水凝胶在妇科恶性肿瘤治疗中的研究进展
Research Progress of Hydrogel in the Application of Gynecologic Malignant Tumor Treatment
DOI: 10.12677/ACM.2023.13122652, PDF, HTML, XML, 下载: 122  浏览: 268  科研立项经费支持
作者: 韩侠慧, 许媛策, 姚 勤*:青岛大学附属医院妇产科,山东 青岛
关键词: 水凝胶妇科恶性肿瘤宫颈癌子宫内膜癌卵巢癌Hydrogel Gynecological Malignancy Cervical Cancer Endometrial Cancer Ovarian Cancer
摘要: 妇科恶性肿瘤严重威胁女性健康。传统的治疗方案包括手术、放化疗以及靶向治疗等。考虑到放化疗可能对非肿瘤部位造成毒性损害,为了提高治疗效果并减轻不良反应,在生物医药领域中,具有良好理化性质的水凝胶得到广泛应用。本文综述了水凝胶在妇科恶性肿瘤治疗中的进展,包括宫颈癌、子宫内膜癌和卵巢癌等。
Abstract: Malignant gynecological tumors pose a serious threat to women’s health. Traditional treatment op-tions include surgery, radiotherapy, chemotherapy, and targeted therapy, among others. Consider-ing the potential toxicity of radiotherapy and chemotherapy to non-tumor sites, hydrogels with fa-vorable physicochemical properties have been widely applied in the field of biomedical research. This article provides a review of the progress in the application of hydrogels in the treatment of gy-necological malignant tumors, including cervical cancer, endometrial cancer, and ovarian cancer, aiming to enhance treatment efficacy and mitigate adverse reactions.
文章引用:韩侠慧, 许媛策, 姚勤. 水凝胶在妇科恶性肿瘤治疗中的研究进展[J]. 临床医学进展, 2023, 13(12): 18850-18859. https://doi.org/10.12677/ACM.2023.13122652

1. 引言

妇科常见的恶性肿瘤如宫颈癌、子宫内膜癌、卵巢癌,对患者的健康和生活质量造成了巨大的威胁。目前常见的治疗方式主要包括手术、放化疗以及靶向免疫治疗等,但是由于恶性肿瘤易复发转移、耐药以及治疗副作用大等因素,存在一定的治疗局限性 [1] [2] [3] 。然而,作为一种新型的治疗策略,水凝胶为妇科恶性肿瘤的治疗带来了新的希望。水凝胶具有优异的生物相容性和可调控性。在药物输送方面,水凝胶可以实现药物的局部缓慢释放,提高药物在肿瘤局部的浓度,从而达到最大的治疗效果 [4] [5] [6] [7] 。另外,在放疗方面,水凝胶可以作为保护及定位剂,减少放疗辐射对周围正常组织的损伤,提高放疗的精确性和安全性。因此,本文将对水凝胶在妇科恶性肿瘤治疗中的研究进展进行综述,介绍水凝胶的特性以及在药物输送和放化疗等方面的应用。同时,我们也将探讨水凝胶在临床应用中的挑战和前景,以期为进一步的研究和临床实践提供参考和指导。

2. 水凝胶特性

水凝胶是一种以天然或合成的高分子聚合物为基础,通过共价或非共价作用形成的三维网状结构物质 [8] 。它具有良好的吸水及保水性能,能够吸收大量的水分并膨胀形成凝胶状物质 [9] 。水凝胶含水量通常在75%~99%的范围之间 [10] ,这种高吸水性使其成为一种优秀的润湿剂和保水剂。水凝胶具有出色的弹性和柔软性,在大量吸水后仍能保持弹性,其韧性和可塑性使得水凝胶能够适应不同形状和结构的需求 [11] 。此外,水凝胶通常具有良好的生物相容性,能够与生物体组织相容,并且不会引起明显的毒副作用或免疫反应,因此在医学和生物材料领域有重要的应用价值 [12] [13] 。由于其多孔结构和吸水性能,水凝胶形成的网状孔隙能够稳定的装载各种亲水性或疏水性物质,并且随水凝胶吸水和聚合物降解过程而缓慢释放其中的活性物质 [14] [15] [16] 。水凝胶的特性可以通过调整其成分、交联程度、孔隙结构等来调控和改变。因此,不同类型的水凝胶可能具有不同的特性,适用于各种应用领域,包括药物递送、骨再生、抗菌止血、伤口修复等 [17] [18] [19] [20] 。

3. 水凝胶在妇科恶性肿瘤治疗中的应用

3.1. 宫颈癌

宫颈癌是女性生殖系统最常见的一种恶性肿瘤,早期患者治疗方式主要通过手术切除病变组织,而晚期患者则通常需要放化疗或联合手术治疗,并随后进行靶向治疗。在宫颈癌的治疗中,水凝胶的研究应用正逐渐变得活跃起来。

3.1.1. 快速HPV检测

高危型人乳头瘤病毒(HPV)持续感染是宫颈癌的主要致病因素。因此,早期发现HPV感染并及时治疗在宫颈癌的预防方面起着关键作用。

Wang等研究团队开发了一种水凝胶环介导的等温扩增(LAMP)方法,可以快速检测临床宫颈脱落细胞中的单个细胞水平的人类乳头瘤病毒(HPV) DNA [21] 。这种方法采用了大规模并行的方式(约1000个细胞),结合了热板和智能手机,可在不到30分钟内获得HPV核酸扩增检测结果。并且检测结果得到临床实验室结果的证实。因此,这种原位水凝胶LAMP在临床HPV筛查和基础研究中具有潜在的应用价值。这对于宫颈癌的早期筛查和预防来说具有重要意义。

3.1.2. 递送抗癌药物

宫颈癌是实体肿瘤,致密性高,传统的治疗药物难以穿透血管到达肿瘤部位。此外,这些药物在血管内循环的时间很短,并且具有非特异性的生物分布,因此治疗效果较低,全身毒副作用较高 [22] 。然而,由于子宫颈与阴道相连,可以通过阴道递送不同形式的药物。为了实现更有效和安全的药物递送,一些研究着眼于使用水凝胶进行局部递送。

Wei等人 [23] 开发了一种可注射的热敏多肽水凝胶,用于局部序贯递送亲水性的阿霉素和疏水性的康布雷他汀A4 (一种血管破坏药物)。体内实验表明,与游离药物和单一载药水凝胶相比,水凝胶载联合药物治疗后肿瘤体积的抑制效果更好。因此,这种双药联合的递送的方式对于有效的协同治疗具有重要意义。此外,水凝胶还可作为放射增敏剂用于宫颈癌的局部治疗。Xu等人 [24] 研究了基于PDMP凝胶的双药物递送系统(递送紫杉醇和顺铂)在宫颈癌模型中的体内放射增敏作用。他们通过给予不同剂量的单次辐射,并通过肿瘤再生延迟(TGD)分析放射致敏性。实验结果显示,该凝胶药物系统联合放射治疗在抑制肿瘤生长、延长动物生存期及促进癌细胞凋亡等方面最为有效。因此,PDMP在治疗宫颈癌中被认为是一种有前景的抗肿瘤和放射致敏试剂。

与全身递送相比,局部药物递送到子宫颈可以避免药物损失,减少副作用,并在子宫颈中递送高剂量的活性剂,从而提高治疗的疗效。然而,局部药物递送的一个严重弊端是不能控制转移性的宫颈肿瘤,但宫颈癌发生远处转移的情况比较罕见 [25] ,这就凸显了局部药物携带者治疗宫颈癌的益处。

此外,局部应用水凝胶递送物质还可以拓展到基因传递 [26] 、治疗性纳米颗粒递送 [27] 、人源化抗体递送 [28] 等用于治疗宫颈癌的领域。

3.1.3. 光热/光动力治疗

光热疗法和光动力疗法是宫颈癌治疗中较新的非手术治疗方法。它们是通过在体内或局部肿瘤部位注射光敏剂后,通过一定波长的激光照射,光敏剂在光热疗法中会吸收光能转化为热能,从而使肿瘤细胞受热死亡。而在光动力疗法中,光敏剂则会被激活并产生氧化物,这些氧化物可以破坏肿瘤细胞的结构和功能,进而导致细胞死亡 [29] [30] 。水凝胶在宫颈癌的光动力及光热疗法中有着广泛的应用。

一项研究使用将考马斯亮蓝G染料连接到聚丙烯酰胺水凝胶基质中,通过便携式发光二极管阵列光源以不同浓度材料对应不同光照时间进行作用,几乎使所有的人宫颈癌细胞系(HeLa)死亡 [31] 。

缺氧是光动力疗法在肿瘤治疗中的一个限制因素,为了克服这个问题,Zhang等 [32] 人开发了一种基于铈纳米颗粒和水凝胶的持续供氧系统。该系统携带光敏剂,含水量较高的水凝胶与纳米颗粒中的CaO发生反应,并在铈纳米颗粒中的过氧化氢酶样活性作用下持续产生氧气。这种系统可以有效缓解肿瘤环境中的缺氧状态,在光照射下增强对肿瘤细胞的杀伤作用。

光热疗法和光动力疗法的治疗时间相对较短,且创伤较小,副作用较少,有助于患者快速恢复。

3.1.4. 保护放疗周围组织

宫颈癌放疗中的一个重要挑战是保护周围正常组织,特别是直肠和膀胱的辐射损伤。水凝胶可以作为填充物或间隔物,吸收放疗期间的辐射能量,以保护这些正常组织。

国外一家医院在直肠超声引导下将水凝胶垫片插入直肠和阴道之间,用来减少晚期辐射相关毒性并改善患者的生活质量 [33] 。另有一项研究在计算机断层扫描(CT)引导下注射碘化聚乙二醇,用于分离患者的直肠和阴道袖带 [34] 。通过这种图像引导的自适应近距离放射治疗方法,可以有效降低治疗相关毒性发生率。

这些方法的应用可以帮助减少放疗对周围组织的伤害,从而提高患者的生活质量,并降低治疗相关的不良事件发生率。水凝胶作为一种可调节的填充物或间隔物,在宫颈癌放疗中具有重要的保护作用。

3.1.5. 模拟肿瘤体内环境

为了更好地模拟肿瘤细胞在体内的微环境,研究人员使用生物相容性好,可调节的水凝胶来实现这一目标。Antonina [35] 等将高粘度和触变性的羟乙基纤维素生物墨水,并将其与不同浓度的海藻酸钠(SA)混合,然后将混合物注入HeLa细胞。实验结果显示,细胞的活力与添加的SA含量成反比关系,说明水凝胶基质的生物相容性能够支持细胞的增殖。在孵育一天后,细胞的增殖率可高达81.5%。经过7天的孵育,细胞数量呈数量级上的明显增加,表明这种水凝胶结构可以用作宫颈肿瘤模型的搭建。

3.2. 子宫内膜癌

子宫内膜癌(EC)是一种较常见的妇科癌症,约70%的EC病例发生于围绝经期或绝经后妇女,而4%的病例发生在40岁以下的妇女 [36] 。绝经后的女性因为缺乏孕激素的对抗作用,同时存在内源性或外源性雌激素过多的情况,使得患子宫内膜癌的风险明显增大。其他风险因素包括他莫昔芬治疗、肥胖和未生育等 [37] 。目前,临床治疗子宫内膜癌的方法包括周期性孕激素给药、刮宫术、子宫切除术、淋巴结切除术、放疗和全身化疗等 [38] [39] [40] 。然而,手术切除不彻底容易导致复发,放射治疗会对正常组织造成损伤无法完全治愈,同时放化疗可能会引发其他全身系统的不良反应 [41] 。

3.2.1. 放疗副作用的保护

在子宫内膜癌放疗过程中,水凝胶可以作为一种保护屏障,用于减少正常组织对放疗的损伤。为了解决治疗带来的不利影响,目前的研究使用水凝胶垫片将正常组织与肿瘤分离开来,从而允许提高辐射剂量至原本由于毒性反应而不允许的水平。由于正常组织对辐射治疗更敏感,在癌症治疗辐射范围内可导致不可逆损伤,Viswanathan等人设计了一种临时性聚合物水凝胶垫片材料,可在体内保持其形状达4周之久。这种水凝胶垫片可以在超声引导下安全地将正常组织(包括直肠和小肠)与肿瘤分离,从而显著降低先前照射正常组织的辐射剂量 [42] 。类似的,Takagawa团队利用SpaceOAR水凝胶垫片在盆腔内复发子宫内膜癌患者中,将垫片注射于肿瘤和直肠之间,以减少近距离放射治疗对直肠的剂量 [43] 。

3.2.2. 药物释放体系

Subramanian [44] 设计了一种聚合物避孕水凝胶,命名为RISUG®,该凝胶不仅可以植入输精管损坏精子膜来实现避孕效果,并且还可以对子宫内膜癌的发展起到保护作用。这种聚合物水凝胶会在酸性环境中分解产生苯乙烯马来酸(SMAc),然后将其插入癌细胞磷脂膜的疏水核心深处。这种插入会导致细胞脂质膜结构的不稳定,进而形成囊泡中间体和膜溶解成盘状纳米结构。在碱性pH值下,SMAc的羧基会去质子化,从而使静电力主导疏水力,限制聚合物进入脂质膜,进一步保护正常组织细胞免受损伤。

3.2.3. 肿瘤模拟模型

水凝胶还能为EC提供一种模拟体内肿瘤微环境的不同系统,包括相似的代谢水平,多细胞性质及包含细胞外基质 [45] 。一种基于透明质酸(HA)的新型多层系统可以实现细胞类型之间的旁分泌相互作用,并同时保持独特的定位 [46] 。多层培养系统由三层组成:一层是无细胞缓冲层,用于防止癌细胞与基板相互作用;另一层是含有富含胶原蛋白的层,用于包裹癌细胞;最上层是贴壁基质细胞的层。该培养系统使得基因表达、信号转导和药物敏感性的变化更类似于体内结果,比普通的细胞培养更能模拟肿瘤体内的情况。

水凝胶作为一种新型治疗方法,在子宫内膜癌治疗中具有广阔的应用前景,包括局部药物释放、放疗保护、手术创面愈合等,并且需要进行更多的试验和临床研究来验证其安全性和疗效。

3.3. 卵巢癌

卵巢癌是一种常见的女性生殖道恶性肿瘤,也是该类肿瘤中死亡率最高的一种。由于卵巢的隐匿位置以及早期症状不明显,60%~70%的患者在诊断时已处于晚期,其5年总生存率仅为29% [47] [48] 。目前卵巢癌的常规治疗方案包括手术切除、联合使用铂类药物和紫杉醇进行化疗,以及化疗后的维持治疗 [49] [50] [51] 。然而,卵巢癌的生存率仍然较低,主要原因是因为诊断较晚和对药物不敏感或产生耐药性 [52] 。因此,提高卵巢癌患者对治疗的反应以及开发新的治疗方法尤为重要。

3.3.1. 热疗

水凝胶在卵巢癌的热疗中扮演着重要角色。一种常用的方法是往水凝胶中添加具有热敏性的材料,当外界温度改变时,这些材料能够释放热能。当凝胶注入肿瘤区域后,外部热源可以刺激凝胶释放热能,从而高效破坏癌细胞,实现热疗效果。研究人员Jin等开发了一种可注射的多功能水凝胶,其主要成分包括工程卷曲多肽、Ag2S量子点(QDs)和紫杉醇(PTX) [53] 。体内外实验证明该系统具有良好的生物相容性。与单一的近红外光热治疗或化疗药物相比,这种联合热疗与化学药物治疗方式能更有效地抑制卵巢肿瘤的生长。

3.3.2. 免疫治疗

免疫治疗领域中的免疫检查点抑制剂、免疫细胞递送和肿瘤疫苗递送等方法在卵巢癌治疗中显示出巨大的潜力 [54] [55] [56] 。然而,低免疫细胞浸润、免疫逃逸以及全身应用免疫疗法可能导致患者出现许多不良反应等问题,这些问题亟待解决 [57] [58] 。因此,如何通过免疫治疗有效地增强机体对肿瘤的免疫反应仍然具有挑战性。

Suraiya等人研究了一种可注射的基于明胶的微水凝胶系统,该系统可以封装并提供有效的CAR-T细胞治疗 [59] 。这些微水凝胶可以封装靶向TAG-72 (肿瘤相关糖蛋白-72)的CAR-T细胞(嵌合抗原受体T细胞),经过7天培养后细胞活力高(>87%),与正常扩增条件下生长的细胞相当,并且保留了T细胞的表型和功能。从微水凝胶中释放出来的CAR-T细胞在体外和三维肿瘤球体上显示出对人卵巢癌的有效靶向细胞毒性,从而增强了CAR-T免疫治疗卵巢癌的效果。这种直接向卵巢肿瘤部位递送免疫细胞的方法可以更好地激活免疫反应,从而产生更有效的抗肿瘤效应。

3.3.3. 药物递送系统

水凝胶被广泛应用于治疗卵巢癌的药物载体,可实现将抗肿瘤药物或其他治疗剂直接输送到卵巢癌局部,形成药物递送系统。通过调控凝胶的物理和化学性质,可以实现药物的局部缓释,延长药物在肿瘤部位停留的时间,从而提高治疗的局部疗效。

一项研究开发了一种水凝胶载药系统用于治疗卵巢癌的腹膜播散 [60] 。该研究使用藻酸盐(AL)制备了一种杂交系统,将顺铂封装在可注射的AL水凝胶中,该凝胶与钙离子交联。该系统在具有KRAS突变的卵巢癌细胞系构建的腹膜播散的小鼠模型中,与游离药物相比,单次给药的凝胶药物系统显著抑制了腹膜肿瘤的形成。该系统在体内可以实现至少一周的药物缓慢释放,并且未观察到任何额外的不良反应。该研究为治疗卵巢癌局部转移灶提供了一种新的药物治疗策略,并揭示了水凝胶在携带抗肿瘤化学药物疗法中的应用前景。

另一项研究中,Yue等人通过合理设计水凝胶剂(Gel Nap-S),成功组装了丝氨酸/苏氨酸蛋白激酶(SIK2)抑制剂HG-9-91-01 (HG)。在过表达SIK2的活化下,水凝胶中的Nap-S被磷酸化,从而触发水凝胶的分解和抑制剂的释放 [61] 。细胞实验表明,Gel Nap-S+HG持续释放HG,通过抑制SIK2和下游信号分子的磷酸化,诱导卵巢癌细胞产生显著的治疗效果。在腹腔移植瘤模型中,相比于游离药物,每两天腹腔注射一次该凝胶药物系统能够显著减少腹腔内肿瘤结节数量和大小,并且抑制腹水的形成。

这些研究显示了水凝胶在卵巢癌治疗中的潜力,可用作药物缓释的载体,提高药物在肿瘤局部的疗效。

3.3.4. 体外肿瘤模型

肿瘤细胞与肿瘤微环境(TME)的相互作用对卵巢癌的扩散和治疗反应具有影响 [62] 。为了研究和治疗耐药性卵巢癌,提出了更能代表TME的细胞模型,即3D肿瘤模型 [63] 。卵巢TME非常复杂,由多种非恶性细胞类型组成,包括肿瘤脉管系统细胞、成纤维细胞、脂肪细胞、间皮细胞、炎细胞,以及多种细胞外成分,如细胞外基质(ECM)、生长因子、细胞因子和蛋白水解酶等 [64] 。癌细胞能够招募和重新编程这些非恶性细胞,以形成肿瘤的生态位,并与TME中不同成分相互作用,促进肿瘤的生长和扩散。因此,急需开发能够精确模拟TME不同成分的3D癌症模型,以研究与卵巢癌发展相关的特定行为,包括抗癌药物筛选和化学耐药性。近年来,已经开发出多种3D癌症模型,包括球体、类器官和有机器官模型。其中,基于水凝胶构建的3D模型可以形成三维细胞组织和模拟天然肿瘤中的细胞外基质成分。水凝胶具有良好的生物相容性、可塑的力学和化学特性,因此成为较佳的3D支架 [65] 。根据水凝胶的成分,可以将其分为天然水凝胶、合成水凝胶和半合成水凝胶 [65] 。半合成水凝胶弥补了天然水凝胶的不确定性和批次变化大、混合复杂以及降解不可控制的缺陷,同时克服了合成水凝胶的生物降解性能差的问题,从而提高了实验的可重复性和对生物力学和生化特性的精确控制。例如,Kaemmerer等人 [66] 制备了一种基于甲基丙烯酰胺(GelMA)的明胶水凝胶,这种凝胶能够促进卵巢癌球体的形成和生长,并导致肿瘤的发展和转移,进一步用于抗癌药物的筛选。半合成材料GelMA水凝胶保留了细胞结合位点和蛋白水解降解位点,具有良好的生物相容性,并具有可调节的物理特性,使实验具有高度可控性和可重复性。

尽管水凝胶在卵巢癌治疗中展示出广阔的应用前景,但仍需要进一步的研究和临床实验来验证其安全性和疗效。未来的研究应注重开发更有效的凝胶材料、优化药物递送系统,并深入研究治疗机制,以推动水凝胶在卵巢癌治疗中的应用。

4. 总结与展望

尽管水凝胶在妇科恶性肿瘤治疗中表现出巨大的潜力,但仍然面临着一些挑战。首先,水凝胶的设计与合成需要考虑到它的生物相容性、稳定性和长期安全性,及其在体内的代谢和清除途径。其次,水凝胶的开发应用仍有局限性,比如原位注射水凝胶常用于浅表肿瘤的瘤内递送治疗,对于转移性或深部肿瘤的给药技术须结合相应的成像技术进行安全精准的注射;并且由于一些水凝胶的制作过程较为复杂,导致规模化生产相对较难,进一步限制了临床转化。但与传统及常用的治疗策略相比,水凝胶表现出可注射性、刺激响应性物质释放以及优异的生物安全性。我们有理由相信,未来更多的这些水凝胶将进入临床试验和癌症治疗的应用。

基金项目

北京市希思科临床肿瘤学研究基金会支持(Y-zai2022/ms-0112)。

NOTES

*通讯作者。

参考文献

[1] Garg, V. and Kumar, L. (2023) Metronomic Chemotherapy in Ovarian Cancer. Cancer Letters, 579, Article ID: 216469.
https://doi.org/10.1016/j.canlet.2023.216469
[2] Yen, A., Zhong, X., Lin, M.H., Nwachukwu, C., Albuquerque, K. and Hrycushko, B. (2023) Optimizing Online Adaptation Timing in the Treatment of Locally Advanced Cervical Can-cer. Practical Radiation Oncology.
https://doi.org/10.1016/j.prro.2023.10.004
[3] Chinnadurai, A., Breadner, D., Baloush, Z., Lohmann, A.E., Black, M., D’Souza, D. and Welch, S. (2023) Adjuvant Carboplatin and Paclitaxel with “Sandwich” Method Radiotherapy for Stage III or IV Endometrial Cancer: Long-Term Follow-up at a Single-Institution. Journal of Gynecologic Oncology, 35, e16.
https://doi.org/10.3802/jgo.2024.35.e16
[4] Amiri, M., Khazaeli, P., Salehabadi, A. and Salavati-Niasari, M. (2021) Hydrogel Beads-Based Nanocomposites in Novel Drug Delivery Platforms: Recent Trends and Developments. Advances in Colloid and Interface Science, 288, Article ID: 102316.
https://doi.org/10.1016/j.cis.2020.102316
[5] Merino, S., Martín, C., Kostarelos, K., Prato, M. and Vázquez, E. (2015) Nanocomposite Hydrogels: 3D Polymer- Nanoparticle Synergies for On-Demand Drug Delivery. ACS Nano, 9, 4686-4697.
https://doi.org/10.1021/acsnano.5b01433
[6] Thapa, K., FitzSimons, T.M., Otakpor, M.U., Siller, M.M., Crowell, A.D., Zepeda, J.E., Torres, E., Roe, L.N., Arts, J., Rosales, A.M. and Betancourt, T. (2023) Photothermal Modulation of Dynamic Covalent Poly (Ethylene Glycol)/ PEDOT Composite Hydrogels for On-Demand Drug Delivery. ACS Applied Materials & Interface, 15, 52180-52196.
https://doi.org/10.1021/acsami.3c11288
[7] Gierlich, P., Donohoe, C., Behan, K., Kelly, D.J., Senge, M.O. and Gomes-da-Silva, L.C. (2023) Antitumor Immunity Mediated by Photodynamic Therapy Using Injectable Chitosan Hy-drogels for Intratumoral and Sustained Drug Delivery. Biomacromolecules.
https://doi.org/10.1021/acs.biomac.3c00591
[8] Turabee, M.H., Thambi, T., Duong, H.T.T., Jeong, J.H. and Lee, D.S. (2018) A pH- and Temperature-Responsive Bioresorbable Injectable Hydrogel Based on Polypeptide Block Co-polymers for the Sustained Delivery of Proteins in vivo. Biomaterials Science, 6, 661-671.
https://doi.org/10.1039/C7BM00980A
[9] Cui, R., Wu, Q., Wang, J., Zheng, X., Ou, R., Xu, Y., Qu, S. and Li, D. (2021) Hydrogel-by-Design: Smart Delivery System for Cancer Immunotherapy. Frontiers in Bioengineering and Bi-otechnology, 9, Article 723490.
https://doi.org/10.3389/fbioe.2021.723490
[10] Du, X., Zhou, J., Shi, J. and Xu, B. (2015) Supramolecular Hy-drogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chemical Reviews, 115, 13165-13307.
https://doi.org/10.1021/acs.chemrev.5b00299
[11] Liu, Z., Wei, P., Qi, Y., Huang, X. and Xie, Y. (2023) High Stretchable and Self-Healing Nanocellulose-Poly(Acrylic acid) Composite Hydrogels for Sustainable CO2 Shutoff. Car-bohydrate Polymers, 311, Article ID: 120759.
https://doi.org/10.1016/j.carbpol.2023.120759
[12] Cagnetta, G.E., Martínez, S.R., Ibarra, L.E., Gallastegui, A., Martucci, J.F., Palacios, R.E., Chesta, C.A. and Gómez, M.L. (2023) Reusable Antimicrobial Antibiotic-Free Dressings Obtained by Photopolymerization. Biomaterials Advances, 149, Article ID: 213399.
https://doi.org/10.1016/j.bioadv.2023.213399
[13] Froelich, A., Jakubowska, E., Jadach, B., Gadziński, P. and Osmałek, T. (2023) Natural Gums in Drug-Loaded Micro- and Nanogels. Pharmaceutics, 15, Article 759.
https://doi.org/10.3390/pharmaceutics15030759
[14] Sobczak-Kupiec, A., Kudłacik-Kramarczyk, S., Drabczyk, A., Cylka, K. and Tyliszczak, B. (2023) Studies on PVP- Based Hydrogel Polymers as Dressing Materials with Prolonged Anticancer Drug Delivery Function. Materials, 16, Article 2468.
https://doi.org/10.3390/ma16062468
[15] Mora-Boza, A., Ahmedin, Z. and García, A.J. (2023) Controlled Release of Therapeutic Antibody Using Hydrolytically Degradable Microgels. Journal of Biomedical Materials Research Part A.
https://doi.org/10.1002/jbm.a.37637
[16] Jahan, I., Ganesan, V., Sahu, M., Nandave, M. and Sen, S. (2023) Adhe-sivity-Tuned Bioactive Gelatin/Gellan Hybrid Gels Drive Efficient Wound Healing. International Journal of Biological Macromolecules, 254, Article ID: 127735.
https://doi.org/10.1016/j.ijbiomac.2023.127735
[17] Li, J. and Mooney, D.J. (2016) Designing Hydrogels for Controlled Drug Delivery. Nature Reviews Materials, 1, Article No. 16071.
https://doi.org/10.1038/natrevmats.2016.71
[18] Vishnevetskii, D.V., Averkin, D.V., Efimov, A.A., Lizunova, A.A., Shamova, O.V., Vladimirova, E.V., Sukhareva, M.S. and Mekhtiev, A.R. (2023) L-Cysteine and N-Acetyl-L-Cysteine-Mediated Synthesis of Nanosilver-Based Sols and Hydrogels with Antibacterial and Antibiofilm Properties. Journal of Materials Chemistry B, 11, 5794-5804.
https://doi.org/10.1039/D3TB00261F
[19] Xu, Y., Hu, Q., Wei, Z., Ou, Y., Cao, Y., Zhou, H., Wang, M., Yu, K. and Liang, B. (2023) Advanced Polymer Hydrogels That Promote Diabetic Ulcer Healing: Mechanisms, Classifications, and Medical Applications. Biomaterials Research, 27, Article No. 36.
https://doi.org/10.1186/s40824-023-00379-6
[20] Bai, L., Tao, G., Feng, M., Xie, Y., Cai, S., Peng, S. and Xiao, J. (2023) Hydrogel Drug Delivery Systems for Bone Regeneration. Pharmaceutics, 15, Article 1334.
https://doi.org/10.3390/pharmaceutics15051334
[21] Wang, J., Jing, G., Huang, W., Xin, L., Du, J., Cai, X., Xu, Y., Lu, X. and Chen, W. (2022) Rapid in situ Hydrogel LAMP for On-Site Large-Scale Parallel Single-Cell HPV Detec-tion. Analytical Chemistry, 94, 18083-18091.
https://doi.org/10.1021/acs.analchem.2c04701
[22] Pang, H., Lai, Q., Liu, G., Song, Q., Tong, R., Chen, Q., Luo, Y., Yu, T. and Dong, Y. (2022) Pelvic Bones ADC Could Help to Predict Severe Hematologic Toxicity in Patients Un-dergoing Concurrent Chemoradiotherapy for Cervical Cancer. Magnetic Resonance Imaging, 94, 98-104.
https://doi.org/10.1016/j.mri.2022.06.007
[23] Wei, L., Chen, J., Zhao, S., Ding, J. and Chen, X. (2017) Ther-mo-Sensitive Polypeptide Hydrogel for Locally Sequential Delivery of Two-Pronged Antitumor Drugs. Acta Biomateri-alia, 58, 44-53.
https://doi.org/10.1016/j.actbio.2017.05.053
[24] Xu, S., Tang, Y.Y., Yu, Y.X., Yun, Q., Yang, J.P., Zhang, H., Peng, Q., Sun, X., Yang, L.L., Fu, S. and Wu, J.B. (2017) Novel Composite Drug Delivery System as a Novel Radio Sensitizer for the Local Treatment of Cervical Carcinoma. Drug Delivery, 24, 1139-1147.
https://doi.org/10.1080/10717544.2017.1362676
[25] Ronsini, C., Solazzo, M.C., Bizzarri, N., Ambrosio, D., La Verde, M., Torella, M., Carotenuto, R.M., Cobellis, L., Colacurci, N. and De Franciscis, P. (2022) ASO Author Reflec-tions: Fertility-Sparing Treatment for Early-Stage Cervical Cancer 2 cm or Larger in Size: A Problem Still Open. Annals of Surgical Oncology, 29, 8359-8360.
https://doi.org/10.1245/s10434-022-12556-3
[26] Grijalvo, S., Alagia, A., Puras, G., Zárate, J., Mayr, J., Pedraz, J.L., Eritja, R. and Díaz, D.D. (2017) Cationic Nioplexes-in-Polysaccharide-Based Hydrogels as Versatile Biodegradable Hybrid Materials to Deliver Nucleic Acids. Journal of Materials Chemistry B, 5, 7756-7767.
https://doi.org/10.1039/C7TB01691C
[27] Kiseleva, M., Omar, M.M., Boisselier, É., Selivanova, S.V. and Fortin, M.A. (2022) A Three-Dimensional Printable Hydrogel Formulation for the Local Delivery of Therapeutic Nanoparticles to Cervical Cancer. ACS Biomaterials Science & Engineering, 8, 1200-1214.
https://doi.org/10.1021/acsbiomaterials.1c01399
[28] Huang, B., Zhu, L., Wei, H., Shi, H., Zhang, D., Yuan, H., Luan, L., Zheng, N., Xu, S., Nawaz, W., Hong, Y., Wu, X. and Wu, Z. (2021) Potent Neutralizing Humanized Antibody with Topical Therapeutic Potential against HPV18-Related Cervical Cancer. Frontiers in Immunology, 12, Article 678318.
https://doi.org/10.3389/fimmu.2021.678318
[29] Gu, L., Cheng, M., Hong, Z., Di, W. and Qiu, L. (2021) The Ef-fect of Local Photodynamic Therapy with 5-Aminolevulinic Acid for the Treatment of Cervical Low-Grade Squamous Intraepithelial Lesions with High-Risk HPV Infection: A Retrospective Study. Photodiagnosis and Photodynamic Ther-apy, 33, Article ID: 102172.
https://doi.org/10.1016/j.pdpdt.2020.102172
[30] Zhang, T., Zhang, Y., Tang, Y., Qin, L., Shen, Y., Wang, B., Zhang, L., Cao, L., Zhou, Y., Su, Y., Wang, L. and Zhang, M. (2022) The Effect of High-Risk HPV E6/E7 mRNA on the Efficacy of Topical Photodynamic Therapy with 5-Ami- nolevulinic Acid for Cervical High-Grade Squamous In-traepithelial Lesions. Photodiagnosis and Photodynamic Therapy, 39, Article ID: 102974.
https://doi.org/10.1016/j.pdpdt.2022.102974
[31] Curry, T., Epstein, T., Smith, R. and Kopelman, R. (2013) Pho-tothermal Therapy of Cancer Cells Mediated by Blue Hydrogel Nanoparticles. Nanomedicine, 8, 1577-1586.
https://doi.org/10.2217/nnm.12.190
[32] Zhang, M., Liu, X., Mao, Y., He, Y., Xu, J., Zheng, F., Tan, W., Rong, S., Chen, Y., Jia, X. and Li, H. (2022) Oxygen-Generating Hydrogels Overcome Tumor Hypoxia to Enhance Photodynam-ic/Gas Synergistic Therapy. ACS Applied Materials & Interfaces, 14, 27551-27563.
https://doi.org/10.1021/acsami.2c02949
[33] Murakami, N., Okuma, K., Kato, T. and Igaki, H. (2022) Now Is It Time to Implement Spacers in Cervical Cancer Brachytherapy? Journal of Radiation Research, 63, 696-698.
https://doi.org/10.1093/jrr/rrac031
[34] Ahmed, O., Nguyen, V.D., Ginsburg, M. and Barry, P. (2019) CT-Guided Placement of a Polyethylene Glycol Hydrogel in Brachytherapy for Gynecologic Malignancy to Limit Nontarget Organ Toxicity. Journal of Vascular and Interventional Radiology, 30, 469-471.
https://doi.org/10.1016/j.jvir.2018.12.002
[35] Gospodinova, A., Nankov, V., Tomov, S., Redzheb, M. and Petrov, P.D. (2021) Extrusion Bioprinting of Hydroxyethylcellulose-Based Bioink for Cervical Tumor Model. Carbohydrate Polymers, 260, Article ID: 117793.
https://doi.org/10.1016/j.carbpol.2021.117793
[36] Bartosch, C., Pires, M., Jerónimo, C. and Lopes J.M., (2017) The Role of Pathology in the Management of Patients with Endometrial Carcinoma. Future Medicine, 13, 1003-1020.
https://doi.org/10.2217/fon-2016-0570
[37] Sun, M., Bjørge, T., Teleka, S., Engeland, A., Wennberg, P., Hägg-ström, C. and Stocks, T. (2022) Interaction of Leisure-Time Physical Activity with Body Mass Index on the Risk of Obesity-Related Cancers: A Pooled Study. International Journal of Cancer, 151, 859-868.
https://doi.org/10.1002/ijc.34011
[38] Yeung, A.R., Deshmukh, S., Klopp, A.H., Gil, K.M., Wenzel, L., Westin, S.N., Konski, A.A., Gaffney, D.K., Small Jr., W., Thompson, J.S., Doncals, D.E., Cantuaria, G.H.C., D’Souza, D.P., Chang, A., Kundapur, V., Mohan, D.S., Haas, M.L., Kim, Y.B., Ferguson, C.L., Pugh, S.L., Kachnic, L.A. and Bruner, D.W. (2022) Intensity-Modulated Radiation Therapy Reduces Patient-Reported Chronic Toxicity Compared with Con-ventional Pelvic Radiation Therapy: Updated Results of a Phase III Trial. Journal of Clinical Oncology, 40, 3115-3119.
https://doi.org/10.1200/JCO.21.02831
[39] Ruan, X. and Mueck, A.O. (2022) Primary Choice of Estrogen and Progestogen as Components for HRT: A Clinical Pharmacological View. Climacteric, 25, 443-452.
https://doi.org/10.1080/13697137.2022.2073811
[40] El-Achi, V., Burling, M. and Al-Aker, M. (2022) Sentinel Lymph Node Biopsy at Robotic-Assisted Hysterectomy for Atypical Hyperplasia and Endometrial Cancer. Journal of Robotic Surgery, 16, 1111-1115.
https://doi.org/10.1007/s11701-021-01321-5
[41] Ladbury, C., Sueyoshi, M.H., Brovold, N.M., Kumar, R., An-draos, T.Y., Gogineni, E., Kim, M., Klopp, A., Albuquerque, K., Kunos, C., Leung, E., Mantz, C., Biswas, T., Beriwal, S., Small Jr., W., Erickson, B., Gaffney, D., Lo, S.S. and Viswanathan, A.N. (2023) Stereotactic Body Radiation Thera-py for Gynecologic Malignancies: A Case-Based Radiosurgery Society Practice Review. Practical Radiation Oncology.
https://doi.org/10.1016/j.prro.2023.09.008
[42] Viswanathan, A.N., Damato, A.L. and Nguyen, P.L. (2013) Novel Use of a Hydrogel Spacer Permits Reirradiation in Otherwise Incurable Recurrent Gynecologic Cancers. Journal of Clin-ical Oncology, 31, e446-e447.
https://doi.org/10.1200/JCO.2012.47.9931
[43] Takagawa, Y. and Itami, J. (2022) SpaceOAR Hydrogel Spacer in Interstitial Brachytherapy for Intrapelvic Recurrent Endometrial Cancer. BJR Case Reports, 8, Article ID: 20210220.
https://doi.org/10.1259/bjrcr.20210220
[44] Subramanian, B., Agarwal, T., Basak, P., Maiti, T.K. and Guha, S.K. (2019) RISUG® Based Improved Intrauterine Contraceptive Device (IIUCD) Could Impart Protective Effects against Development of Endometrial Cancer. Medical Hypotheses, 124, 67-71.
https://doi.org/10.1016/j.mehy.2019.02.026
[45] Huang, Y., Feng, Q., Jiang, H., Zhou, W., Chen, J., Gao, J., Wang, K., Wan, X. and Yu, Y. (2020) Mimicking the Endometrial Cancer Tumor Microenvironment to Reprogram Tu-mor-Associated Macrophages in Disintegrable Supramolecular Gelatin Hydrogel. International Journal of Nanomedicine, 15, 4625-4637.
https://doi.org/10.2147/IJN.S252074
[46] Engel, B.J., Constantinou, P.E., Sablatura, L.K., Doty, N.J., Carson, D.D., Farach-Carson, M.C., Harrington, D.A. and Zarembinski, T.I. (2015) Multilayered, Hyaluronic Ac-id-Based Hydrogel Formulations Suitable for Automated 3D High Throughput Drug Screening of Cancer-Stromal Cell Cocultures. Advanced Healthcare Materials, 4, 1664-1674.
https://doi.org/10.1002/adhm.201500258
[47] Siegel, R.L., Miller, K.D. and Jemal, A. (2019) Cancer Statistics, 2019. CA: A Cancer Journal for Clinicians, 69, 7-34.
https://doi.org/10.3322/caac.21551
[48] Lu, T., Bankhead III, A., Ljungman, M. and Neamati, N. (2019) Mul-ti-Omics Profiling Reveals Key Signaling Pathways in Ovarian Cancer Controlled by STAT3. Theranostics, 9, 5478-5496.
https://doi.org/10.7150/thno.33444
[49] Zhang, M., Bao, Y., Zhang, H., Li, D., Mei, X. and Cheng, X. (2023) Efficacy and Safety of Intraperitoneal Bevacizumab Combined with Hyperthermic Intraperitoneal Chemotherapy in the Treatment of Patients with Ovarian Cancer and Peritoneal Effusion and the Effect on Serum lncRNA H19 and VEGF Levels. Journal of Obstetrics and Gynaecology, 43, Article ID: 2204940.
https://doi.org/10.1080/01443615.2023.2204940
[50] Li, Y. (2023) Efficacy and Safety of PARP Inhibitors for Maintenance Treatment of Ovarian Cancer, Regardless of BRCA or HRD Status: A Comprehensive Updated Me-ta-Analysis. Journal of Obstetrics and Gynaecology, 43, Article ID: 2171282.
https://doi.org/10.1080/01443615.2023.2171282
[51] Ma, X., Liu, Y., Wu, H., Tan, J., Yi, W., Wang, Z., Yu, Z. and Wang, X. (2023) Self-Assembly Nanoplatform of Platinum (IV) Prodrug for Enhanced Ovarian Cancer Therapy. Materials Today Bio, 21, Article ID: 100698.
https://doi.org/10.1016/j.mtbio.2023.100698
[52] González-Martín, A., Pothuri, B., Vergote, I., DePont Christen-sen, R., Graybill, W., Mirza, M.R., McCormick, C., Lorusso, D., Hoskins, P., Freyer, G., Baumann, K., Jardon, K., Re-dondo, A., Moore, R.G., Vulsteke, C., O’Cearbhaill, R.E., Lund, B., Backes, F., Barretina-Ginesta, P., Haggerty, A.F., Rubio-Pérez, M.J., Shahin, M.S., Mangili, G., Bradley, W.H., Bruchim, I., Sun, K., Malinowska, I.A., Li, Y., Gupta, D. and Monk, B.J. (2019) Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. The New England Jour-nal of Medicine, 381, 2391-2402.
https://doi.org/10.1056/NEJMoa1910962
[53] Jin, R., Yang, X., Zhao, D., Hou, X., Li, C., Song, X., Chen, W., Wang, Q., Zhao, Y. and Liu, B. (2019) An Injectable Hybrid Hydrogel Based on a Genetically Engineered Polypeptide for Second Near-Infrared Fluorescence/Photoacoustic Imaging-Monitored Sustained Chemo-Photothermal Therapy. Na-noscale, 11, 16080-16091.
https://doi.org/10.1039/C9NR04630E
[54] Dillman, R.O., Nistor, G.I. and Keirstead, H.S. (2023) Autologous Dendritic Cells Loaded with Antigens from Self- Renewing Autologous Tumor Cells as Patient-Specific Therapeutic Cancer Vaccines. Human Vaccines & Immunotherapeutics, 19, Article ID: 2198467.
https://doi.org/10.1080/21645515.2023.2198467
[55] Al-Sudani, H., Ni, Y., Jones, P., Karakilic, H., Cui, L., Johnson, L.D.S., Rose, P.G., Olawaiye, A., Edwards, R.P., Uger, R.A., Lin, G.H.Y. and Mahdi, H. (2023) Targeting CD47-SIRPa Axis Shows Potent Preclinical Anti-Tumor Activity as Monotherapy and Synergizes with PARP Inhibition. npj Precision Oncology, 7, Article No. 69.
https://doi.org/10.1038/s41698-023-00418-4
[56] Berd, D. (2023) Portrait of an Autologous Cancer Vaccine: Then and Now. Human Vaccines & Immunotherapeutics, 19, Article ID: 2172925.
https://doi.org/10.1080/21645515.2023.2172925
[57] Zeng, S., Liu, D., Yu, Y., Zou, L., Jin, X., Liu, B. and Liu, L. (2023) Efficacy and Safety of PD-1/PD-L1 Inhibitors in the Treatment of Recurrent and Refractory Ovarian Cancer: A Systematic Review and a Meta-Analysis. Frontiers in Pharmacology, 14, Article 1111061.
https://doi.org/10.3389/fphar.2023.1111061
[58] Moon, H., Kim, S.G., Kim, S.K., Kim, J., Lee, S.R. and Moon, Y.W. (2022) A Case Report of Re-Challenge of Immune Checkpoint Inhibitors after Immune-Related Neurological Ad-verse Events: Review of Literature. Medicine, 101, e30236.
https://doi.org/10.1097/MD.0000000000030236
[59] Suraiya, A.B., Evtimov, V.J., Truong, V.X., Boyd, R.L., Forsythe, J.S. and Boyd, N.R. (2022) Micro-Hydrogel Injectables That Deliver Effective CAR-T Immunotherapy against 3D Solid Tumor Spheroids. Translational Oncology, 24, Article ID: 101477.
https://doi.org/10.1016/j.tranon.2022.101477
[60] Yamaguchi, K., Hiraike, O., Iwaki, H., Matsumiya, K., Naka-mura, N., Sone, K., Ohta, S., Osuga, Y. and Ito, T. (2021) Intraperitoneal Administration of a Cisplatin-Loaded Nanogel through a Hybrid System Containing an Alginic Acid-Based Nanogel and an in situ Cross-Linkable Hydrogel for Perito-neal Dissemination of Ovarian Cancer. Molecular Pharmaceutics, 18, 4090-4098.
https://doi.org/10.1021/acs.molpharmaceut.1c00514
[61] Hua, Y., Yin, H., Liu, X., Xie, J., Zhan, W., Liang, G. and Shen, Y. (2022) Salt-Inducible Kinase 2-Triggered Release of Its Inhibitor from Hydrogel to Suppress Ovarian Can-cer Metastasis. Advanced Science, 9, e2202260.
https://doi.org/10.1002/advs.202202260
[62] Kast, V. and Loessner, D. (2021) 3D Models for Ovarian Cancer. In: Schatten, H., Ed., Ovarian Cancer: Molecular & Diagnostic Imaging and Treatment Strategies, Springer, Cham, 139-149.
https://doi.org/10.1007/978-3-030-73359-9_9
[63] Lengyel, E., Burdette, J.E., Kenny, H.A., Matei, D., Pilrose, J., Haluska, P., Nephew, K.P., Hales, D.B. and Stack, M.S. (2014) Epithelial Ovarian Cancer Experimental Models. Oncogene, 33, 3619-3633.
https://doi.org/10.1038/onc.2013.321
[64] Pearce, O.M.T., Delaine-Smith, R.M., Maniati, E., Nichols, S., Wang, J., Böhm, S., Rajeeve, V., Ullah, D., Chakravarty, P., Jones, R.R., Montfort, A., Dowe, T., Gribben, J., Jones, J.L., Kocher, H.M., Serody, J.S., Vincent, B.G., Connelly, J., Brenton, J.D., Chelala, C., Cutillas, P.R., Lockley, M., Bessant, C., Knight, M.M. and Balkwill, F.R. (2018) Deconstruction of a Metastatic Tumor Microenvironment Reveals a Common Matrix Response in Human Cancers. Cancer Discovery, 8, 304-319.
https://doi.org/10.1158/2159-8290.CD-17-0284
[65] Loessner, D., Holzapfel, B.M. and Clements, J.A. (2014) En-gineered Microenvironments Provide New Insights into Ovarian and Prostate Cancer Progression and Drug Responses. Advanced Drug Delivery Reviews, 79-80, 193-213.
https://doi.org/10.1016/j.addr.2014.06.001
[66] Kaemmerer, E., Melchels, F.P., Holzapfel, B.M., Meckel, T., Hut-macher, D.W. and Loessner, D. (2014) Gelatine Methacrylamide-Based Hydrogels: An Alternative Three-Dimensional Cancer Cell Culture System. Acta Biomaterialia, 10, 2551-2562.
https://doi.org/10.1016/j.actbio.2014.02.035