预测肝细胞癌免疫治疗的预后
Biomarkers of Immunotherapy for Hepatocellular Carcinoma
DOI: 10.12677/ACM.2023.13122629, PDF, HTML, XML, 下载: 119  浏览: 161 
作者: 王奇峰:青海大学研究生院,青海 西宁;王海久*:青海大学附属医院普外二科,青海 西宁
关键词: 肝细胞癌免疫疗法联合疗法生物标志物Hepatocellular Carcinoma Immunotherapy Combination Therapy Biomarkers
摘要: 肝细胞癌(Hepatocellular carcinoma, HCC)是世界上最常见的肝癌,也是癌症死亡相关的主要原因之一。目前临床上单免疫治疗和免疫检查点抑制剂(Immune checkpoint inhibitors, ICIs)和多靶点酪氨酸激酶抑制剂(Tyrosine kinase inhibitors, TKIs)或抗血管内皮生长因子(Vascular endothelial growth factor, VEGF)抑制剂的联合治疗已成为晚期肝细胞癌(aHCC)的新标准疗法。然而,这些治疗的临床益处仍然有限。因此,迫切需要适当的生物标志物来预测对免疫疗法的治疗反应,以最大限度提高临床益处,同时避免不必要的毒性反应。截止到目前,还没有公认的生物标志物可用于预测HCC患者对免疫治疗的预后。因此,本文综述了肝细胞癌生物标志物的预测和预后,以期为HCC生物标志物探索和临床治疗选择的研究指导方向。
Abstract: Hepatocellular carcinoma (HCC) is the most common liver cancer in the world and one of the leading causes of cancer-related death. Currently, single immunotherapy, Immune checkpoint inhibitors (ICIs), and multi-target Tyrosine kinase inhibitors are clinically recognized. Combination therapy with TKIs or anti-vascular endothelial growth factor (VEGF) inhibitors has become the new standard of treatment for advanced hepatocellular carcinoma (aHCC). However, the clinical benefits of these treatments are still limited. Therefore, there is an urgent need for appropriate biomarkers to pre-dict therapeutic responses to immunotherapy to maximize clinical benefit while avoiding unneces-sary toxic reactions. To date, there are no recognized biomarkers that can be used to predict the prognosis of HCC patients in response to immunotherapy. Therefore, this review reviews the predic-tion and prognosis of biomarkers for hepatocellular carcinoma, with a view to guiding the research direction of biomarker exploration and clinical treatment selection for HCC.
文章引用:王奇峰, 王海久. 预测肝细胞癌免疫治疗的预后[J]. 临床医学进展, 2023, 13(12): 18703-18708. https://doi.org/10.12677/ACM.2023.13122629

1. 引言

肝细胞癌(HCC)是最常见的原发性肝癌,常见于慢性肝病的背景下不断发展 [1] 。大多数患者被诊断为中晚期,错失手术机会。此外,尽管在早期诊断中,术后5年内复发率仍保持在70%左右 [2] 。仑伐替尼、瑞戈非尼、卡博替尼和雷莫西鲁单抗等多靶点酪氨酸激酶抑制剂(TKI)等对晚期肝细胞癌(aHCC)的全身治疗选择在一定程度上提高了aHCC患者的生存率,然而,远未达到临床预期。近年来,包括纳武利尤单抗和帕博利珠单抗在内的免疫检查点抑制剂(ICIs)已显示出生存益处,并已被美国食品和药物管理局(FDA)批准用于aHCC治疗 [3] [4] ,可能会进一步改善患者的预后。

2. 外周血中的循环生物标志物

2.1. 中性粒细胞与淋巴细胞比值(NLR)和血小板与淋巴细胞比值(PLR)

中性粒细胞和血小板已经被发现与肿瘤生长和进展密切相关的细胞因子和生长因子 [5] [6] 。根据临床研究报道,NLR和PLR也是多种癌症类型的预测因素 [7] [8] [9] [10] [11] 。NLR和PLR升高也与肝细胞癌患者经动脉化疗栓塞(Transhepatic arterial chemoembolization, TACE)和索拉非尼治疗预后不良有关 [12] 。然而,在肝细胞癌的免疫治疗中,也有相同的预测作用。在CheckMate 040试验的242例患者的队列研究中,低NLR患者比高NLR患者表现出更好的OS (p = 0.015) [13] 。在PLR中也观察到了类似的结果,完全缓解或部分缓解(CR/PR)患者的PLR低于进展性疾病(PD)患者(p = 0.05)。在另一项研究中接受纳武利尤单抗治疗的aHCC患者中,基线NLR为≥3的患者的无进展生存期(PFS)较差[11.0 vs 7.1; HR = 1.52 (95% CI 1.11~2.07), p = 0.01]和OS [61.3 vs 21.0; HR = 2.72 (95% CI 1.86~3.99), p < 0.001]。此外,4周时NLR值升高与死亡风险增加有关[HR = 1.79, 95% CI (1.19~2.68)]。有趣的是,在这项研究中,NLR在4周时升高在预测超进展性疾病(HPD)方面也起作用,这可能有助于指导早期的治疗计划 [14] 。在一项接受单药或联合免疫治疗肝癌患者研究中,基线NLR和PLR较高的患者门静脉血栓形成(PVT)发生率更高,NLR ≥ 5患者的OS和PFS明显缩短(OS:7.7个月 vs 17.6个月,p < 0.0001;PFS:2.1 vs 3.8个月,p = 0.03)和PLR ≥ 300 (OS:6.7 vs 16.5个月,p < 0.0001;PFS:1.8 vs 3.7个月,p = 0.0006) [15] 。

总之,在上述不同的研究分析表明,NLR和PLR在HCC免疫治疗中具有很强的生存预测能力及对预后的预测趋势。至于潜在的预测机制,根据一些报道说,肿瘤分泌的IL-8和其他肿瘤生长因子可能会促进中性粒细胞募集 [16] 。增加的循环和肿瘤内中性粒细胞可以进一步分泌血管内皮生长因子(VEGF) [17] ,从而引起肿瘤中更高水平的VEGF并促进血管生成有关。

2.2. 甲胎蛋白(AFP)和C-反应蛋白(CRP)

甲胎蛋白(AFP)最常见于肝细胞癌的监测、诊断及预后。近年来,多项研究以探索其作用,并定义为HCC治疗预后相关的生物标志物 [18] - [22] 。在接受纳武利尤单抗或帕博利珠单抗治疗的研究中,ICI治疗开始时AFP < 400 μg/L的患者比AFP ≥ 400 μg/L的患者具有更高的CR或PR率(24% vs 13%),且基线血清AFP < 400 μg/L的患者出现更长的PFS (5.4个月 vs 2.6个月,p < 0.05)和OS (21.8 vs 8.7个月,p < 0.0001) [23] 。此外,最近报道了一种简单且易于应用的评分,由CRP和AFP组成的CRAFITY评分,该评分是通过对接受基于CRP和AFP的单药或联合免疫疗法的aHCC患者的分析构建的 [24] 。在这个分数中,AFP ≥ 100 ng/ml和CRP ≥ 1 mg/dl 都被分配了1分。患者可以达到0、1或2分,具体取决于这两个变量的水平。结果显示,基线血清AFP ≥ 100 ng/ml和CRP ≥ 1 mg/dl与ICI治疗的肝癌患者OS恶化独立相关。0分(CRAFITY低,n = 53)、1分(CRAFITY中度,n = 75)和2分(CRAFITY高,n = 62)患者的中位OS分别为27.6对11.3个月和6.4个月(p < 0.001)。此外,高CRAFITY评分也表现出疾病控制率(Disease control rate, DCR)较差,分别为80%和64%和39%,得分分别为0、1和2 (p < 0.001)。Yang等人进一步验证了TKI加免疫治疗和仑伐替尼单药治疗队列中的CRAFITY评分,研究结果示高分预测了较差的客观缓解率(Objective response rate, ORR)和DCR [25] 。这种简单的预后评分有助于免疫治疗的早期生存评估,并有望在应用于临床中。然而,CRP是一种急性期蛋白,在受伤或感染后可能会增加,因此在应用评分之前,应考虑导致增加CRP水平的疾病。

3. 细胞因子

3.1. 转化生长因子β

转化生长因子β (TGF-β)被称为免疫抑制和纤维化细胞因子。大约38%的HCC患者在TGF-β通路中存在体细胞突变 [26] 。多项研究证明,高TGF-β水平表现为肿瘤的侵袭性更强,并且还可能通过上调HCC中的PD-1信号传导导致T细胞衰竭,结果表明TGF-β在介导免疫治疗耐药性方面具有特异性免疫抑制作用 [27] [28] [29] [30] 。Feun等人在aHCC患者中对帕博利珠单抗进行了2期研究,在生物标志物分析中,有反应者(CR、PR、SD)中的血浆TGF-β水平低于无反应者(141.9 vs 1071.8 pg/ml, p = 0.004)。生存分析显示血浆TGF-β ≥ 200 pg/ml患者的PFS (2个月以上,p = 0.008)和OS (7个月与25个月以上,p = 0.005)明显较短,结果表明较高的TGF-β水平与不良的治疗结果相关 [31] 。说明血浆中高TGF-β可能是治疗反应和免疫治疗预后不良的潜在生物标志物,这可能与TGF-β形成的肿瘤中T细胞浸润减少的肿瘤微环境有关 [32] 。然而,TGF-β在肝细胞癌中的作用仍处于探索阶段,其预测价值需前瞻性大规模临床研究进一步证实。

3.2. CD137

CD137又称4-1BB或TNF受体超家族成员9 (TNFRSF9),是肿瘤坏死因子家族的成员,也是T细胞活化过程中起重要作用,也具有增强T细胞的抗肿瘤作用 [33] 。CD137主要由活化的CD4和CD8 T细胞表达 [34] ,它广泛存在于NK细胞,中性粒细胞,树突状细胞和单核细胞表面 [35] 。CD137在HCC中的表达高于其他类型的癌症,并且发现主要在PD-1上和CD8 T细胞 [36] ,以及外周活化的T细胞高表达 [37] [38] 。临床研究发现PD-1及程序性死亡配体1 (PD-L1)抑制剂与CD137信号通路的激活之间存在协同抗肿瘤活性 [39] 。外周血中CD137CD8 T细胞数量的增加与接受单克隆抗体加纳武利尤单抗治疗的黑色素瘤患者的无病生存期(Disease-free survival, DFS)更长相关 [40] 。一项研究中对接受信迪利单抗的aHCC患者进行中发现了血清CD137的具有潜在预测作用。在检测到血清CD137的患者中,发现CD137升高的患者预后较好(p = 0.034),并且在高CD137浓度的患者中观察到明显更长的PFS (14.2个月 vs 4.1个月,p < 0.001)和OS (15.6个月,p = 0.023) [41] 。然而,目前研究样本量较小,可能存在差异,其预测作用仍有欠缺,需进一步大量研究证明后应用于临床。

4. 讨论

我们综述了关于预测HCC免疫治疗的预后。NLR、PLR和CRAFITY评分作为外周血生物标志物,不仅易于采集,而且具有较高的预后价值,对未来预测模型的构建具有重要意义。CD137也是具有潜在预测因子,但上述指标预测预后仍有不足。首先,上述研究是回顾性的。其次,它们是在单中心进行的,一些研究的病例数很少,可能导致潜在的预后偏倚,需要在多中心的大规模前瞻性研究中进行验证。结合各种指标构建模型预测HCC,是有助于改善患者的预后,并且提高临床疗效,有待进一步探索。

NOTES

*通讯作者。

参考文献

[1] Llovet, J.M., Kelley, R.K., Villanueva, A., Singal, A.G., Pikarsky, E., Roayaie, S., et al. (2021) Hepatocellular Carcino-ma. Nature Reviews Disease Primers, 7, Article No. 6.
https://doi.org/10.1038/s41572-020-00240-3
[2] Roayaie, S., Obeidat, K., Sposito, C., Mariani, L., Bhoori, S., Pellegrinelli, A., et al. (2013) Resection of Hepatocellular Cancer ≤ 2cm: Results from Two Western Centers. Hepatology, 57, 1426-1435.
https://doi.org/10.1002/hep.25832
[3] Zhu, A.X., Finn, R.S., Edeline, J., Cattan, S., Ogasawara, S., Palmer, D., et al. (2018) Pembrolizumab in Patients with Ad-vanced Hepatocellular Carcinoma Previously Treated with Sorafenib (KEYNOTE-224): A Non-Randomised, Open- La-bel Phase 2 Trial. The Lancet Oncology, 19, 940-952.
[4] El-Khoueiry, A.B., Sangro, B., Yau, T., Crocenzi, T.S., Kudo, M., Hsu, C., et al. (2017) Nivolumab in Patients with Advanced Hepatocellular Carcinoma (CheckMate 040): An Open-Label, Non-Comparative, Phase 1/2 Dose Escalation and Expansion Trial. The Lancet, 389, 2492-2502.
https://doi.org/10.1016/S0140-6736(17)31046-2
[5] Jaillon, S., Ponzetta, A., Di Mitri, D., Santoni, A., Bonecchi, R. and Mantovani, A. (2020) Neutrophil Diversity and Plasticity in Tumour Progression and Therapy. Nature Reviews Cancer, 20, 485-503.
https://doi.org/10.1038/s41568-020-0281-y
[6] Jensen, H.K., Donskov, F., Marcussen, N., Nordsmark, M., Lundbeck, F. and von der Maase, H. (2009) Presence of Intratumoral Neutrophils Is an Independent Prognostic Factor in Localized Renal Cell Carcinoma. Journal of Clinical Oncology, 27, 4709-4717.
https://doi.org/10.1200/JCO.2008.18.9498
[7] Grenader, T., Nash, S., Adams, R., Kaplan, R., Fisher, D., Maughan, T., et al. (2016) Derived Neutrophil Lymphocyte Ratio Is Predictive of Survival from Intermittent Therapy in Advanced Colorectal Cancer: A Post Hoc Analysis of the MRC COIN Study. British Journal of Cancer, 114, 612-615.
https://doi.org/10.1038/bjc.2016.23
[8] Gu, X., Gao, X., Li, X., Qi, X., Ma, M., Qin, S., et al. (2016) Prognostic Significance of Neutrophil-to-Lymphocyte Ratio in Prostate Cancer: Evidence from 16, 266 Patients. Scientific Reports, 6, Article No. 22089.
https://doi.org/10.1038/srep22089
[9] Lin, G., Liu, Y., Li, S., Mao, Y., Wang, J., Shuang, Z., et al. (2016) Ele-vated Neutrophil-to-Lymphocyte Ratio Is an Independent Poor Prognostic Factor in Patients with Intrahepatic Cholangi-ocarcinoma. Oncotarget, 7, 50963-50971.
https://doi.org/10.18632/oncotarget.7680
[10] Sun, H.L., Pan, Y.Q., He, B.S., Nie, Z.L., Lin, K., Peng, H.X., et al. (2016) Prognostic Performance of Lymphocyte-to-Monocyte Ratio in Diffuse Large B-Cell Lymphoma: An Updated Meta-Analysis of Eleven Reports. OncoTargets and Therapy, 9, 3017-3023.
https://doi.org/10.2147/OTT.S96910
[11] Diem, S., Schmid, S., Krapf, M., Flatz, L., Born, D., Jochum, W., et al. (2017) Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR) as Prognostic Markers in Pa-tients with Non-Small Cell Lung Cancer (NSCLC) Treated with Nivolumab. Lung Cancer, 111, 176-181.
https://doi.org/10.1016/j.lungcan.2017.07.024
[12] Guo, L., Ren, H., Pu, L., Zhu, X., Liu, Y. and Ma, X. (2020) The Prognostic Value of Inflammation Factors in Hepatocellular Carcinoma Patients with Hepatic Artery Interventional Treatments: A Retrospective Study. Cancer Management and Research, 12, 7173-7188.
https://doi.org/10.2147/CMAR.S257934
[13] Sangro, B., Melero, I., Wadhawan, S., Finn, R.S., Abou-Alfa, G.K., Cheng, A.L., et al. (2020) Association of Inflammatory Biomarkers with Clinical Outcomes in Nivolumab-Treated Pa-tients with Advanced Hepatocellular Carcinoma. Journal of Hepatology, 73, 1460-1469.
https://doi.org/10.1016/j.jhep.2020.07.026
[14] Choi, W.M., Kim, J.Y., Choi, J., Lee, D., Shim, J.H., Lim, Y.S., et al. (2021) Kinetics of the Neutrophil-Lymphocyte Ratio during PD-1 Inhibition as a Prognostic Factor in Advanced Hepatocellular Carcinoma. Liver International, 41, 2189-2199.
https://doi.org/10.1111/liv.14932
[15] Muhammed, A., Fulgenzi, C.A.M., Dharmapuri, S., Pinter, M., Balcar, L., Scheiner, B., et al. (2021) The Systemic Inflammatory Re-sponse Identifies Patients with Adverse Clinical Outcome from Immunotherapy in Hepatocellular Carcinoma. Cancers, 14, Article 186.
https://doi.org/10.3390/cancers14010186
[16] Waugh, D.J. and Wilson, C. (2008) The Interleu-kin-8 Pathway in Cancer. Clinical Cancer Research, 14, 6735-6741.
https://doi.org/10.1158/1078-0432.CCR-07-4843
[17] Motomura, T., Shirabe, K., Mano, Y., Muto, J., Toshima, T., Umemoto, Y., et al. (2013) Neutrophil-Lymphocyte Ratio Reflects Hepatocellular Carcinoma Recurrence after Liver Transplantation via Inflammatory Microenvironment. Journal of Hepatology, 58, 58-64.
https://doi.org/10.1016/j.jhep.2012.08.017
[18] Calderaro, J., Couchy, G., Imbeaud, S., Amaddeo, G., Letouzé, E., Blanc, J.F., et al. (2017) Histological Subtypes of Hepatocellular Carcinoma Are Related to Gene Mutations and Molec-ular Tumour Classification. Journal of Hepatology, 67, 727-738.
https://doi.org/10.1016/j.jhep.2017.05.014
[19] Chan, S.L., Mo, F.K., Johnson, P.J., Hui, E.P., Ma, B.B., Ho, W.M., et al. (2009) New Utility of an Old Marker: Serial α-Fetoprotein Measurement in Predicting Radiologic Response and Survival of Patients with Hepatocellular Carcinoma Undergoing Systemic Chemotherapy. Journal of Clinical On-cology, 27, 446-452.
https://doi.org/10.1200/JCO.2008.18.8151
[20] Vora, S.R., Zheng, H., Stadler, Z.K., Fuchs, C.S. and Zhu, A.X. (2009) Serum α-Fetoprotein Response as a Surrogate for Clinical Outcome in Patients Receiving Systemic Therapy for Advanced Hepatocellular Carcinoma. Oncologist, 14, 717-725.
https://doi.org/10.1634/theoncologist.2009-0038
[21] Shao, Y.Y., Lin, Z.Z., Hsu, C., Shen, Y.C., Hsu, C.H. and Cheng, A.L. (2010) Early α-Fetoprotein Response Predicts Treatment Efficacy of Antiangiogenic Systemic Therapy in Patients with Advanced Hepatocellular Carcinoma. Cancer, 116, 4590-4596.
https://doi.org/10.1002/cncr.25257
[22] Hu, X., Chen, R., Wei, Q. and Xu, X. (2022) The Landscape of α Feto-protein in Hepatocellular Carcinoma: Where Are We? International Journal of Biological Sciences, 18, 536-551.
https://doi.org/10.7150/ijbs.64537
[23] Spahn, S., Roessler, D., Pompilia, R., Gabernet, G., Gladstone, B.P., Horger, M., et al. (2020) Clinical and Genetic Tumor Characteristics of Responding and Non-Responding Patients to PD-1 Inhibition in Hepatocellular Carcinoma. Cancers, 12, Article 3830.
https://doi.org/10.3390/cancers12123830
[24] Scheiner, B., Pomej, K., Kirstein, M.M., Hucke, F., Finkelmeier, F., Waidmann, O., et al. (2022) Prognosis of Patients with Hepatocellular Carcinoma Treated with Immunothera-py—Development and Validation of the CRAFITY Score. Journal of Hepatology, 76, 353-363.
https://doi.org/10.1016/j.jhep.2021.09.035
[25] Yang, Y., Ouyang, J., Zhou, Y., Zhou, J. and Zhao, H. (2022) The CRAFITY Score: A Promising Prognostic Predictor for Patients with Hepatocellular Carcinoma Treated with Tyrosine Kinase Inhibitor and Immunotherapy Combinations. Journal of Hepatology, 77, 574-576.
https://doi.org/10.1016/j.jhep.2022.03.018
[26] Chen, J., Zaidi, S., Rao, S., Chen, J.S., Phan, L., Farci, P., et al. (2018) Analysis of Genomes and Transcriptomes of Hepatocellular Carcinomas Identifies Mutations and Gene Expres-sion Changes in the Transforming Growth Factor-β Pathway. Gastroenterology, 154, 195-210.
https://doi.org/10.1053/j.gastro.2017.09.007
[27] Chen, J., Gingold, J.A. and Su, X. (2019) Immunomodulatory TGF-β Signaling in Hepatocellular Carcinoma. Trends in Molecular Medicine, 25, 1010-1023.
https://doi.org/10.1016/j.molmed.2019.06.007
[28] Rebouissou, S. and Nault, J.C. (2020) Advances in Molecular Classification and Precision Oncology in Hepatocellular Carcinoma. Journal of Hepatology, 72, 215-229.
https://doi.org/10.1016/j.jhep.2019.08.017
[29] Park, B.V., Freeman, Z.T., Ghasemzadeh, A., Chattergoon, M.A., Rutebemberwa, A., Steigner, J., et al. (2016) TGFβ1- Mediated SMAD3 Enhances PD-1 Expression on Anti-gen-Specific T Cells in Cancer. Cancer Discovery, 6, 1366-1381.
https://doi.org/10.1158/2159-8290.CD-15-1347
[30] Chen, J. and Su, X. (2020) Abstract 4286: TGF-β Signature Is a Therapeutic Biomarker for Combination Immunotherapy for Hepatocellular Carcinoma. Cancer Research, 80, 4286.
https://doi.org/10.1158/1538-7445.AM2020-4286
[31] Feun, L.G., Li, Y.Y., Wu, C., Wangpaichitr, M., Jones, P.D., Richman, S.P., et al. (2019) Phase 2 Study of Pembrolizumab and Circulating Biomarkers to Predict Anticancer Response in Advanced, Unresectable Hepatocellular Carcinoma. Cancer, 125, 3603-3614.
https://doi.org/10.1002/cncr.32339
[32] Mariathasan, S., Turley, S.J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., et al. (2018) TGFβ Attenuates Tumour Response to PD-L1 Blockade by Contributing to Exclusion of T Cells. Nature, 554, 544-548.
https://doi.org/10.1038/nature25501
[33] Cheuk, A.T., Mufti, G.J. and Guinn, B.A. (2004) Role of 4-1BB:4-1BB Ligand in Cancer Immunotherapy. Cancer Gene Therapy, 11, 215-226.
https://doi.org/10.1038/sj.cgt.7700670
[34] Reithofer, M., Rosskopf, S., Leitner, J., Battin, C., Bohle, B., Stein-berger, P., et al. (2021) 4-1BB Costimulation Promotes Bystander Activation of Human CD8 T Cells. European Journal of Immunology, 51, 721-733.
[35] Heinisch, I.V., Daigle, I., Knöpfli, B. and Simon, H.U. (2000) CD137 Activation Abrogates Granulocyte-Macrophage Colony-Stimulating Factor-Mediated Anti-Apoptosis in Neutrophils. European Journal of Immunology, 30, 3441-3446.
https://doi.org/10.1002/1521-4141(2000012)30:12<3441::AID-IMMU3441>3.0.CO;2-L
[36] Kim, H.D., Park, S., Jeong, S., Lee, Y.J., Lee, H., Kim, C.G., et al. (2020) 4-1BB Delineates Distinct Activation Status of Exhausted Tu-mor-Infiltrating CD8+ T Cells in Hepatocellular Carcinoma. Hepatology, 71, 955-971.
https://doi.org/10.1002/hep.30881
[37] Michel, J., Langstein, J., Hofstädter, F. and Schwarz, H. (1998) A Soluble form of CD137 (ILA/4-1BB), a Member of the TNF Receptor Family, Is Released by Activated Lymphocytes and Is Detectable in Sera of Patients with Rheumatoid Arthritis. European Journal of Immunology, 28, 290-295.
https://doi.org/10.1002/(SICI)1521-4141(199801)28:01<290::AID-IMMU290>3.0.CO;2-S
[38] Vinay, D.S. and Kwon, B.S. (1998) Role of 4-1BB in Immune Responses. Seminars in Immunology, 10, 481-489.
https://doi.org/10.1006/smim.1998.0157
[39] Geuijen, C., Tacken, P., Wang, L.C., Klooster, R., van Loo, P.F., Zhou, J., et al. (2021) A Human CD137×PD-L1 Bispecific Antibody Promotes Anti-Tumor Immunity via Con-text-Dependent T Cell Costimulation and Checkpoint Blockade. Nature Communications, 12, Article No. 4445.
https://doi.org/10.1038/s41467-021-24767-5
[40] Jacquelot, N., Roberti, M.P., Enot, D.P., Rusakiewicz, S., Ternès, N., Jegou, S., et al. (2017) Predictors of Responses to Immune Checkpoint Blockade in Advanced Melanoma. Nature Communications, 8, Article 592.
[41] Zhang, W., Gong, C., Peng, X., Bi, X., Sun, Y., Zhou, J., et al. (2022) Serum Concentration of CD137 and Tumor Infiltration by M1 Macrophages Predict the Response to Sintilimab plus Bevaci-zumab Biosimilar in Advanced Hepatocellular Carcinoma Patients. Clinical Cancer Research, 28, 3499-3508.
https://doi.org/10.1158/1078-0432.CCR-21-3972