUT

LncRNA HIF2PUT (缺氧诱导因子(HIF)-2α启动子上游转录物)位于Hupoxia-inducible factor-2 (HIF-2)启动子上游侧,从其反义方向转录。该lncRNA属于启动子上游转录物(PROMPTs)的ncRNA。HIF-2的功能与“干细胞样”特性密切相关,而PROMPTs的功能往往与相邻的蛋白质编码转录本相关 [57] 。Yao等 [57] 研究揭示了结直肠癌组织中HIF2PUT的表达与HIF-2α密切相关,LncRNA HIF2PUT还可能作为HIF-2α的调节剂和肿瘤干细胞的介质。CD133被认为是骨肉瘤的CSC标志物,HIF2PUT过表达显著减少了MG63细胞中的CD133细胞群,证实了LncRNA HIF2PUT可以抑制骨肉瘤中CSCs的特性 [58] 。Guo [59] 等研究结果进一步表明LncRNA HIF2PUT在骨肉瘤组织及细胞株中明显低表达,LncRNA HIF2PUT的表达明显抑制骨肉瘤细胞的增殖、迁移和侵袭过程 [59] 。

3.2. MEG3

MEG3位于人类染色体14q32的位置,是第一个发现具有抑制肿瘤作用的lncRNA,是在正常细胞中普遍表达的管家基因,有着母系基因印记特点,能在部分人类原发性的肿瘤中出现表达丢失,全长约1700个核酸,在正常组织中普遍表达,尤其在脑和垂体中高表达 [60] 。MEG3已在多种肿瘤中被证实可作为肿瘤抑制因子。例如,MEG3的上调抑制乳腺癌细胞发生侵袭和增殖的能力 [61] ;MEG3能够抑制食管鳞状细胞癌EC109细胞的细胞增殖并诱导细胞凋亡 [62] 。在骨肉瘤细胞中,Tian等 [63] 通过试验结果发现MEG3表达的下降,提出MEG3的表达与肿瘤细胞的分期、远处转移等有关,MEG3的低表达可能提示患者的总体存活率下降。Liu [64] 等人也通过研究在细胞水平方面证明了MEG3能够抑制骨肉瘤细胞的增殖和侵袭,也能促进细胞的凋亡,但对其发挥作用的分子机制当时未能得到明确的阐述。后来Zhang等 [65] 研究发现MEG3通过抑制Notch和TGF-β信号通路来阻止骨肉瘤细胞的增殖和转移。

3.3. LncRNA loc285194

LncRNA loc285194又被称为LSAMP反义RNA3,是一种由4个长度大于2kbs的外显子组成的lncRNA,位于人染色体3q13.31的区域 [66] 。Loc285194是p53的一个作用靶点,它在体内和体外中都能抑制肿瘤细胞的生长;在此用RNA干扰(RNAi)抑制Loc285194表达能够起到促肿瘤细胞生长作用 [67] 。LncRNA loc285194主要利用对细胞凋亡、细胞周期及VEGF/VEGFR1的调节,进而影响骨肉瘤细胞的增殖 [68] 。

3.4. GAS5

GAS5 (生长停滞特异性转录因子5)是一种5′端寡嘧啶束(5′-TOP) RNA,位于人类染色体1q25.1。其转录和稳定性受哺乳动物雷帕霉素靶点(mTOP)控制。GAS5可以控制非小细胞肺癌 [69] 、乳腺癌 [70] 、和胃癌 [71] 在内的多种癌症的细胞增殖、细胞周期及细胞的凋亡,进一步发挥抑癌作用。此外,GAS5在人结直肠癌中的过表达显著抑制了体内和体外的增殖 [72] 。GAS5是miR-221的ceRNA,GAS5通过负调控miR-221显著促进ARHI的表达,并在体内和体外都显示出了抗癌活性 [73] 。最近还发现GAS5还可以通过海绵化miR-663a抑制RHOB来调节骨肉瘤细胞的增殖、侵袭和转移 [74] 。

4. LncRNA与骨肉瘤化疗

骨肉瘤的治疗主要为手术切除治疗联合系统化疗,但由于不同个体之间骨肉瘤细胞对化疗药物的敏感性不同导致化疗产生的效果并不相同。有研究表明lncRNA能影响骨肉瘤对化疗药物的敏感性,这为骨肉瘤的治疗探索出了一条新的道路。例如,LINC00161可以结合miR-645,通过miR-645调节IFIT2的表达,从而调节miR-645-IFIT2轴使骨肉瘤细胞对顺铂诱导的细胞凋亡敏感 [75] 。lncRNAADAMTS9- AS2海绵化miR-130a-5p,然后通过调节PTEN-PI3K/AKT通路来影响骨肉瘤细胞的增殖及PTX的药物敏感性 [76] 。

5. 总结与展望

在青少年患有的恶性肿瘤中,骨肉瘤有着较高的发病率和死亡率。尽管骨肉瘤的研究已开展多年,但其临床治疗仍未取得显著进展。lncRNA可通过多种方式参与肿瘤的增殖、转移和侵袭,同一种lncRNA对不同肿瘤能够分别起着抑制或是促进的作用,同一种lncRNA在骨肉瘤的不同阶段也在发挥着不同的作用。随着对lncRNA的研究,众多学者正尝试将lncRNA作为诊断、治疗、预后的可能。此外,lncRNA能作为一种对化疗敏感性的预测标志物,能够为患者提供到更好的治疗选择。相信随着对lncRNA不断深入的研究,其能成为有效的骨肉瘤治疗靶点、诊断及预后判断的一类分子标志物。

参考文献

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Malakoti, F., Alemi, F., Karimzadeh, H., et al. (2021) Long Noncoding RNA-miRNA-mRNA Axes Multiple Roles in Osteosarcoma. Gene Reports, 23, Article 101090.
https://doi.org/10.1016/j.genrep.2021.101090
[2] Dolati, S., Sanaie, S., Naseri, A., et al. (2020) Osteosarcoma: A Comprehensive Review of Management and Treatment Strategies. Annals of Diagnostic Pathology, 49, Article 151654.
https://doi.org/10.1016/j.anndiagpath.2020.151654
[3] Statello, L., Guo, C.-J., et al. (2020) Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nature Reviews Molecular Cell Biology, 22, 96-118.
[4] Zhao, W., Ma, X., Liu, L., et al. (2019) SNHG20: A Vital lncRNA in Multiple Human Cancers. Journal of Cellular Physiolo-gy, 234, 14519-14525.
https://doi.org/10.1002/jcp.28143
[5] 黄宇旻, 李菊明, 韦永中. 长链非编码RNA MALAT1调控骨肉瘤细胞侵袭能力的机制[J]. 中国老年学杂志, 2021, 41(2): 358-361.
[6] Farzaneh, M., Najafi, S., Anbiyaee, O., Azizidoost, S. and Khoshnam, S.E. (2023) LncRNA MALAT1-Related Signaling Pathways in Osteo-sarcoma. Clinical and Translational Oncology, 25, 21-32.
https://doi.org/10.1007/s12094-022-02876-x
[7] Kanduri, C. (2011) Kcnq1ot1: A Chromatin Regulatory RNA. Seminars in Cell & Developmental Biology, 22, 343-350.
https://doi.org/10.1016/j.semcdb.2011.02.020
[8] Shen, Y., Xu, J., Pan, X., et al. (2020) LncRNA KCNQ1OT1 Sponges miR-34c-5p to Promote Osteosarcoma Growth via ALDOA Enhanced Aerobic Glycolysis. Cell Death, Dis-ease, 11, Article No. 278.
https://doi.org/10.1038/s41419-020-2485-1
[9] Wang, M., Wang, Z., Zhu, X., et al. (2019) LncRNA KCNQ1OT1 Acting as a ceRNA for miR-4458 Enhances Osteosarcoma Progression by Regulating CCND2 Expression. In Vitro Cellular & Developmental Biology-Animal, 55, 694- 702.
https://doi.org/10.1007/s11626-019-00386-9
[10] Song, W. and Zou, S.B. (2016) Prognostic Role of lncRNA HOTAIR in Esophageal Squamous Cell Carcinoma. Clinica Chimica Acta, 463, 169-173.
https://doi.org/10.1016/j.cca.2016.10.035
[11] Enqi, L.I., Zhao, Z., Baotong, M.A., et al. (2017) Long Noncoding RNA HOTAIR Promotes the Proliferation and Metastasis of Osteosarcoma Cells through the AKT/mTOR Signaling Pathway. Experimental & Therapeutic Medicine, 14, 5321-5328.
[12] Ghafouri-Fard, S., Esmaeili M, Taheri M, et al. (2020) Highly Upregulated in Liver Cancer (HULC): An Update on Its Role in Carcinogenesis. Journal of Cellular Physiology, 235, 9071-9079.
https://doi.org/10.1002/jcp.29765
[13] Uzan, V.R.M., Lengert, A.H., Boldrini, É., Penna, V., Scapulatempo-Neto, C., Scrideli, C.A., et al. (2016) High Expression of HULC Is Associated with Poor Prognosis in Osteosarcoma Patients. Plos One, 11, e0156774.
https://doi.org/10.1371/journal.pone.0156774
[14] Yang, J., Qi, M., Fei, X., et al. (2021) LncRNA H19: A Novel Oncogene in Multiple Cancers. International Journal of Biological Sciences, 17, 3188-3208.
https://doi.org/10.7150/ijbs.62573
[15] Liu, F., Pan, H., Xia, G., et al. (2016) Prognostic and Clinicopathological Significance of Long Noncoding RNA H19 Overexpression in Human Solid Tumors: Evidence from a Meta-Analysis. Oncotarget, 7, 83177-83186.
https://doi.org/10.18632/oncotarget.13076
[16] Li, M., Chen, H., Zhao, Y., Gao, S. and Cheng, C. (2016) H19 Functions as a ceRNA in Promoting Metastasis through Decreasing miR-200s Activity in Osteosarcoma. DNA and Cell Biology, 35, 235-240.
https://doi.org/10.1089/dna.2015.3171
[17] Jin, H., Wang, H., Jin, X., et al. (2021) Long Non-Coding RNA H19 Regulates LASP1 Expression in Osteosarcoma by Competitively Binding to miR29a3p. Oncology Reports, 46, Article No. 207.
https://doi.org/10.3892/or.2021.8158
[18] Tao, S., Huang, J., Wei, Z., et al. (2020) EWSAT1 Acts in Concert with Exosomes in Osteosarcoma Progression and Tumor-induced Angiogenesis: The “Double Stacking Effect”. Advanced Bi-osystems, 4, Article 2000152.
https://doi.org/10.1002/adbi.202000152
[19] Howarth, M.M., Simpson, D., Ngok, S.P., et al. (2014) Long Noncoding RNA EWSAT1-Mediated Gene Repression Facilitates Ewing Sarcoma Oncogenesis. The Journal of Clinical Investigation, 124, 5275-5290.
https://doi.org/10.1172/JCI72124
[20] Sun, L., Yang, C., Xu, J., et al. (2016) Long Noncoding RNA EWSAT1 Promotes Osteosarcoma Cell Growth and Metastasis through Suppression of MEG3 Expression. DNA and Cell Biology, 35, 812-818.
https://doi.org/10.1089/dna.2016.3467
[21] Shen, D., Liu, Y., Liu, Y., et al. (2020) Long Non-Coding RNA EWSAT1 Promoted Metastasis and Actin Cytoskeleton Changes via miR Sponging in Osteosarcoma. Journal of Cellular and Molecular Medicine, 25, 716-728.
https://doi.org/10.1111/jcmm.16121
[22] 皮益苑, 周爽, 简鸣, 等. LncRNA中miRNA海绵活性与肿瘤的研究进展[J]. 中南医学科学杂志, 2019, 47: 230-234.
[23] Wang, J., Cao, L., Wu, J., et al. (2018) Long Non-Coding RNA SNHG1 Regulates NOB1 Expression by Sponging miR-326 and Promotes Tumorigenesis in Osteosarcoma. In-ternational Journal of Oncology, 52, 77-88.
https://doi.org/10.3892/ijo.2017.4187
[24] Deng, R., Chen, J.Y., et al. (2018) lncRNA SNHG1 Negatively Regu-lates miRNA-101-3p to Enhance the Expression of ROCK1 and Promote Cell Proliferation, Migration and Invasion in Osteosarcoma. International Journal of Molecular Medicine, 43, 1157-1166.
https://doi.org/10.3892/ijmm.2018.4039
[25] Xu, N., Xu, J., Zuo, Z., et al. (2020) Downregulation of lncRNA SNHG12 Reversed IGF1R-Induced Osteosarcoma Metastasis and Proliferation by Targeting miR-195-5p. Gene, 726, Article 144145.
https://doi.org/10.1016/j.gene.2019.144145
[26] Zhou, S., Yu, L., Xiong, M., et al. (2018) LncRNA SNHG12 Promotes Tumorigenesis and Metastasis in Osteosarcoma by Upregulating Notch2 by Sponging miR-195-5p. Biochemi-cal and Biophysical Research Communications, 495, 1822- 1832.
https://doi.org/10.1016/j.bbrc.2017.12.047
[27] Hou, X.K. and Mao, J.S. (2020) Long Noncoding RNA SNHG14 Promotes Osteosarcoma Progression via miR-433- 3p/FBXO22 axis. Biochemical and Biophysical Research Communi-cations, 523, 766-772.
https://doi.org/10.1016/j.bbrc.2020.01.016
[28] 谭晓谦, 梅海波, 伍江雁, 等. lncRNA SNHG3靶向调控miR-514a-5p对骨肉瘤细胞增殖、凋亡、迁移和侵袭的影响[J]. 中国医药导报, 2021, 18(22): 22-27.
[29] Xu, R., Fan, F., Yu, X., et al. (2018) LncRNA SNHG4 Promotes Tumour Growth by Sponging miR-224-3p and Predicts Poor Survival and Recurrence in Human Osteosarcoma. Cell Proliferation, 51, e12515.
https://doi.org/10.1111/cpr.12515
[30] Ju, C., Zhou, R., Sun, J., et al. (2018) LncRNA SNHG5 Promotes the Pro-gression of Osteosarcoma by Sponging the miR-212-3p/SGK3 Axis. Cancer Cell International, 18, Article No. 141.
https://doi.org/10.1186/s12935-018-0641-9
[31] Zheng, L., Hu, N., Guan, G., et al. (2018) Long Noncoding RNA SNHG6 Promotes Osteosarcoma Cell Proliferation through Regulating p21 and KLF2. Archives of Biochemistry & Bio-physics, 646, 128-136.
[32] Zhu, X., Yang, G., Xu, J., et al. (2019) Silencing of SNHG6 Induced Cell Autophagy by Targeting miR-26a-5p/ULK1 Signaling Pathway in Human Osteosarcoma. Cancer Cell International, 19, Article No. 82.
https://doi.org/10.1186/s12935-019-0794-1
[33] Zhang, G.-D., Gai, P.-Z., et al. (2019) LncRNA SNHG7 Partici-pates in Osteosarcoma Progression by Down-Regulating p53 via Binding to DNMT1. European Review for Medical and Pharmacological Sciences, 23, 3602-3610.
[34] Zhu, S., Liu, Y., Wang, X., et al. (2020) lncRNA SNHG10 Promotes the Proliferation and Invasion of Osteosarcoma via Wnt/β-Catenin Signaling. Molecular Therapy-Nucleic Acids, 22, 957-970.
https://doi.org/10.1016/j.omtn.2020.10.010
[35] 王辉, 马明亮, 张德刚, 等. SNHG11通过激活Wnt信号通路促进骨肉瘤细胞增殖[J]. 中国骨与关节杂志, 2019, 8(1): 66-70.
[36] Liu, K., Hou, Y., Liu, Y., et al. (2017) LncRNA SNHG15 Contributes to Proliferation, Invasion and Autophagy in Osteosarcoma Cells by Sponging miR-141. Journal of Biomedical Science, 24, Article No. 46.
https://doi.org/10.1186/s12929-017-0353-9
[37] Su, P., Mu, S. and Wang, Z. (2019) Long Noncoding RNA SNHG16 Promotes Osteosarcoma Cells Migration and Invasion via Sponging miRNA-340. DNA & Cell Biology, 38, 170-175.
https://doi.org/10.1089/dna.2018.4424
[38] Jie, B.A., Ru, G.B., Xzx, A., et al. (2021) LncRNA SNHG16 Promotes Epithelial-Mesenchymal Transition by Upregulating ITGA6 through miR-488 Inhibition in Osteo-sarcoma. Journal of Bone Oncology, 27, Article 100348.
https://doi.org/10.1016/j.jbo.2021.100348
[39] Liao, S., Xing, S. and Ma. Y. (2019) LncRNA SNHG16 Sponges miR-98-5p to Regulate Cellular Processes in Osteosarcoma. Cancer Chemotherapy and Pharmacology, 83, 1065-1074.
https://doi.org/10.1007/s00280-019-03822-5
[40] Lu, D., Luo, P., Wang, Q., et al. (2017) lncRNA PVT1 in Can-cer: A Review and Meta-Analysis. Clinica Chimica Acta, 474, 1-7.
https://doi.org/10.1016/j.cca.2017.08.038
[41] Song, J., Wu, X., Liu, F., et al. (2017) Long Non-Coding RNA PVT1 Promotes Glycolysis and Tumor Progression by Regulating miR-497/HK2 axis in Osteosarcoma. Biochemical & Biophysical Research Communications, 490, 217-224.
https://doi.org/10.1016/j.bbrc.2017.06.024
[42] Chen, S., Zhou, L. and Wang, Y. (2020) ALKBH5-Mediated m6A Demethylation of lncRNA PVT1 Plays an Oncogenic Role in Osteosarcoma. Cancer Cell International, 20, Article No. 34.
https://doi.org/10.1186/s12935-020-1105-6
[43] Xie, H., Bo, M., Gao, Q., et al. (2018) Long Non-Coding RNA CRNDE in Cancer Prognosis: Review and Meta-Analysis. Clinica Chimica Acta, 485, 262-271.
https://doi.org/10.1016/j.cca.2018.07.003
[44] Ding, Q., Mo, F., Cai, X., et al. (2020) LncRNA CRNDE is Acti-vated by SP1 and Promotes Osteosarcoma Proliferation, Invasion, and Epithelial-Mesenchymal Transition via Wnt/β-Catenin Signaling Pathway. Journal of Cellular Biochemistry, 121, 3358-3371.
https://doi.org/10.1002/jcb.29607
[45] Yu, Y., Wang, L., Li, Z., et al. (2021) Long Noncoding RNA CRNDE Functions as a Diagnostic and Prognostic Biomarker in Osteosarcoma, as well Aspromotesitsprogression via Inhibition of miR-335-3p. Journal of Biochemical and Molecular Toxicology, 35, e22734.
https://doi.org/10.1002/jbt.22734
[46] Wang, F., Tang, Z., Shao, H., et al. (2018) Long Noncoding RNA HOTTIP Cooperates with CCCTC-Binding Factor to Coordinate HOXA Gene Expression. Biochemical and Biophysical Research Communications, 500, 852-859.
https://doi.org/10.1016/j.bbrc.2018.04.173
[47] Li, Z., Zhao, L., Wang, Q., et al. (2016) Overexpression of Long Non-Coding RNA HOTTIP Increases Chemoresistance of Osteosarcoma Cell by Activating the Wnt/betrcatenin Path-way. AmJTransl Res, 8, 2385-2393.
[48] Yang, T. and Fang, J. (2019) lncRNA HOTTIP Facilitates Osteosarcoma Cell Migration, Invasion and Epithelialmesenchymal Transition by Forming a Positive Feedback Loop with cMyc. Oncology Letters, 18, 1649-1656.
https://doi.org/10.3892/ol.2019.10463
[49] Yao, X.Y., Liu, J.F., Luo, Y., et al. (2021) LncRNA HOTTIP Facili-tates Cell Proliferation, Invasion, and Migration in Osteosarcoma by Interaction with PTBP1 to Promote KHSRP Level. Cell Cycle, 20, 283-297.
https://doi.org/10.1080/15384101.2020.1870820
[50] Zou, Y. and Chen, B. (2021) Long Non-Coding RNA HCP5 in Cancer. Clinica Chimica Acta, 512, 33-39.
https://doi.org/10.1016/j.cca.2020.11.015
[51] Zhao, W.D. and Li, L. (2019) SP1-Induced Upregulation of Long Non-Coding RNA HCP5 Promotes the Development of Osteosarcoma. Pathology Research & Practice, 215, 439-445.
https://doi.org/10.1016/j.prp.2018.12.006
[52] Tu, Y., Cai, Q., Zhu, X., et al. (2021) Down-Regulation of HCP5 Inhibits Cell Proliferation, Migration, and Invasion through Regulating EPHA7 by Competitively Binding miR-101 in Osteosarcoma. Brazilian Journal of Medical and Biological Research, 54, e9161.
https://doi.org/10.1590/1414-431x20209161
[53] 王宇, 陈葳, 李旭, 等. 人UCA1基因新剪接变异体UCA1a全长cDNA序列的生物信息学分析[J]. 西安交通大学学报(医学版), 2013, 34(5): 686-687.
[54] Li, W., Xie, P. and Ruan, W.H. (2016) Overexpression of lncRNA UCA1 Promotes Osteosarcoma Progression and Correlates with Poor Prognosis. Journal of Bone Oncology, 5, 80-85.
https://doi.org/10.1016/j.jbo.2016.05.003
[55] Zha, Z., Han, Q., Liu, W., et al. (2020) lncRNA GAS8-AS1 Downregulates lncRNA UCA1 to Inhibit Osteosarcoma Cell Migration and Invasion. Journal of Orthopaedic Surgery and Research, 15, Article No. 38.
https://doi.org/10.1186/s13018-020-1550-x
[56] Su, Y., Zhou, Y., et al. (2018) Macrophage-Derived CCL18 Promotes Osteosarcoma Proliferation and Migration by Upregulating the Expression of UCA1. Journal of Molecular Medicine, 97, 49-61.
[57] Li, Z., Bao, S., Wu, Q., et al. (2009) Hypoxia-Inducible Factors Regulate Tumorigenic Ca-pacity of Glioma Stem Cells. Cancer Cell, 15, 501-513.
https://doi.org/10.1016/j.ccr.2009.03.018
[58] Wang, Y., Yao, J., Meng, H., et al. (2015) A Novel Long Non-Coding RNA, Hypoxia-Inducible Factor-2α Promoter Upstream Transcript, Functions as an Inhibitor of Osteosarcoma Stem Cells in Vitro. Molecular Medicine Reports, 11, 2534-2540.
https://doi.org/10.3892/mmr.2014.3024
[59] 郭彩娟, 徐慧萍, 刘宏建, 等. 长链非编码RNA HIF2PUT影响骨肉瘤细胞迁移和侵袭过程[J]. 中华实验外科杂志, 2020, 37(1): 169-171.
[60] 李佳, 郗玉巧, 王少华, 等. LncRNA MEG3对人脑胶质瘤细胞增殖、侵袭及凋亡的影响[J]. 安徽医科大学学报, 2021, 56(4): 556-561.
[61] Zhang, C.Y., Yu, M.S., Li, X., et al. (2017) Overexpression of Long Non-Coding RNA MEG3 Sup-presses Breast Cancer Cell Proliferation, Invasion, and Angiogenesis through AKT Pathway. Tumour Biology, 39.
https://doi.org/10.1177/1010428317701311
[62] Huang, Z.L., Chen, R.P., Zhou, X.T., et al. (2017) Long Non-Coding RNA MEG3 Induces Cell Apoptosis in Esophageal Cancer through Endoplasmic Reticulum Stress. Oncol-ogy Reports, 37, 3093-3099.
https://doi.org/10.3892/or.2017.5568
[63] Tian, Z.Z., Guo, X.J., Zhao, Y.M., et al. (2015) Decreased Expression of Long Non-Coding RNA MEG3 Acts as a Potential Predictor Biomarker in Progression and Poor Prognosis of Oste-osarcoma. International Journal of Clinical and Experimental Pathology, 8, Article 15138.
[64] 刘珂, 侯毅, 郑稼, 等. LncRNA MEG3对骨肉瘤细胞增殖、侵袭和凋亡的影响[J]. 郑州大学学报: 医学版, 2018, 53(1): 56-59.
[65] Zhang, S.Z. Cai, L. and Li, B. (2017) MEG3 Long Non-Coding RNA Prevents Cell Growth and Metastasis of Osteosarcoma. Bratislavske Lekarske Listy, 118, 632-636.
https://doi.org/10.4149/BLL_2017_121
[66] 冯艳坤, 潘虹, 鄢艳红. 长链非编码RNA loc285194对胃癌细胞增殖和凋亡的影响及机制[J]. 中华实验外科杂志, 2020, 37(7): 1241-1244.
[67] Liu, Q., Huang, J., Zhou, N., et al. (2013) LncRNA loc285194 is a p53-Regulated Tumor Sup-pressor. Nucleic Acids Research, 41, 4976-4987.
https://doi.org/10.1093/nar/gkt182
[68] Pasic, I., Shlien, A., Dur-bin, A.D., et al. (2010) Recurrent Focal Copy-Number Changes and Loss of Heterozygosity Implicate Two Noncoding RNAs and One Tumor Suppressor Gene at Chromosome 3q13.31 in Osteosarcoma. Cancer Research, 70, 160-171.
https://doi.org/10.1158/0008-5472.CAN-09-1902
[69] Shi, X., Sun, M., Liu, H., Yao, Y., Kong, R., Chen, F. and Song, Y. (2015) A Critical Role for the Long Non-Coding RNA GAS5 in Proliferation and Apoptosis in Non-Small-Cell Lung Cancer. Molecular Carcinogenesis, 54, E1-E12.
https://doi.org/10.1002/mc.22120
[70] Pickard, M.R. and Williams, G.T. (2014) Regulation of Apoptosis by Long Non-Coding RNA GAS5 in Breast Cancer Cells: Implications for Chemotherapy. Breast Cancer Research and Treat-ment, 145, 359-370.
https://doi.org/10.1007/s10549-014-2974-y
[71] Liu, Y., Jing, Z., Zhang, W., Gan, J., Hu, C., Huang, G. and Ying, Z. (2015) lncRNA GAS5 Enhances G1 Cell Cycle Arrest via Binding to YBX1 to Regulate p21 Expression in Stomach Cancer. Scientific Reports, 5, Article 10159.
https://doi.org/10.1038/srep10159
[72] Yin, D., He, X., Zhang, E., Kong, R., De, W. and Zhang, Z. (2014) Long Noncoding RNA GAS5 Affects Cell Proliferation and Predicts a Poor Prognosis in Patients with Colorectal Cancer. Medical Oncology, 31, Article No. 253.
https://doi.org/10.1007/s12032-014-0253-8
[73] Ye, K.S., Wang, S.K., et al. (2017) Long Noncoding RNA GAS5 Suppresses Cell Growth and Epithelial-Mesenchymal Transition in Osteosarcoma by Regulating the miR-221/ARHI Pathway. Journal of Cellular Biochemistry, 118, 4772- 4781.
[74] Pickard, M.R., Mourtada-Maarabouni, M. and Wil-liams, G.T. (2013) Long Non-Coding RNA GAS5 Regulates Apoptosis in Prostate Cancer Cell Lines. Biochimica et Bi-ophysica Acta, 1832, 1613-1623.
https://doi.org/10.1016/j.bbadis.2013.05.005
[75] Wang, Y., Zhang, L., Zheng, X., et al. (2016) Long Non-Coding RNA LINC00161 Sensitises Osteosarcoma Cells to Cisplatin-Induced Apoptosis by Regulating the miR-645-IFIT2 Ax-is. Cancer Letters, 382, 137-146.
https://doi.org/10.1016/j.canlet.2016.08.024
[76] Ren, X., Cai, J., Wang, Y., et al. (2020) LncRNA ADAMTS9-AS2 in Osteosarcoma Inhibits Cell Proliferation and Enhances Paclitaxel Sensitivity by Suppressing mi-croRNA-130a-5p. European Journal of Inflammation, 18.
https://doi.org/10.1177/2058739220934560