ctDNA在妇科恶性肿瘤诊治中的研究进展
Research Progress of Circulating Tumor DNA in the Diagnosis and Treatment of Gynecological Malignant Tumors
DOI: 10.12677/ACM.2024.141021, PDF, HTML, XML, 下载: 102  浏览: 172 
作者: 木尼热克孜·木塔力甫:新疆医科大学研究生院,新疆 乌鲁木齐;韩莉莉*:新疆维吾尔自治区人民医院妇科,新疆 乌鲁木齐
关键词: 循环肿瘤DNA筛查诊断治疗预后Circulating Tumor DNA Screening Diagnosis Treat Prognosis
摘要: 妇科中宫颈癌、卵巢癌和子宫内膜癌是女性生殖系统常见的恶性肿瘤,严重危害妇女健康。卵巢癌仍然是妇科恶性肿瘤中最致命的疾病,发病率逐年上升。对于这种恶性肿瘤来说提高早期诊断水平、争取治疗时机至关重要。我国妇科恶性肿瘤死亡率较高,主要的原因在于我国缺乏早期筛查、诊断方法,而当发现时多数患者已处于中晚期。目前在妇科恶性肿瘤早期检测和筛查、复发监测、治疗评估方面尚缺乏有效的检测手段。循环肿瘤DNA (circulating tumor DNA, ctDNA)是提供微创样本采集的主要液体活检方法。在许多类型的实体恶性肿瘤中都显示出诊断、预后和预测价值,最近的研究试图阐明它们在卵巢癌中的作用。本文对ctDNA的生物特性以及在妇科恶性肿瘤早期诊断与筛查、疗效评价、预测复发转移检测等方面进行综述。
Abstract: Cervical, ovarian and endometrial cancers are common malignant tumors of the female reproduc-tive system, which seriously endanger women’s health. Ovarian cancer remains the most lethal disease of gynecologic malignancies, and the incidence is increasing year by year. For this malignant tumor, it is important to improve the level of early diagnosis and strive for treatment time. The mortality rate of gynecological malignant tumors in China is relatively high, mainly due to the lack of early screening and diagnosis methods in China, and when it is found, most patients are in the middle and advanced stages. At present, there is a lack of effective detection methods for early de-tection and screening, recurrence monitoring, and treatment evaluation of gynecological malignant tumors. Circulating tumor DNA (ctDNA) is the primary liquid biopsy method that provides mini-mally invasive sample collection. They have shown diagnostic, prognostic, and predictive value in many types of solid malignancies, and recent studies have attempted to elucidate their role in ovarian cancer. This article introduces the biological characteristics of ctDNA and reviews its early diagnosis and screening of gynecological malignant tumors, efficacy evaluation, and prediction of recurrence and metastasis.
文章引用:木尼热克孜·木塔力甫, 韩莉莉. ctDNA在妇科恶性肿瘤诊治中的研究进展[J]. 临床医学进展, 2024, 14(1): 142-147. https://doi.org/10.12677/ACM.2024.141021

1. 引言

据统计,1年内约有10.9万名女性被诊断为妇科癌症,约3.31万名女性死于该病 [1] 。主要的妇科癌症是宫颈癌、卵巢癌和子内膜癌,近几年总体发病率呈上升趋势,其中宫颈癌发病率上升趋势最为明显,并均呈现年轻化趋势,但卵巢癌的死亡率在妇科肿瘤中排名第一,对女性的健康和生命构成威胁。妇科癌症的治疗基于分期、组织学危险因素和其他肿瘤或患者特异性危险因素,采用手术、放疗、化疗或这些方式的组合。许多接受肿瘤根治性手术的肿瘤患者会复发,通常发生在原发肿瘤播种的远处转移部位,并出现多种突变 [2] 。尽管尝试推进治疗,但复发和治疗失败很常见,特别是对于那些被诊断为晚期疾病的患者。因此,提示了早发现、早规范化治疗、实时监控对于提高患者生存率有重要意义,在临床上组织活检是恶性肿瘤诊断的金标准,随着肿瘤演变,仅依靠治疗前组织活检指导后续治疗可能会导致治疗的误差,治疗后重复的组织活检难以实现。近年来,随着检测手段的进步,循环肿瘤DNA [3] (circulating tumor DNA, ctDNA)检测被公认为是目前解决此问题的最佳方案 [4] 。ctDNA是指肿瘤细胞释放到血液中的片段化DNA,携带有与原发肿瘤一致的遗传学信息,能够反映肿瘤组织负荷。ctDNA是一种非常有前途的非侵入性、可重复、可以为早期筛查、诊断、预后治疗效果提供重要信息的工具,因为它提供了一种易于获取的肿瘤DNA来源。本文对ctDNA的生物特性以及在妇科恶性肿瘤早期诊断与筛查、病情检测与预后评估等方面进行综述。

2. ctDNA的生物特性

1948年,Mandel等人首次发现人体血液中存在着游离DNA片段,1977年,Leon等通过对比正常人血液,发现肿瘤患者血中游离DNA浓度更高且与肿瘤病程及疗效相关 [3] 。在1989年,Stroun等人 [5] 指出,癌症患者cfDNA水平的增加是由癌细胞释放到血液中的DNA的一部分引起的,这部分cfDNA被命名为ctDNA。随着技术发展能够使ctDNA从患者的血液样本中分离出来,并发现肿瘤细胞凋亡和坏死是ctDNA的主要来源。肿瘤来源的ctDNA的片段化和浓度与肿瘤重量呈正相关 [6] 。在血浆中,cfDNA通常由长度约为140~170个碱基对(bp)的双链DNA片段组成,这些片段主要来自白细胞ctDNA是指来源于癌细胞的cfDNA部分,通常由长度为<145 bp的链组成,ctDNA的半衰期很短 [7] 。ctDNA可通过多种机制释放,不仅当细胞通过肿瘤细胞凋亡、坏死和吞噬作用时,还可以通过衰老或细胞外囊泡(EV)中的活性分泌和释放 [8] 。ctDNA在多种癌症的生物标志物具有巨大潜力。在癌症患者的管理中使用ctDNA (称为液体活检)有以下优点:第一,可以更好地代表整个肿瘤基因组,因为它包含肿瘤细胞从原发肿瘤和转移瘤释放的DNA,从而最大限度地减少了肿瘤间和肿瘤内异质性问题 [9] 。第二,可以量化cfDNA,其浓度似乎反映了肿瘤负荷,这使得cfDNA测量可用于监测肿瘤动力学 [10] 。第三,血液样本是微创的,允许在整个病程中重复采样和“实时”监测。另一方面,ctDNA高度片段化,其在循环中的分数可低至0.01%,因此其检测困难,尤其是在早期肿瘤中 [11] 。因此,ctDNA检测需要高灵敏度的方法。

3. ctDNA的检测

目前,ctDNA检测有多种方法,其中一些已获得监管机构的批准。目前主要分为两类:一类以数字化聚合酶链式反应(dPCR)为基础,另一类以二代测序(nNGS)为基础的检测,又名高通量测序。据报道,不同方法学方法的灵敏度范围很广,因此,与dPCR和NGS等其他技术相比,基于PCR的方法具有显著较低的检测限(LOD) [12] 。尽管dPCR为ctDNA分析提供了超高的灵敏度,但一次只能检测少数已知突变,而NGS技术可以筛选多种已知或未知的基因组改变。NGS来筛查卵巢癌患者的突变,发现ctDNA样本中有104个癌症相关突变基因,肿瘤组织中有95个基因,腹水样本中有44个基因 [13] 。此外,NGS能够结合基因组数据和表观基因组特征,从而提高灵敏度 [14] 。无论如何,了解ctDNA分析的不同技术方法的局限性对于准确解释结果至关重要 [15] 。用于ctDNA分析的NGS也可以是靶向的,也可以是非靶向的。ctDNA谱分析的靶向方法通常对数十个基因进行测序,甚至对整个外显子组进行测序。由于通量相对较低,因此可以通过对覆盖临床相关突变的特定感兴趣区域进行深度测序来实现高灵敏度。由于特异性和敏感性较好,靶向测序更适合临床诊断。

4. ctDNA在妇科恶性肿瘤中的应用

4.1. 早期诊断与筛查

采用精确的早发现、早诊断、早治疗,是妇科恶性肿瘤治疗过程中的关键。用于ctDNA检测的液体活检似乎为无症状的早期癌症诊断提供了有希望的生物标志物。Bettegowda等人在7例卵巢癌患者的小样本中发现,100%的患者具有可检测到的ctDNA [16] 。在30例卵巢癌患者中有24例(80%)和5例子宫内膜癌患者中有5例在洗宫后也发现了ctDNA;然而,在27例良性病变患者中,有8例(27%)也发现了突变 [17] 。Zhou等 [18] 提出,定量分析卵巢癌中循环cfDNA的估计敏感性为70%,特异性为90%。这些结果表明,ctDNA分析的这种特异性水平对于卵巢癌的诊断是可以接受的。有研究结果表明,ctDNA谱都构成了子宫内膜癌诊断和管理的信息材料。ctDNA分析可作为术前子宫内膜癌组织学评估的手段 [19] 。Grassi等人的研究表明20% (8/35例患者)至34% (12/35例)早期子宫内膜癌的患者检测到术前ctDNA [20] 。有研究发现,使用具有HPV16或HPV18特异性引物的液滴数字PCR (ddPCR),可在71.2%至95.2%的与这些病毒基因型相关的癌患者中检测到循环HPV DNA [21] [22] [23] ,在局部晚期或转移性宫颈肿瘤中可检测到高达100% [24] 。以上研究提示,在妇科恶性肿瘤中ctDNA检测的在早期筛查、诊断中具有较大潜力。

4.2. ctDNA病情监测与预后评估

妇科恶性肿瘤卵巢癌、宫颈癌和内膜癌传统治疗依赖于影像学检查和手术活检。在晚期或复发性患者中,影响学检查仅确定肿瘤的大小和变化的程度,而手术活检是侵入性的,有时难以获得标准样本。CA125和CT这些辅助检查在监测病情和早期复发等方面都缺乏敏感性和特异性,常规监测这些指标并不能提高患者总的生存率。大量研究表明,ctDNA水平与肿瘤负荷密切相关,因此ctDNA动力学可用作治疗反应的替代物 [25] [26] [27] 。肿瘤特异性蛋白标志物在与肿瘤生长无关的情况下具有升高的局限性而升高的ctDNA水平与肿瘤变化有关 [28] 。Akbari,Mohammad R [29] 等人在47名患者中发现了肿瘤特异性变异,用于检测术后血浆中的ctDNA。47例患者中有15例(31.9%)有明显的残留病灶;其中,所有15例均具有可检测到的ctDNA。在31例(68.1%)无可见残留病灶的患者中,24例(77.4%)患者可检测到ctDNA。在那些没有可见残留病灶的患者中,与没有可检测到ctDNA的患者相比,那些在术后样本中检测到ctDNA的患者具有更高的死亡风险(HR 2.32; 95% CI: 0.67~8.05),尽管这种差异没有统计学意义(p = 0.18)。这些发现表明,ctDNA具有潜在的临床效用,可以改善残余疾病状态的手术分类,并作为卵巢癌女性复发的潜在预测因子。有研究发现 [30] ,对整个队列进行了基因组分析,在队列A中,在73% (32/44)的术前样本中观察到ctDNA阳性。在队列B和C中,仅在复发(100%敏感性和特异性)且平均早10个月放射学检查结果的患者中检测到ctDNA。在手术完成后的单个时间点+/−辅助化疗和监测期间连续存在ctDNA是复发的强预测因子(HR:17.6, p = 0.001和p < 0.0001),而CA-125阳性则不是(p = 0.113和p = 0.056)。这表明,术后ctDNA的存在高度预后,可降低无复发生存期。ctDNA在识别复发风险最高的患者方面优于CA-125。这些结果表明,监测ctDNA可能有益于上皮性卵巢癌患者的临床决策。Campitelli M.等人研究发现 [31] ,使用HPV整合突变作为分子标记,可以在大多数诊断为Ib期浸润性宫颈癌患者的血清中检测到ctDNA,并且ctDNA的数量反映了肿瘤动力学。由于每个患者的病毒整合位点都是独一无二的,因此该标志物具有高度特异性,比SSC标志物更具特异性 [32] 。除了其潜在的预后和预测价值外,它成了HPV相关肿瘤中微小残留病灶和亚临床复发的新分子替代物。努力改善妇科癌症患者的肿瘤学结局和治疗选择仍然是临床重点。有项研究指出 [1] ,ctDNA评估可能同时具有预后和治疗意义,为妇科癌症患者的个体化癌症治疗提供信息。发现与不匹配的治疗相比,较高的ctDNA最大MAF与较差的OS相关,而与ctDNA基因组改变匹配的治疗与OS的改善独立相关。组织和ctDNA基因组结果显示高度一致性,不受时间或空间因素的影响。一项前瞻性临床试验 [33] ,以评估5个不同患者队列的ctDNA,包括接受帕博利珠单抗治疗的晚期实体瘤的高级别浆液性卵巢癌患者。在基线时,每三个周期从94名患者中获取316份连续血浆样本。这些发现表明,连续ctDNA分析可以作为ICB治疗患者的一般监测策略,并与他们的生存率相关。

晚期诊断的妇科恶性肿瘤经常复发且难以治疗。尽管预后因原发疾病部位而异,但复发性妇科癌症通常是无法治愈的,治疗方案表现出适度的疗效和伴随的毒性。妇科恶性肿瘤的分子表征已成为一个备受关注的领域;然而,ctDNA在指导妇科癌症治疗方面的效用及其与临床数据的相关性有限。

5. 总结与展望

随着技术的不断发展和创新,ctDNA已成为癌症患者管理的关键分析物,ctDNA检测有助于早期筛查和检测肿瘤,并评估预后、治疗效果,根据患者分层做出适当的治疗决策。相对于传统的肿瘤成像技术,ctDNA检测在预测肿瘤复发方面具有优势,在肿瘤学中也有非常重要的临床价值。然而,ctDNA的价值仍有待不断探索。未来,ctDNA具有巨大的发展潜力和广阔的临床应用前景。目前ctDNA仍处于起步阶段,需要进一步努力,更多的进入临床应用中。

NOTES

*通讯作者。

参考文献

[1] Charo, L.M., et al. (2021) Clinical Implications of Plasma Circulating Tumor DNA in Gynecologic Cancer Patients. Mo-lecular Oncology, 15, 67-79.
https://doi.org/10.1002/1878-0261.12791
[2] Yang, F., Tang, J., Zhao, Z.H., Zhao, C.L. and Xiang, Y.C. (2021) Circulating Tumor DNA: A Noninvasive Biomarker for Tracking Ovarian Cancer. Repro-ductive Biology and Endocrinology, 19, Article No. 178.
https://doi.org/10.1186/s12958-021-00860-8
[3] Pessoa, L.S., Heringer, M. and Ferrer, V.P. (2020) ctDNA as a Cancer Biomarker: A Broad Overview. Critical Reviews in Oncology/Hematology, 155, Article ID: 103109.
https://doi.org/10.1016/j.critrevonc.2020.103109
[4] Campos-Carrillo, A., et al. (2020) Circulating Tumor DNA as an Early Cancer Detection Tool. Pharmacology & Therapeutics, 207, Article ID: 107458.
https://doi.org/10.1016/j.pharmthera.2019.107458
[5] Stroun, M., et al. (1989) Neoplastic Characteristics of the DNA Found in the Plasma of Cancer Patients. Oncology, 46, 318-322.
https://doi.org/10.1159/000226740
[6] Mouliere, F., et al. (2011) High Fragmentation Characterizes Tu-mour-Derived Circulating DNA. PLOS ONE, 6, e23418.
https://doi.org/10.1371/journal.pone.0023418
[7] Underhill, H.R., et al. (2016) Fragment Length of Circulating Tumor DNA. PLOS Genetics, 12, e1006162.
https://doi.org/10.1371/journal.pgen.1006162
[8] Keller, L., Belloum, Y., Wikman, H. and Pantel, K. (2021) Clin-ical Relevance of Blood-Based ctDNA Analysis: Mutation Detection and Beyond. British Journal of Cancer, 124, 345-358.
https://doi.org/10.1038/s41416-020-01047-5
[9] Burrell, R.A., McGranahan, N., Bartek, J. and Swan-ton, C. (2013) The Causes and Consequences of Genetic Heterogeneity in Cancer Evolution. Nature, 501, 338-345.
https://doi.org/10.1038/nature12625
[10] Sokoll, L., et al. (2008) Circulating Mutant DNA to Assess Tumor Dy-namics. Nature Medicine, 14, 985-990.
https://doi.org/10.1038/nm.1789
[11] Weber, S., et al. (2020) Technical Evaluation of Commercial Mutation Anal-ysis Platforms and Reference Materials for Liquid Biopsy Profiling. Cancers, 12, Article 1588.
https://doi.org/10.3390/cancers12061588
[12] Romero, A., et al. (2021) Comprehensive Cross-Platform Compari-son of Methods for Non-Invasive EGFR Mutation Testing: Results of the RING Observational Trial. Molecular Oncol-ogy, 15, 43-56.
https://doi.org/10.1002/1878-0261.12832
[13] Jie, X., et al. (2022) Mutation Analysis of Circulating Tumor DNA and Paired Ascites and Tumor Tissues in Ovarian Cancer. Experimental and Therapeutic Medicine, 24, Article No. 542.
https://doi.org/10.3892/etm.2022.11479
[14] Raymond, V.M., Higashi, L., Marino, E. and Lang, K. (2021) Evalua-tion of the ctDNA LUNAR-2 Test In an Average Patient Screening Episode (ECLIPSE). Journal of Clinical Oncology, 39, TPS142-TPS142.
https://doi.org/10.1200/JCO.2021.39.3_suppl.TPS142
[15] Rolfo, C., et al. (2020) Challenges and Opportunities of cfDNA Analysis Implementation in Clinical Practice: Perspective of the International Society of Liquid Biopsy (ISLB). Critical Reviews in Oncology/Hematology, 151, Article ID: 102978.
https://doi.org/10.1016/j.critrevonc.2020.103058
[16] Bettegowda, C., et al. (2014) Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Science Translational Medicine, 6, 224ra24.
[17] Maritschnegg, E., et al. (2015) Lavage of the Uterine Cavity for Molecular Detection of Müllerian Duct Carcinomas: A Proof-of-Concept Study. Journal of Clinical Oncology, 33, 4293-4300.
https://doi.org/10.1200/JCO.2015.61.3083
[18] Zhou, J., et al. (2015) Urinary microRNA-30a-5p Is a Potential Biomarker for Ovarian Serous Adenocarcinoma. Oncology Reports, 33, 2915-2923.
https://doi.org/10.3892/or.2015.3937
[19] Lukasiewicz, M., et al. (2021) Diagnostic Accuracy of Liq-uid Biopsy in Endometrial Cancer. Cancers, 13, Article 5731.
https://doi.org/10.3390/cancers13225731
[20] Bolivar, A.M., et al. (2019) Targeted Next-Generation Sequencing of Endometrial Cancer and Matched Circulating Tumor DNA: Identification of Plasma-Based, Tumor-Associated Muta-tions in Early Stage Patients. Modern Pathology, 32, 405-414.
https://doi.org/10.1038/s41379-018-0158-8
[21] Veyer, D., et al. (2020) HPV Circulating Tumoral DNA Quanti-fication by Droplet-Based Digital PCR: A Promising Predictive and Prognostic Biomarker for HPV-Associated Oropha-ryngeal Cancers. International Journal of Cancer, 147, 1222-1227.
https://doi.org/10.1002/ijc.32804
[22] Jeannot, E., et al. (2016) Circulating Human Papillomavirus DNA Detected Using Droplet Digital PCR in the Serum of Patients Diagnosed with Early Stage Human Papillomavirus-Associated Invasive Carcinoma. The Journal of Pathology: Clinical Research, 2, 201-209.
https://doi.org/10.1002/cjp2.47
[23] Damerla, R.R., et al. (2019) Detection of Early Human Papillomavirus-Associated Cancers by Liquid Biopsy. JCO Precision Oncology, 3, 1-11.
https://doi.org/10.1200/PO.18.00276
[24] Kang, Z., Stevanović, S., Hinrichs, C.S. and Cao, L. (2017) Circulating Cell-Free DNA for Metastatic Cervical Cancer Detection, Genotyping, and Monitoring. Clinical Cancer Research, 23, 6856-6862.
https://doi.org/10.1158/1078-0432.CCR-17-1553
[25] Marsavela, G., et al. (2022) Detection of Clinical Progres-sion through Plasma ctDNA in Metastatic Melanoma Patients: A Comparison to Radiological Progression. British Jour-nal of Cancer, 126, 401-408.
https://doi.org/10.1038/s41416-021-01507-6
[26] Reece, M., et al. (2019) The Use of Circulating Tumor DNA to Monitor and Predict Response to Treatment in Colorectal Cancer. Frontiers in Genetics, 10, Article 482516.
https://doi.org/10.3389/fgene.2019.01118
[27] Yi, X., et al. (2017) The Feasibility of Using Mutation Detection in ctDNA to Assess Tumor Dynamics. International Journal of Cancer, 140, 2642-2647.
https://doi.org/10.1002/ijc.30620
[28] Kidess, E., et al. (2015) Mutation Profiling of Tumor DNA from Plasma and Tumor Tissue of Colorectal Cancer Patients with A novel, High-Sensitivity Multiplexed Mutation Detection Platform. Oncotarget, 6, 2549-2561.
https://doi.org/10.18632/oncotarget.3041
[29] Zhu, J.W., et al. (2023) Evaluating the Utility of ctDNA in Detecting Residual Cancer and Predicting Recurrence in Patients with Serous Ovarian Cancer. International Journal of Molecular Sciences, 24, Article 14388.
https://doi.org/10.3390/ijms241814388
[30] Hou, J.Y., et al. (2022) Circulating Tumor DNA Monitoring for Early Recurrence Detection in Epithelial Ovarian Cancer. Gynecologic Oncology, 167, 334-341.
https://doi.org/10.1016/j.ygyno.2022.09.004
[31] Campitelli, M., et al. (2012) Human Papillomavirus Mutational Insertion: Specific Marker of Circulating Tumor DNA in Cervical Cancer Patients. PLOS ONE, 7, e43393.
https://doi.org/10.1371/journal.pone.0043393
[32] Gadducci, A., Tana, R., Cosio, S. and Genazzani, A.R. (2008) The Serum Assay of Tumour Markers in the Prognostic Evaluation, Treatment Monitoring and Follow-Up of Patients with Cervical Cancer: A Review of the Literature. Critical Reviews in Oncology/Hematology, 66, 10-20.
https://doi.org/10.1016/j.critrevonc.2007.09.002
[33] Sharbatoghli, M., et al. (2020) Prediction of the Treatment Response in Ovarian Cancer: A ctDNA Approach. Journal of Ovarian Research, 13, Article No. 124.
https://doi.org/10.1186/s13048-020-00729-1