基于多模态CT净水摄取联合临床评分预测急性缺血脑卒中结局的研究
A Study on the Net Water Uptake Based on Multimodal CT and Clinical Scores for Predicting the Outcome of Acute Ischemic Stroke
DOI: 10.12677/ACM.2024.141026, PDF, HTML, XML, 下载: 76  浏览: 198 
作者: 祁 丹, 袁若涵, 方玮玮:延安大学附属医院影像科,陕西 延安
关键词: 急性缺血脑卒中净水摄取预后预测模型Acute Ischemic Stroke NWU Prognosis Prediction Model
摘要: 目的:CT脑灌注净水摄取定量联合临床评分构建影像模型、临床模型、临床联合影像三个预测模型,寻找最佳预测模型来评估急性缺血性脑卒中患者临床预后的情况。方法:回顾性收集入院行血管内治疗和/或静脉溶栓的急性前循环缺血性脑卒中患者193例。通过多因素逐步Logistic回归确定急性缺血性卒中预后不良发生的独立影响因素,构建临床、影像、临床联合影像的预测模型,应用ROC曲线评估临床、影像、临床联合影像模型的预测效能。结果:多因素Logistic回归结果显示,在临床因素中基线NIHSS评分(OR = 1.261; 95% CI: 1.1591.372; P < 0.001)、NLR (OR = 1.593; 95% CI: 1.2482.034; P < 0.001)为卒中预后不良的独立预测因子;临床预测预后的模型AUC为0.917 (95% CI: 0.877~0.957),敏感度和特异度分别为86.6%、84.0%。在影像因素中核心梗死体积(OR = 1.050; 95% CI: 1.0241.078; P < 0.001)、NWU (OR = 1.231; 95% CI: 1.1301.341; P < 0.001)为卒中预后不良的独立预测因子;影像预测预后模型的AUC为0.921 (95% CI: 0.884~0.958),敏感度和特异度分别为81.3%、90.1%。在临床联合影像因素中基线NIHSS评分(OR = 1.181, 95% CI: 1.0581.318, P = 0.003)、NLR (OR = 1.352, 95% CI: 1.0771.696, P = 0.009)、核心梗死体积(OR = 1.042, 95% CI: 1.0081.077, P = 0.014)及NWU (OR = 1.247, 95% CI: 1.1151.393, P < 0.001)均是急性缺血性卒中患者预后不良的独立预测因子;临床联合影像的预测预后模型的AUC最高,达0.964 (95% CI: 0.939~0.989),其敏感度为87.5%、特异度为96.3%。结论:临床联合影像的预测模型相较于单独临床模型或影像模型对于血管内治疗和/或静脉溶栓的急性缺血性卒中患者有更好的预测效能。
Abstract: Objective: Three prediction models, namely imaging model, clinical model and clinical combined imaging, were constructed by CT cerebral perfusion water uptake quantification and clinical score, and the best prediction model was found to evaluate the clinical prognosis of patients with acute ischemic stroke. Methods: Retrospective collection of 193 patients with acute anterior circulation ischemic stroke admitted for endovascular treatment and/or intravenous thrombolysis. Determine independent influencing factors for poor prognosis of acute ischemic stroke through stepwise lo-gistic regression with multiple factors. Build a predictive model for clinical, imaging, and clinical joint imaging. ROC curve was used to evaluate the prediction efficiency of clinical, imaging and clin-ical combined imaging models. Results: Multivariate logistic regression results showed that among clinical factors, baseline NIHSS score (OR = 1.261; 95% CI: 1.159~1.372; P < 0.001) and NLR (OR = 1.593; 95% CI: 1.248~2.034; P < 0.001) were independent predictors of poor stroke prognosis among clinical factors; The AUC of the clinical prediction model for prognosis was 0.917 (95% CI: 0.877~0.957), with sensitivity and specificity of 86.6% and 84.0%, respectively. Among imaging factors, core infarction volume (OR = 1.050; 95% CI: 1.024~1.078; P < 0.001) and NWU (OR = 1.231; 95% CI: 1.130~1.341; P < 0.001) are independent predictors of poor stroke prognosis; The AUC of the imaging prediction prognosis model was 0.921 (95% CI: 0.884~0.958), with sensitivity and specificity of 81.3% and 90.1%, respectively. Among clinical joint imaging factors, baseline NIHSS score (OR = 1.181, 95% CI: 1.058~1.318, P = 0.003), NLR (OR = 1.352, 95% CI: 1.077~1.696, P = 0.009), core infarction volume (OR = 1.042, 95% CI: 1.008~1.077, P = 0.014), and NWU (OR = 1.247, 95% CI: 1.15~1.393, P < 0.001) are independent predictors of poor prognosis in patients with acute ischemic stroke; the AUC of the clinical combined imaging prediction prognosis model is the highest, reaching 0.964 (95% CI: 0.939~0.989), with a sensitivity of 87.5% and a specificity of 96.3%. Con-clusion: The predictive model of clinical joint imaging has better predictive performance compared to individual clinical models or imaging models for acute ischemic stroke patients undergoing in-travascular therapy and/or intravenous thrombolysis.
文章引用:祁丹, 袁若涵, 方玮玮. 基于多模态CT净水摄取联合临床评分预测急性缺血脑卒中结局的研究[J]. 临床医学进展, 2024, 14(1): 173-182. https://doi.org/10.12677/ACM.2024.141026

1. 引言

急性缺血性脑卒中(Acute ischemic stroke, AIS)是世界范围内导致残疾与死亡的疾病之一 [1] 。流行病学研究中国是世界上中风病例最多的国家,给社会的医疗及护理带来很大的负担 [2] 。因此在AIS患者的治疗和康复早期预测结果是非常重要的。许多生物标志物可以预测中风患者的预后,例如基线美国国立卫生研究院卒中量表(National Institutes of Health Stroke Scale, NIHSS)评分、中性粒细胞计数与淋巴细胞计数比值(neutrophil to lymphocyte ratio, NLR)、C-反应蛋白(C-reaction protein, CRP)、年龄等 [3] [4] 。随着近年影像技术的发展,多模态MRI评估梗死面积、发病时间及责任血管、多模态CT所评估的核心梗死区、缺血半暗带及侧支循环都可以预测AIS患者的临床预后 [5] [6] 。近年来也在不断地提出一些新的影像学指标来预测AIS患者的临床预后,例如液体衰减反转恢复血管高信号征(Fluid-attenuated inversion recovery vessels hyperintense, FVH) [7] [8] [9] 、血栓负荷评分(Clotburdenscore, CBS) [10] 、血栓衰减增加(Thrombus attenuation increase, TAI) [11] 等。本研究的目的是基于一项新的影像指标净水摄取(net water update, NWU)的基础上,构建临床和影像模型,寻找最佳预测模型来评估AIS患者预后的情况。

2. 资料与方法

2.1. 一般资料

回顾性收集我院2020年3月至2022年12月入院行血管内治疗和/或静脉溶栓的急性前循环缺血性脑卒中患者。所有受试者知情同意并签署了知情同意书。纳入标准:1) AIS的诊断标准参照《中国急性缺血性脑卒中诊治指南2018版》;2) CT平扫及CT灌注成像(CTP);3) 大脑中动脉M1段闭塞或颈内动脉远端闭塞;4) 3个月后改良Rankin量表(mRS)评分评估预后。排除标准:1) 头颅CT检查证实脑出血;2) 既往脑梗死,遗留后遗症;3) CT图像质量差,影像或临床资料不完整。

收集患者的性别、年龄、入院收缩压、舒张压、BMI、高血压病史、冠心病病史、房颤病史、糖尿病、吸烟史、饮酒史、高脂血症、高同型半胱氨酸血症、中性粒细胞计数、淋巴细胞计数、单核细胞计数、血小板计数、中性粒细胞计数与淋巴细胞计数比值(neutrophil to lymphocyte ratio, NLR)、血小板计数与淋巴细胞计数比值(platelet to lymphocyte ratio, PLR)、淋巴细胞计数与单核细胞计数比值(lymphocyte to monocyte ratio, LMR)、发病至入院时间及基线美国国立卫生研究院卒中量表(National Institutes of Health Stroke Scale, NIHSS)评分。卒中患者3个月功能预后采用mRS评分方法评估:mRS ≤ 2为预后良好,mRS > 2为预后不良 [12] 。

2.2. CT检查方法

采用西门子256层新双源螺旋CT扫描机,使用高压注射器和18G注射针头,经肘前静脉注射非离子型对比剂碘普罗胺,碘流率为6 mL/s,总量按照1 mL/kg体重计算。在开始注射对比剂的同时,进行全脑同步动态CT轴位扫描,扫描参数80 Kv,100 mAs,旋转时间为0.28 s,扫描总时间44 s,矩阵225 × 225,扫描层厚10 mm,重建层厚为1.0 mm。

2.3. CT图像分析

CTP各参数图由eStroke国家取栓溶栓平台自动生成,并得到核心梗死体积(rCBF < 30%)、低灌注体积(Tmax > 6 s)以及低灌注强度比(HIR)的指标。NWU的测量首先通过达峰时间(TTP)及脑血容量(CBV)等参数图来定位缺血脑组织,其次,使用3Dslicer (https://www.slicer.org/)将CBV参数图中核心梗死区域与相应的平扫CT (NCCT)图像共同配准得到早期的脑梗死病灶,并进一步计算病变侧缺血区脑组织的密度(density of ischemic lesion, Dischemic),并在对侧大脑半球镜像同样ROI并测量对侧大脑半球相应区域正常脑组织的密度(density of normal issue, Dnormal),最后使用公式计算缺血脑组织净水摄取(NWU),计算公式如下:NWU = (1 − Dischemic/Dnormal) × 100% [13] [14] 。NWU由两位神经影像主治医师独立计算得到,最终结果取两者平均值。

2.4. 统计学方法

所有数据应用SPSS 26.0和R软件进行分析。符合正态分布的计量资料采用 x ¯ ± s 表示,并使用独立样本t检验比较,不符合正态分布的计量资料采用M (P25~P75)表示,并使用Mann-Whitney U检验比较,计数资料则采用频数(百分比)表示,进行卡方检验。将差异有统计学意义的指标纳入多因素逐步Logistic回归分析,确定急性缺血性卒中预后不良的独立影响因素。基于以上因素构建临床、影像、临床联合影像的预测模型。应用ROC曲线评估临床、影像、临床联合影像模型的预测效能。

3. 结果

3.1. 一般资料

在纳入研究的193例患者中,预后良好组81例,预后不良组112例。两组在冠心病史(P = 0.005)、高同型半胱氨酸血症(P = 0.001)、中性粒细胞计数(P = 0.024)、淋巴细胞计数(P = 0.030)、NLR (P < 0.001)、PLR (P < 0.001)、LMR (P < 0.001)、基线NIHSS评分(P < 0.001)、低灌注体积(P < 0.001)、核心梗死体积(P < 0.001)、HIR (P = 0.002)、净水摄取(P < 0.001)等指标的差异具有统计学意义。既往患有冠心病及高同型半胱氨酸血症、中性粒细胞计数高、淋巴细胞计数高、NLR高、PLR高、LMR低、基线NIHSS评分高、低灌注体积较大、核心梗死体积较大、HIR较高及净水摄取较高的急性缺血脑卒中患者更容易出现预后不良的结果(见表1)。

Table 1. Comparison of general data on good prognosis (mRS ≤ 2) and poor prognosis (mRS > 2) in patients with AIS

表1. AIS患者预后良好(mRS ≤ 2)与预后不良(mRS > 2)的一般资料比较

3.2. 卒中预后预测因子的多元逻辑回归分析

将差异性分析中P < 0.05的自变量纳入回归模型中,回归临床因素结果显示基线NIHSS评分(OR = 1.261; 95% CI: 1.159~1.372; P < 0.001)、NLR (OR = 1.593; 95% CI: 1.248~2.034; P < 0.001)为卒中预后不良的独立预测因子。回归影像因素结果显示核心梗死体积(OR = 1.050; 95% CI: 1.024~1.078; P < 0.001)、NWU (OR = 1.231; 95% CI: 1.130~1.341; P < 0.001)为卒中预后不良的独立预测因子。回归临床联合影像因素显示基线NIHSS评分(OR = 1.181, 95% CI: 1.058~1.318, P = 0.003)、NLR (OR = 1.352, 95% CI: 1.077~1.696, P = 0.009)、核心梗死体积(OR = 1.042, 95% CI: 1.008~1.077, P = 0.014)及NWU (OR = 1.247, 95% CI: 1.115~1.393, P < 0.001)均是急性缺血性卒中患者预后不良的独立预测因子(见表2图1(a)~(c)、图2(a)~(c))。

Table 2. Multivariate Logistic regression analysis of parameters related to poor prognosis of AIS

表2. AIS不良预后相关参数的多元Logistic回归分析

(a)(b) (c)

Figure 1. A 62-year-old female with poor speech and limited movement of her left limb for 3 hours, admitted with a NIHSS score of 7 and an mRS score of 1, and the patient had a good clinical prognosis. (a) NCCT, (b) TTP and (c) the patient had an NWU of 7.5, a core infarct volume of 35 ml

图1. 女,62岁,言语不利伴左侧肢体活动受限3小时,入院NIHSS评分为7分,mRS为1分,患者临床预后良好。(a) CT平扫、(b) TTP及(c) CBV显示患者NWU为7.5,核心梗死体积为35 ml

(a)(b) (c)

Figure 2. Male, 59 years old, confused with right limb weakness admitted to the hospital for 3.5 hours, with an NIHSS score of 21 and an mRS score of 5, and the clinical prognosis of the patient was poor. (a) NCCT, (b) TTP and (c) the patient had an NWU of 26.3, a core infarct volume of 98 ml

图2. 男,59岁,意识模糊伴右侧肢体无力3.5小时入院,入院NIHSS评分为21分,mRS为5分,患者临床预后不良。(a) CT平扫、(b) TTP及(c) CBV显示患者NWU为26.3,核心梗死体积为98 ml

3.3. 三种预测模型ROC分析

ROC分析显示临床预测预后模型的AUC为0.917 (95% CI: 0.877~0.957),敏感 度和特异度分别为86.6%、84.0%;影像预测预后模型的AUC为0.921 (95% CI: 0.884~0.958),敏感度和特异度分别为81.3%、90.1%;临床联合影像的预测预后模型的AUC最高,达0.964 (95% CI: 0.939~0.989),其敏感度为87.5%、特异度为96.3% (见表3图3)。

Table 3. ROC curve analysis of three models to predict the clinical prognosis of AIS patients

表3. 三种模型预测AIS患者临床预后的ROC曲线分析

Figure 3. Predictive performance curves for the three models

图3. 三种模型的预测效能曲线

4. 讨论

4.1. 研究经过血管内治疗后AIS患者临床预后预测因素的意义

AIS患者致死及致残率极高,如何使AIS患者有良好的功能预后及寻找最佳的预后预测模型一直是临床及科研所关注的热点问题,本研究通过临床及影像预测因素共同来评估通过血管内治疗后的患者情况,并分析不良临床预后的预测因素,提示临床医生及早选择患者的治疗及护理方式。

4.2. 临床预测模型对AIS患者预后情况评估

通过卒中预后预测因子的多元逻辑回归分析,得出基线NIHSS评分和NLR是AIS患者临床预后的独立危险因素。然后建立临床模型,ROC分析显示临床预测预后的模型AUC为0.917 (95% CI: 0.877~0.957),敏感度和特异度分别为86.6%、84.0%。与以往的研究相似,NIHSS评分反映了AIS患者临床症状的严重程度 [15] 。Zhou [16] 等人建立由年龄、性别、NIHSS评分、卒中史及mRS评分所组成的临床模型,AUC为0.823 (95% CI: 0.705~0.789)。Cheng [17] 等人认为入院时高NIHSS评分与血管内治疗后患者的不良预后相关,并建立NIHSS评分与ASPECTS联合预测模型,AUC为0.793,两者联合对于选择血管内治疗患者以及可能的临床结果向临床提供建议。炎症在中风的病理生理学中起重要作用 [18] ,Gong [19] 等人研究分析出NLR、LMR及PLR均可作为AIS患者溶栓后早期神经功能恶化的独立预测因素,其中NLR仍可作为溶栓后早期神经功能改善的预测因素,并且NLR值越小越有利于患者的早期神经功能改善。据研究梗死缺血组织会释放出炎性细胞因子及趋化因子,吸引大量白细胞至缺血区域,白细胞可以诱导氧自由基形成而破坏血脑屏障 [20] 。大多数研究一致认为淋巴细胞具有神经功能保护作用,但是在AIS患者当中淋巴细胞减少,保护作用减弱,NLR比值增大,患者预后较差。与本研究结果一致,预后不良的患者NLR明显高于预后良好的患者。

4.3. 影像预测模型对AIS患者预后情况评估

通过卒中预后预测因子的多元逻辑回归分析,得出核心梗死体积和NWU是AIS患者临床预后的独立危险因素。建立影像模型,ROC分析显示影像预测预后模型AUC为0.921 (95% CI: 0.884~0.958),敏感度和特异度分别为81.3%、90.1%。核心梗死体积指的是无法通过再灌注而挽救的脑组织,CTP表示为梗死核心的界值是脑血流量(cerebral blood flow, CBF) < 30%的区域 [21] 。通过自动化软件可以快速分析出核心梗死体积、缺血半暗带及HIR等量化数据为临床治疗提供参考。大多数研究通过多因素分析确定核心梗死体积是预后的独立预测因子,并且随着核心梗死体积的增大,患者的临床预后越差 [22] [23] 。Yang等人通过多变量分析显示,年龄较大、核心梗死体积较大(CBF < 30%)是AIS死亡风险的独立预测因素,年龄超过76岁且核心梗死体积 > 90 mL的AIS患者不太可能从血栓切除术中获益 [24] 。因此,CTP对于脑组织缺血梗死的量化有助于临床选择血管内治疗的患者。净水摄取(net water update, NWU)是测量AIS患者脑梗死水肿的定量工具,基于病变侧与对侧大脑半球相对应区域的密度计算而得出,NWU = (1 − Dischemic/Dnormal) × 100% [13] 。NWU可以预测AIS患者的发病时间,尤其是醒后卒中或未知时间的患者,可以及时选择静脉溶栓或者是机械取栓方式进行治疗。Cheng等人 [25] 分析发现NWU预测AIS症状发作至CT检查时间 < 4.5 h,AUC为0.837,NWU最佳截断值为7%;AIS症状发作至CT检查时间 < 6 h,AUC为0.836,NWU最佳截断值为9%。NWU还可预测AIS患者的临床预后,Lu等人 [26] 分析再灌注不良的患者24~48 h随访的NWU显著增高,虽然患者经过治疗后血管再通,但是(NWUFCT-NWUadmission) ΔNWU仍然是再灌注不良的重要标志。Broocks [27] 等人研究ASPECTS < 5分的AIS患者,低NWU患者的良好结局为27.6%,而高NWU患者的良好结局为6.3%;血管再通的患者当中分析得出NWU < 12.6%可能会有更好的结局。与本研究相似,预后不良的患者的NWU明显高于预后良好的患者。

4.4. 临床联合影像预测模型对AIS患者预后情况评估

通过卒中预后预测因子的多元逻辑回归分析,影像联合临床预测模型的AUC、敏感度及特异度均最高,AUC为0.964 (95% CI: 0.939~0.989),敏感度和特异度分别为87.5%、96.3%。Lu等人 [26] 研究发现单独ΔNWU预测临床不良结果的AUC为0.682、灵敏度为71.1%、特异度为74.0%,当临床NIHSS评分联合ΔNWU预测临床不良结果的AUC达0.762、灵敏度为70.3%、特异度为84.2%。急性缺血性卒中患者临床预后预测因素复杂多样,本研究通过多变量分析得出NIHSS评分、NLR、核心梗死体积及NWU联合预测因素对于患者的预后评估更全面。

本研究具有一定的局限性:本研究为单中心回顾性研究,可能存在选择偏倚;目前对于NWU的测量基于手动勾画,未来可进一步与人工智能结合进行更准确以及更多信息的挖掘;未来可能会进行前瞻性的研究来验证本研究结果的可靠性。

综上所述,临床联合影像的预测模型相较于单独临床模型或影像模型对于血管内治疗和/或静脉溶栓的急性缺血性卒中患者有更好的预测效能,综合评估患者的治疗方式及临床预后情况,对于患者的治疗及后续的护理均有很大的帮助。

参考文献

[1] GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018) Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1789-1858.
https://doi.org/10.1016/S0140-6736(18)32279-7
[2] Roth, W. and Mohamadzadeh, M. (2021) Vitamin B12 and Gut-Brain Homeostasis in the Pathophysiology of Ischemic Stroke. EBioMedicine, 73, Article ID: 103676.
https://doi.org/10.1016/j.ebiom.2021.103676
[3] 丁少华, 陈宇辰, 殷信道, 田为中, 张逸, 戴慧. 构建急性脑卒中机械取栓治疗后预后预测模型的研究[J]. 磁共振成像, 2021, 12(8): 11-14+21.
[4] Zhang, X.G., Xue, J., Yang, W.H., Xu, X.S., Sun, H.X., Hu, L., Liu, L.Y. and Yue, Y.H. (2021) Inflammatory Markers as Independent Pre-dictors for Stroke Outcomes. Brain and Behavior, 11, e01922.
https://doi.org/10.1002/brb3.1922
[5] 唐继芳, 马春, 张勇, 等. 急性缺血性脑卒中多模态MRI的应用研究[J]. 中国CT和MRI杂志, 2022, 20(10): 25-27.
[6] 郑菲. 多模态CT在急性缺血性脑卒中的应用研究[J]. 影像研究与医学应用, 2022, 6(18): 77-79.
[7] Derraz, I., Ahmed, R., Mourand, I., Dargazanli, C., Cagnazzo, F., Gaillard, N., et al. (2022) FLAIR Vascular Hyperintensities Pre-dict Functional Outcome after Endovascular Thrombectomy in Patients with Large Ischemic Cores. European Radiology, 32, 6136-6144.
https://doi.org/10.1007/s00330-022-08683-w
[8] Lyu, J., Hu, J., Wang, X., Bian, X., Wei, M., Wang, L., Duan, Q., Lan, Y., et al. (2023) Association of Fluid-Attenuated Inversion Recovery Vascular Hyperintensity with Ischaemic Events in Internal Carotid Artery or Middle Cerebral Artery Occlusion. Stroke and Vascular Neurology, 8, 69-76.
https://doi.org/10.1136/svn-2022-001589
[9] Reyes, D., Simpkins, A.N., Hitomi, E., Lynch, J.K., Hsia, A.W., Nadareishvili, Z., et al. (2022) Estimating Perfusion Deficits in Acute Stroke Patients without Perfusion Imaging. Stroke, 53, 3439-3445.
https://doi.org/10.1161/STROKEAHA.121.038101
[10] Derraz, I., Pou, M., Labreuche, J., Legrand, L., Soize, S., Tisserand, M., et al. (2021) Clot Burden Score and Collateral Status and Their Impact on Functional Outcome in Acute Ischemic Stroke. AJNR American Journal of Neuroradiology, 42, 42-48.
https://doi.org/10.3174/ajnr.A6865
[11] Pilato, F., Valente, I., Alexandre, A.M., Calandrelli, R., Scarcia, L., D’Argento, F., et al. (2023) Correlation between Thrombus Perviousness and Distal Embolization during Mechanical Thrombectomy in Acute Stroke. Diagnostics (Basel), 13, Article No. 431.
https://doi.org/10.3390/diagnostics13030431
[12] Kauw, F., Dankbaar, J.W., Martin, B.W., et al. (2020) Collateral Status in Ischemic Stroke: A Comparison of Computed Tomography Angiography, Computed Tomography Perfusion, and Digital Subtraction Angiography. Journal of Computer Assisted Tomography, 44, 984-992.
https://doi.org/10.1097/RCT.0000000000001090
[13] Broocks, G., Flottmann, F., Ernst, M., Faizy, T.D., Minne-rup, J., Siemonsen, S., Fiehler, J. and Kemmling, A. (2018) Computed Tomography-Based Imaging of Voxel-Wise Le-sion Water Uptake in Ischemic Brain: Relationship between Density and Direct Volumetry. Investigative Radiology, 53, 207-213.
https://doi.org/10.1097/RLI.0000000000000430
[14] Broocks, G., Faizy, T.D., Flottmann, F., Schön, G., Langner, S., Fiehler, J., Kemmling, A. and Gellissen, S. (2018) Subacute Infarct Volume with Edema Correction in Computed Tomography Is Equivalent to Final Infarct Volume After Ischemic Stroke: Improving the Comparability of In-farct Imaging Endpoints in Clinical Trials. Investigative Radiology, 53, 472-476.
https://doi.org/10.1097/RLI.0000000000000475
[15] Kwah, L.K. and Diong, J. (2014) National Institutes of Health Stroke Scale (NIHSS). Journal of Physiotherapy, 60, 61.
https://doi.org/10.1016/j.jphys.2013.12.012
[16] Zhou, Y., Wu, D., Yan, S., Xie, Y., Zhang, S., Lv, W., et al. (2022) Feasibility of a Clinical-Radiomics Model to Predict the Outcomes of Acute Ischemic Stroke. Korean Journal of Radiology, 23, 811-820.
https://doi.org/10.3348/kjr.2022.0160
[17] Cheng, Z., Geng, X., Rajah, G.B., Gao, J., Ma, L., Li, F., Du, H. and Ding, Y. (2021) NIHSS Consciousness Score Combined with ASPECTS Is a Favorable Predictor of Functional Out-come Post Endovascular Recanalization in Stroke Patients. Aging and Disease, 12, 415-424.
https://doi.org/10.14336/AD.2020.0709
[18] Schuhmann, M.K., Stoll, G., Bieber, M., Vögtle, T., Hofmann, S., Klaus, V., Kraft, P., Seyhan, M., Kollikowski, A.M., Papp, L., Heuschmann, P.U., Pham, M., Nieswandt, B. and Ste-gner, D. (2020) CD84 Links T Cell and Platelet Activity in Cerebral Thrombo-Inflammation in Acute Stroke. Circulation Research, 127, 1023-1035.
https://doi.org/10.1161/CIRCRESAHA.120.316655
[19] Gong, P., Liu, Y., Gong, Y., Chen, G., Zhang, X., Wang, S., et al. (2021) The Association of Neutrophil to Lymphocyte Ratio, Platelet to Lymphocyte Ratio, and Lymphocyte to Monocyte Ratio with Post-Thrombolysis Early Neurological Outcomes in Patients with Acute Ischemic Stroke. Journal of Neuroinflammation, 18, Article No. 51.
https://doi.org/10.1186/s12974-021-02090-6
[20] Ceulemans, A.G., Zgavc, T., Kooijman, R., Hachimi-Idrissi, S., Sarre, S. and Michotte, Y. (2010) The Dual Role of the Neuroinflammatory Response after Ischemic Stroke: Modulatory Effects of Hypothermia. Journal of Neuroinflammation, 7, Article No. 74.
https://doi.org/10.1186/1742-2094-7-74
[21] Nael, K., Tadayon, E., Wheelwright, D., Metry, A., Fifi, J.T., Tuhrim, S., et al. (2019) Defining Ischemic Core in Acute Ischemic Stroke Using CT Perfusion: A Multiparametric Bayesi-an-Based Model. AJNR American Journal of Neuroradiology, 40, 1491-1497.
https://doi.org/10.3174/ajnr.A6170
[22] Chen, X., Lin, S., Zhang, X., Hu, S. and Wang, X. (2022) Prognosis with Non-Contrast CT and CT Perfusion Imaging in Thrombolysis-Treated Acute Ischemic Stroke. European Journal of Ra-diology, 149, Article ID: 110217.
https://doi.org/10.1016/j.ejrad.2022.110217
[23] Haranhalli, N., Mbabuike, N., Grewal, S.S., Hasan, T.F., Heck-man, M.G., Freeman, W.D., et al. (2019) Topographic Correlation of Infarct Area on CT Perfusion with Functional Outcome in Acute Ischemic Stroke. Journal of Neurosurgery, 132, 33-41.
https://doi.org/10.3171/2018.8.JNS181095
[24] Yang, H., Lin, D., Lin, X., Wu, Y., Yi, T. and Chen, W. (2022) Outcomes and CT Perfusion Thresholds of Mechanical Thrombectomy for Patients with Large Ischemic Core Lesions. Frontiers in Neurology, 13, Article ID: 856403.
https://doi.org/10.3389/fneur.2022.856403
[25] Cheng, X., Wu, H., Shi, J., Dong, Z., Liu, J., Zhou, C., et al. (2021) ASPECTS-Based Net Water Uptake as an Imaging Biomarker for Lesion Age in Acute Ischemic Stroke. Journal of Neurology, 268, 4744-4751.
https://doi.org/10.1007/s00415-021-10584-9
[26] Lu, S.S., Wu, R.R., Cao, Y.Z., Xu, X.Q., Lin, S.S., Liu, S., Shi, H.B. and Wu, F.Y. (2022) ASPECTS-Based Net Water Uptake Predicts Poor Reperfusion and Poor Clinical Outcomes in Patients with Ischemic Stroke. European Radiology, 32, 7026-7035.
https://doi.org/10.1007/s00330-022-09077-8
[27] Broocks, G., Meyer, L., Elsayed, S., McDonough, R., Bechstein, M., Faizy, T.D., et al. (2023) Association between Net Water Uptake and Functional Outcome in Patients with Low ASPECTS Brain Lesions: Results from the I-LAST Study. Neurology, 100, e954-e963.
https://doi.org/10.1212/WNL.0000000000201601