伴髓外病变的多发性骨髓瘤研究进展
Research Progress on Multiple Myeloma with Extramedullary Disease
DOI: 10.12677/MD.2023.134068, PDF, HTML, XML, 下载: 129  浏览: 413 
作者: 杨康林, 吴晓芳:甘肃省天水市第一人民医院血液科,甘肃 天水
关键词: 多发性骨髓瘤髓外病变临床特点预后Multiple Myeloma Extramedullary Disease Clinical Features Prognosis
摘要: 多发性骨髓瘤是一种浆细胞来源的恶性增殖性疾病,临床上通常表现为高钙血症、肾功能不全、贫血、骨骼病变。部分患者在就诊时或治疗过程中出现器官或软组织病变,称为伴髓外病变的多发性骨髓瘤。对常规治疗效果欠佳,预后差。本综述重点就伴髓外病变的多发性骨髓瘤发病机制、临床特点、诊断手段、预后及治疗方面的研究作一综述。
Abstract: Multiple myeloma is a malignant proliferative disease of plasma cell origin, which is usually mani-fested with hypercalcemia, renal dysfunction, anemia, and bone lesions. Some patients have organ or soft tissue lesions at the time of visit or during treatment, called multiple myeloma with ex-tramedullary disease. The effect of routine treatment is poor and the prognosis is poor. This review mainly discusses the pathogenesis, clinical features, diagnostic methods, prognosis and treatment of multiple myeloma with extramedullary disease.
文章引用:杨康林, 吴晓芳. 伴髓外病变的多发性骨髓瘤研究进展[J]. 医学诊断, 2023, 13(4): 451-456. https://doi.org/10.12677/MD.2023.134068

1. 引言

多发性骨髓瘤(Multiple Myeloma, MM)是一种浆细胞来源的恶性增殖性疾病,表现为高钙血症、肾功能不全、贫血、骨骼病变等 [1] 。MM细胞常局限于骨髓内,然而它们可以逃离骨髓微环境,迁移和渗透到其他髓外器官,甚至在血液中循环,这类病变称为伴髓外病变(Extramedullary Disease, EMD)的多发性骨髓瘤 [2] 。目前EMD定义尚不统一,应用较多的是一种更为严格的EMD定义,即仅包括非骨旁的器官、组织的浆细胞瘤侵犯 [3] 。因此,应该明确排除浆细胞白血病和孤立性浆细胞瘤 [4] 。本文就EMD的发病机制、临床特征、诊断、预后及治疗作一综述。

2. EMD发病机制

现有研究表明,EMD发生可能与骨髓瘤细胞归巢受阻、侵袭能力增强、新生血管生成、不依赖骨髓微环境等有关,本文将从以下方面着重介绍。

2.1. 遗传学异常和基因突变

1) 抑癌基因p53缺失预示不良,Sheth等 [5] 研究了12名患有EMD患者的骨髓和髓外病变部位的组织,发现在EMD部位p53发生率较髓内高。一项834例MM的回顾性研究中,确诊时有EMD的MM患者p53缺失明显高于非EMD患者,表明p53在EMD中具有重要意义 [6] 。研究发现,del(17p13)在EMD患者髓外病变中的出现频率高于无EMD的MM患者 [7] ,也有学者发现EMD患者比非EMD患者del(17p13)的发生率高 [8] 。del(17p13)的发生率在EMD的演变过程中呈现增加趋势,提示其促进EMD的发生及发展,作为治疗靶点具有重要意义 [9] 。

2) 基因Myc过表达会导致骨髓瘤细胞具有更高的增殖率和更强的侵袭性。Billecke等 [7] 研究报道了MYC在EMD中具有较高的发生率,EMD组中有28% (5/19)的人出现Myc过表达,且与较短的无进展生存有关。Szabo等 [10] 对117例MM的研究显示,Myc在MM患者过表达为40%,并提示与EMD发生相关。

3) 粘着斑激酶(FAK)通过抑制MM细胞的凋亡,促进MM细胞的迁移和侵袭,与无EMD的MM患者相比,患有EMD的MM患者FAK蛋白显著上调 [11] 。Rasmussen等研究发现,在超过一半的髓外病变标本中检测到RAS突变,而在相对应的骨髓标本中未检测到RAS突变,提示FAK/RAS突变可能是髓外扩散的一个重要因素 [12] 。通过靶向FAK和/或RAS信号转导通路治疗伴EMD的MM可取得较好的临床疗效 [4] 。

4) BRAF V600E突变在新确诊的MM患者检出率为4%至10%,在复发时上升到近20%,在髓外病变的发展中具有重要作用,并对总生存期产生负面影响,BRAF突变成为MM的一个可用药靶点 [13] 。此外,伴有中枢神经系统受累的MM患者存在CIC基因突变,呈下调性表达,CIC基因突变也会导致BRAF-MEK抑制剂产生耐药性 [13] 。

5) 有学者报道了1例MM迅速发生EMD,通过遗传学检测发现该例患者的18号染色体碎裂(包含6个断点区,伴12个杂合性缺失区),可能与EMD发生相关,提示预后不良 [14] 。

2.2. 细胞表面黏附分子表达的改变

Dahl等 [15] 纳入了7例伴髓外浸润的多发性骨髓瘤患者,发现髓外MM细胞均显示CD56表达完全下调,而CD44的表达上调。血管细胞粘附分子(Vascular Cell Adhesion Molecule, VCAM)-1以及配体为MM细胞表面延迟抗原(Very Late Appearing Antigen, VLA)-4,两者可相互作用,可促进IL-6及VEGF分泌增加,进而促进肿瘤增殖和血管生成 [2] 。

2.3. 细胞因子分泌异常

HGF-1可调节MM细胞产生和分泌MMP-9,进一步增强MM细胞的侵袭性并发生转移现象 [16] 。IGF-1可活化NF-κB信号通路,增强MM细胞迁移活性,并促进MM细胞分泌VEGF,引起MM细胞的迁移,促使EMD的发生 [16] 。MM细胞表面的67LR异常高表达介导了一系列的生物学效应,增强了骨髓瘤细胞与ECM的粘附能力以及促进内皮迁移,导致MM患者发生EMD [17] 。

2.4. CCR及相应配体

CXCR4是一种多效性趋化因子受体,CXCR4是具有上皮向间充质转化(Epithelial to Mesenchymal Transition, EMT)的EMD表型特征的转录调控因子 [18] 。EMD的发生、生长和迁移与MM细胞中EMT样信号的获得有关,在小鼠的MM模型中,CXCR4/CXCL12的下调与多发性骨髓瘤的EMD发生相关,这是由于细胞粘附过程破坏所致。体内实验发现,过表达CXCR4的MM细胞侵袭性增强 [18] 。

2.5. LncRNA

肺腺癌转移相关转录因子(Metastasis Associated Lung Adenocarcinoma, MALAT) 1是一种非编码长链RNA,存在于多种恶性肿瘤中,通过不同的机制影响肿瘤细胞的增殖与凋亡。有研究表明,MALAT1在EMD中的表达明显高于相应的髓内骨髓瘤细胞,MALAT1水平越高,总体无进展生存期越短 [19] 。然而,也有学者指出,MALAT1可抑制MM细胞增殖,促进细胞凋亡,并伴随相关蛋白的变化 [20] 。

3. 临床特征

EMD可在初诊时出现,也可在复发时发生,发生率在初诊时为15%,复发时为28% [21] 。男性患者发生率明显高于女性,年龄中位数约为59岁 [22] 。

EMD最常累及的部位是皮肤和结缔组织 [4] 。EMD还可侵及胸膜、淋巴结、肝、肾、乳腺等 [23] [24] [25] ,其中,中枢神经系统受累非常罕见,约占1%的患者,一旦发生,则提示预后极差 [13] 。

4. 诊断

目前诊断手段包括超声、CT、PET-CT及MRI等。一项荟萃分析显示PET-CT检测EMD的敏感性为96%,它不仅是一种解剖学成像,也是一种功能成像,能够评估EMD的局部活动 [21] 。此外,MRI能准确显示软组织病变和髓外骨髓瘤病灶,特别是在邻近椎骨疾病的情况下 [26] 。病理活检及免疫组化也是一项重要的诊断手段,为发现髓外病变提供了重要的诊断依据。也有学者指出,循环肿瘤DNA (circulating tumor DNA, ctDNA)可以作为EMD骨髓抽吸的替代物,特别是当髓外浆细胞瘤无法获得的时候,也可以用来追踪疾病的进展 [27] 。

5. 预后

Mangiacavall等 [28] 研究发现,伴有EMD患者较无EMD患者的OS时间更短,与MM相比,EMD患者的预后更差。Gagelmann等 [25] 研究显示,MM患者(80.1%)的3年OS明显长于EMD患者(58%)。伴中枢神经系统受累的EMD患者存活期非常短,一项研究显示EMD累及CNS时,即使进行全面治疗,生存期也很短,大多情况下不到12个月 [13] 。除了疾病部位影响生存结果外,高龄、较长的病程和移植前对诱导反应差也是不良的预后因素 [25] 。Beksac等 [24] 报道了复发的EMD患者的预后也是最差的,OS为11.4个月。

6. 治疗

截止目前,尚无EMD治疗的相应指南及共识,结合现有数据,主要有以下几种治疗方式。

6.1. 放射治疗

放射治疗(Radiotherapy, RT)是一种有效的治疗方法。一项包括315名患者的研究中,放射治疗有助于无病生存率的提高,且与手术结合有更好的临床效果 [29] 。此外,有研究者指出,标准的治疗方式是放射联合多种药物治疗 [24] 。

6.2. 硼替佐米

一项149例MM (EMD为28例)的研究队列中,19例(67.9%) EMD患者经诱导治疗后髓外病变消失,其中14例接受含硼替佐米诱导方案,髓外疾病对硼替佐米治疗有效率达70%,表明髓外病变对含硼替佐米药物的治疗非常敏感 [30] 。也有证据表明,含硼替佐米诱导方案的OS和PFS发生率较非含硼替佐米诱导方案高(69%比64%) [22] 。此外,硼替佐米具有显著改善伴有遗传学t(4; 14)异常患者的预后(在EFS和OS方面),相比之下,del(17p)患者没有观察到相应改善 [31] 。

6.3. 来那度胺

EMD患者对沙利度胺反应较差,而对来那度胺具有较好的应答率。一项研究显示,以来那度胺为主的化疗方案与以硼替佐米为主的方案疗效相似 [32] ,联合硼替佐米具有更好的治疗效果。

6.4. 造血干细胞移植

ASCT作为65岁以下患者的一线治疗,可能会逆转髓外扩散对MM预后的负面影响,ASCT使患有EMD患者明显受益,这将进一步证明移植在这些患者中的优越性 [30] 。一项基于3744名MM患者研究中发现,单一部位EMD患者经ASCT治疗后,与非EMD的MM患者有相似的3年PFS,但3年的OS较差;当累及多部位时,其预后就会变得更糟糕 [25] 。

Gagelmann等对488例伴有EMD的MM患者进行了分析,其中单次自体干细胞移植373例,双次自体干细胞移植84例,接受异基因造血干细胞移植31例,其中,202例患者中46%的患者有1种高危细胞遗传学异常。结果显示,单次自体移植OS及PFS较双次移植和异基因移植低。对于高危EMD患者的治疗,优先使用双次自体移植 [22] 。

6.5. CRA-T

近年来,研究表明靶向B细胞成熟抗原的嵌合抗原受体(Chimericantigen Receptor, CAR)修饰的T细胞对MM细胞有较强的细胞毒性,并且此毒性可控,显示出对复发难治MM卓越的治疗效果,也可联合自体移植治疗复发、难治MM [33] [34] [35] 。

7. 总结

近年来,EMD发病率呈上升趋势,虽然对EMD的发病机制及临床特征有了深入了解,但目前对该疾病治疗暂无有效的措施,故如何治疗该病以及制定有效的治疗策略将是未来血液病学的另一大挑战。

参考文献

[1] Gerecke, C., Fuhrmann, S., Strifler, S., Schmidt-Hieber, M., Einsele, H. and Knop, S. (2016) The Diagnosis and Treatment of Multiple Myeloma. DÄ International, 113, 470-476.
https://doi.org/10.3238/arztebl.2016.0470
[2] Vande Broek, I., Vanderkerken, K., Van Camp, B. and Van Riet, I. (2008) Extravasation and Homing Mechanisms in Multiple Myeloma. Clinical & Experimental Metas-tasis, 25, 325-334.
https://doi.org/10.1007/s10585-007-9108-4
[3] Sevcikova, S., Minarik, J., Stork, M., Jelinek, T., Pour, L. and Hajek, R. (2019) Extramedullary Disease in Multiple Myeloma—Controversies and Future Directions. Blood Reviews, 36, 32-39.
https://doi.org/10.1016/j.blre.2019.04.002
[4] Li, G., Song, Y.P., Lv, Y., Li, Z.Z. and Zheng, Y.H. (2021) Clinical Characteris-tics and Prognostic Analysis of Multiple Myeloma with Extramedullary Disease: A SEER-Based Study. Journal of Oncology, 2021, Article ID: 6681521.
https://doi.org/10.1155/2021/6681521
[5] Sheth, N., Yeung, J. and Chang, H. (2009) p53 Nuclear Accumulation Is Associated with Extramedullary Progression of Multiple Myeloma. Leukemia Research, 33, 1357-1360.
https://doi.org/10.1016/j.leukres.2009.01.010
[6] Deng, S., Xu, Y., An, G., et al. (2015) Features of Extramedullary Disease of Multiple Myeloma: High Frequency of p53 Deletion and Poor Survival: A Retrospective Single-Center Study of 834 Cases. Clinical Lymphoma, Myeloma and Leukemia, 15, 286-291.
https://doi.org/10.1016/j.clml.2014.12.013
[7] Billecke, L., Murga Penas, E.M., May, A.M., et al. (2013) Cytogenetics of Extramedullary Manifestations in Multiple Myeloma. British Journal of Haematology, 161, 87-94.
https://doi.org/10.1111/bjh.12223
[8] Qu, X., Chen, L., Qiu, H., et al. (2015) Extramedullary Manifestation in Mul-tiple Myeloma Bears High Incidence of Poor Cytogenetic Aberration and Novel Agents Resistance. BioMed Research International, 2015, Article ID: 787809.
https://doi.org/10.1155/2015/787809
[9] Besse, L., Sedlarikova, L., Greslikova, H., et al. (2016) Cytogenetics in Multiple Mye-loma Patients Progressing into Extramedullary Disease. European Journal of Haematology, 97, 93-100.
https://doi.org/10.1111/ejh.12688
[10] Szabo, A.G., Gang, A.O., Pedersen, M.Ø., Poulsen, T.S., Klausen, T.W. and Nørgaard, P. (2016) Overexpression of c-myc Is Associated with Adverse Clinical Features and Worse Overall Survival in Multiple Myeloma. Leu-kemia & Lymphoma, 57, 2526-2534.
https://doi.org/10.1080/10428194.2016.1187275
[11] Wang, S.Y., Hao, H.L., Deng, K., et al. (2012) Expression Levels of Phosphatase and Tensin Homolog Deleted on Chromosome 10 (PTEN) and Focal Adhesion Kinase in Patients with Multiple Myeloma and Their Relationship to Clinical Stage and Extramedullary Infiltration. Leukemia & Lymphoma, 53, 1162-1168.
https://doi.org/10.3109/10428194.2011.647311
[12] Rasmussen, T., Kuehl, M., Lodahl, M., Johnsen, H.E. and Dahl, I.M. (2005) Possible Roles for Activating RAS Mutations in the MGUS to MM Transition and in the Intramedullary to Extramedullary Transition in Some Plasma Cell Tumors. Blood, 105, 317-323.
https://doi.org/10.1182/blood-2004-03-0833
[13] Da Vià, M.C., Solimando, A.G., Garitano-Trojaola, A., et al. (2020) CIC Mutation as a Molecular Mechanism of Acquired Resistance to Combined BRAF-MEK Inhibition in Extramedullary Multiple Myeloma with Central Nervous System Involvement. Oncologist, 25, 112-118.
https://doi.org/10.1634/theoncologist.2019-0356
[14] Smetana, J., Oppelt, J., Štork, M., Pour, L. and Kuglík, P. (2018) Chro-mothripsis 18 in Multiple Myeloma Patient with Rapid Extramedullary Relapse. Molecular Cytogenetics, 11, Article No. 7.
https://doi.org/10.1186/s13039-018-0357-5
[15] Dahl, I.M., Rasmussen, T., Kauric, G. and Husebekk, A. (2002) Differential Expression of CD56 and CD44 in the Evolution of Extramedullary Myeloma. British Journal of Haematology, 116, 273-277.
https://doi.org/10.1046/j.1365-2141.2002.03258.x
[16] 王路, 张翼鷟. 伴髓外病变的多发性骨髓瘤研究进展[J]. 中国实验血液学杂志, 2016, 24(3): 945-948.
[17] Pesapane, A., Ragno, P., Selleri, C. and Montuori, N. (2017) Recent Advances in the Func-tion of the 67 kDa Laminin Receptor and Its Targeting for Personalized Therapy in Cancer. Current Pharmaceutical Design, 23, 4745-4757.
https://doi.org/10.2174/1381612823666170710125332
[18] Ullah, T.R. (2019) The Role of CXCR4 in Multiple Myeloma: Cells’ Journey from Bone Marrow to beyond. Journal of Bone Oncology, 17, Article ID: 100253.
https://doi.org/10.1016/j.jbo.2019.100253
[19] Handa, H., Kuroda, Y., Kimura, K., et al. (2017) Long Non-Coding RNA MALAT1 Is an Inducible Stress Response Gene Associated with Extramedullary Spread and Poor Prognosis of Multiple Myeloma. British Journal of Haematology, 179, 449-460.
https://doi.org/10.1111/bjh.14882
[20] Sun, Y., Jiang, T., Jia, Y., Zou, J., Wang, X. and Gu, W. (2019) LncRNA MALAT1/miR-181a-5p Affects the Proliferation and Adhesion of Myeloma Cells via Regulation of Hippo-YAP Signaling Pathway. Cell Cycle, 18, 2509-2523.
https://doi.org/10.1080/15384101.2019.1652034
[21] Jagosky, M.H. and Usmani, S.Z. (2020) Extramedullary Disease in Multi-ple Myeloma. Current Hematologic Malignancy Reports, 15, 62-71.
https://doi.org/10.1007/s11899-020-00568-3
[22] Gagelmann, N., Eikema, D.J., Koster, L., et al. (2019) Tandem Autologous Stem Cell Transplantation Improves Outcomes in Newly Diagnosed Multiple Myeloma with Extramedullary Disease and High-Risk Cytogenetics: A Study from the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplantation. Biology of Blood and Marrow Transplantation, 25, 2134-2142.
https://doi.org/10.1016/j.bbmt.2019.07.004
[23] Varettoni, M., Corso, A., Pica, G., Mangiacavalli, S., Pascutto, C. and Lazzarino, M. (2010) Incidence, Presenting Features and Outcome of Extrame-dullary Disease in Multiple Myeloma: A Longitudinal Study on 1003 Consecutive Patients. Annals of Oncology, 21, 325-330.
https://doi.org/10.1093/annonc/mdp329
[24] Beksac, M., Seval, G.C., Kanellias, N., et al. (2020) A Real World Multicenter Ret-rospective Study on Extramedullary Disease from Balkan Myeloma Study Group and Barcelona University: Analysis of Parameters That Improve Outcome. Haematologica, 105, 201-208.
https://doi.org/10.3324/haematol.2019.219295
[25] Gagelmann, N., Eikema, D.J., Iacobelli, S., et al. (2018) Impact of Extramedullary Disease in Patients with Newly Diagnosed Multiple Myeloma Un-dergoing Autologous Stem Cell Transplantation: A Study from the Chronic Malignancies Working Party of the EBMT. Haematologica, 103, 890-897.
[26] Dimopoulos, M.A., Hillengass, J., Usmani, S., et al. (2015) Role of Magnetic Resonance Imaging in the Manage-ment of Patients with Multiple Myeloma: A Consensus Statement. Journal of Clinical Oncology, 33, 657-664.
https://doi.org/10.1200/JCO.2014.57.9961
[27] Long, X., Xu, Q., Lou, Y., et al. (2020) The Utility of Non-Invasive Liquid Bi-opsy for Mutational Analysis and Minimal Residual Disease Assessment in Extramedullary Multiple Myeloma. British Journal of Haematology, 189, e45-e48.
https://doi.org/10.1111/bjh.16440
[28] Mangiacavalli, S., Pompa, A., Ferretti, V., et al. (2017) The Possible Role of Burden of Therapy on the Risk of Myeloma Extramedullary Spread. Annals of Hematology, 96, 73-80.
https://doi.org/10.1007/s00277-016-2847-z
[29] Venkatesulu, B., Mallick, S., Giridhar, P., Upadhyay, A.D. and Rath, G.K. (2018) Pattern of Care and Impact of Prognostic Factors on the Outcome of Head and Neck Extramedullary Plasmacytoma: A System-atic Review and Individual Patient Data Analysis of 315 Cases. European Archives of Oto-Rhino-Laryngology, 275, 595-606.
https://doi.org/10.1007/s00405-017-4817-z
[30] Li, J., Shen, K.N., Huang, W.R., et al. (2014) Autologous Stem Cell Transplant Can Overcome Poor Prognosis in Patients with Multiple Myeloma with Extramedullary Plasmacytoma. Leukemia & Lymphoma, 55, 1687-1690.
https://doi.org/10.3109/10428194.2013.853296
[31] Avet-Loiseau, H., Leleu, X., Roussel, M., et al. (2010) Bortezomib plus Dexamethasone Induction Improves Outcome of Patients with t(4; 14) Myeloma but Not Outcome of Patients with del(17p). Journal of Clinical Oncology, 28, 4630-4634.
https://doi.org/10.1200/JCO.2010.28.3945
[32] Montefusco, V., Gay, F., Spada, S., et al. (2020) Outcome of Paraosseous Extra-Medullary Disease in Newly Diagnosed Multiple Myeloma Patients Treated with New Drugs. Haematologica, 105, 193-200.
https://doi.org/10.3324/haematol.2019.219139
[33] Yan, Z., Cao, J., Cheng, H., et al. (2019) A Combination of Humanised An-ti-CD19 and Anti-BCMA CAR T Cells in Patients with Relapsed or Refractory Multiple Myeloma: A Single-Arm, Phase 2 Trial. The Lancet Haematology, 6, e521-e529.
https://doi.org/10.1016/S2352-3026(19)30115-2
[34] Wu, C., Zhang, L., Brockman, Q.R., Zhan, F. and Chen, L. (2019) Chimeric Antigen Receptor T Cell Therapies for Multiple Myeloma. Journal of Hematology & Oncology, 12, Article No. 120.
https://doi.org/10.1186/s13045-019-0823-5
[35] Lin, Q., Zhao, J., Song, Y. and Liu, D. (2019) Recent Updates on CAR T Clini-cal Trials for Multiple Myeloma. Molecular Cancer, 18, Article No. 154.
https://doi.org/10.1186/s12943-019-1092-1