自身免疫性脑炎相关睡眠障碍的临床研究进展
Progress in Clinical Research of Sleep Disorders Associated with Autoimmune Encephalitis
DOI: 10.12677/ACM.2024.141071, PDF, HTML, XML, 下载: 102  浏览: 222 
作者: 韩文娟, 焦腾飞, 韩登峰*:新疆医科大学第一附属医院神经内科,新疆 乌鲁木齐
关键词: 自身免疫性脑炎睡眠障碍量表多导睡眠监测Autoimmune Encephalitis Sleep Disorders Scales Polysomnographic Monitoring
摘要: 睡眠障碍在自身免疫性脑炎患者中普遍存在,有时是最突出的或唯一的首发症状,但多数未能引起足够重视而延误诊断及治疗。免疫机制参与睡眠启动和调节的大脑网络,发生免疫介导损伤后可出现各种类型的睡眠障碍。早期诊断并启动免疫治疗可降低发病率,改善患者短期结局和长期预后。本综述旨在总结自身免疫性脑炎患者睡眠障碍的特征及可能的机制,为临床诊疗提供经验指导。
Abstract: Sleep disorders are common in patients with autoimmune encephalitis and are sometimes the most prominent or only first symptom, but most do not attract sufficient attention and delay diagnosis and treatment. Immune mechanisms are involved in the brain networks that initiate and regulate sleep, and several types of sleep disorders can occur after immune-mediated injury. Early diagnosis and initiation of immunotherapy may reduce morbidity and improve short-term outcome and long-term prognosis. The aim of this review is to summarise the characteristics and possible mech-anisms of sleep disorders in patients with autoimmune encephalitis and to provide empirical guid-ance for clinical diagnosis and management.
文章引用:韩文娟, 焦腾飞, 韩登峰. 自身免疫性脑炎相关睡眠障碍的临床研究进展[J]. 临床医学进展, 2024, 14(1): 503-511. https://doi.org/10.12677/ACM.2024.141071

1. 引言

自身免疫性脑炎(Autoimmune Encephalitis, AE)是一组中枢神经系统炎症性疾病,其特征是突出的神经和精神症状,于任何年龄均可发病,在6周内发展为由脑炎引起的迅速进展的脑病 [1] 。最初,此疾病的发病率只占所有脑炎病例的少数,随着诊断方法的发展以及新的生物标志物的发现,AE的病例数显著增加,最近的流行病学研究估计人群患病率约为13.7/100,000 [2] 。

AE患者临床就诊的主要特征为精神行为异常、记忆和认知障碍、意识水平下降(79%),癫痫发作(78%),自主神经功能障碍、睡眠和运动障碍(23%)等 [3] 。睡眠障碍(Sleep Disorders, SDs)很少是AE患者诊断和治疗的主要考虑因素,据统计,73%的AE患者会出现睡眠症状 [4] ,但这些症状往往被其他更严重、紧急甚至危及生命的神经系统症状所掩盖。近期有研究提出SDs的潜在免疫介导机制,并发现AE与多种SDs相关 [5] ,包括失眠、嗜睡、睡眠相关呼吸障碍、异态睡眠和睡眠相关运动障碍等,早期识别特定的SDs可能为AE的诊断提供线索,然而只有少数报道的病例描述了AE的SDs特征。

在AE患者中,各种类型的SDs可频繁出现,往往持续到疾病急性期之后,严重影响患者的康复和生活质量 [6] ,早期诊断和治疗可以促进AE患者的康复并改善长期预后。在本综述中,我们旨在全面、广泛地了解AE相关SDs的特征,为临床诊疗提供经验指导。

2. 不同抗体类型的AE与SDs

根据抗神经元抗体的不同,AE可分为抗细胞表面抗原抗体介导的脑炎 [7] ,以及抗细胞内抗原抗体介导的脑炎 [8] 。中枢神经系统(Central nervous system, CNS)控制睡眠和觉醒功能的区域,如下丘脑、脑干,发生免疫介导损伤后可出现睡眠减少、睡眠增多或睡眠期异常行为等多种睡眠症状,导致SDs [9] 。接下来我们将重点讨论不同抗体介导的AE相关SDs。

2.1. 抗细胞表面抗原抗体介导的AE

2.1.1. 抗NMDAR脑炎

临床特点:AE最常见的亚型,其特征是急性或亚急性起病的复杂神经精神综合征,包括精神错乱、烦躁、癫痫发作、运动障碍、意识水平下降、自主神经功能障碍和通气不足等 [10] 。女性患病率约是一般人群的4倍,尤其是25岁~35岁的青年女性 [11] ,在25岁以下的人群中,抗NMDAR脑炎比感染性脑炎更常见,约1/3患者是儿童,死亡率可达10% [12] 。

相关SDs:抗NMDAR脑炎患者可出现失眠和嗜睡。一项队列研究探讨了18例抗NMDAR脑炎患者的睡眠改变,发现急性期89%的患者存在失眠,急性期后78%的患者出现嗜睡 [13] 。在急性期,患者睡眠时间和睡眠需求严重减少,但很少出现日间嗜睡 [14] 。急性期过后进入恢复期,睡眠模式发生转变,患者会过渡到嗜睡期,即夜间和日间睡眠时间均增加,停用抗精神病类药物、抗癫痫发作药物或苯二氮卓类药物后仍持续存在,伴有幻觉或异常行为的出现,如食欲亢进、性欲亢进、情感淡漠或易激惹等行为 [15] 。

2.1.2. 抗LGI1抗体相关脑炎

临床特点:边缘系统AE最常见的类型 [16] ,其特征是急性或亚急性起病的认知和精神障碍、面–臂肌张力障碍发作(faciobrachial dystonic seizure, FBDS)、低钠血症等 [17] 。发病中位年龄为65岁,男性多于女性 [18] 。

相关SDs:抗LGI1抗体相关脑炎患者可出现异态睡眠和睡眠相关运动障碍,表现为快速眼动期(Rapid Eye Movement, REM)睡眠行为异常、梦境演绎行为、失眠等 [19] 。最近的一项多导睡眠监测(Polysomnography, PSG)研究显示,抗LGI1抗体相关脑炎患者的睡眠效率、总睡眠时间、N1期睡眠和REM期睡眠显著降低 [20] 。另一项研究表明,抗LGI1抗体相关脑炎患者的睡眠效率和总睡眠时间明显减少,并发现睡眠结构失衡,即N1期延长,N3期减少,REM期成分和N2期结构异常 [21] 。LGI1基因在下丘脑中广泛表达,抗LGI1抗体与下丘脑神经元结合发生免疫反应,出现下丘脑功能紊乱,导致快速眼动期行为障碍(Rapid Eye Movement Behavior Disorder, RBD)和失眠 [22] 。

2.1.3. 抗CASPR2抗体相关脑炎

临床特点:抗CASPR2抗体相关脑炎的临床表现更加多样化,包括边缘性脑炎(42%)、Morvan综合征(29%),77%的患者可出现小脑功能障碍、周围神经过度兴奋综合征、神经性疼痛、SDs和体重减轻等,多发病于50岁以上男性,20%的患者合并潜在的胸腺瘤 [23] 。Morvan综合征在1890年首次描述,特征包括周围神经过度兴奋(表现为神经性肌强直和神经性疼痛)、重度失眠、自主神经功能障碍(表现为多汗、高热、循环不稳、小便失禁、勃起功能障碍)、伴有意识错乱的脑病和昼夜频繁出现的视幻觉等 [24] ,约80%的Morvan综合征的患者存在抗CASPR2抗体,有时同时伴有抗LGI1抗体 [25] 。

相关SDs:抗CASPR2抗体脑炎患者可出现失眠。一项纳入48例抗CASPR2抗体脑炎患者的研究显示,在整个病程中56%的患者存在SDs,且主要表现为失眠 [23] 。有些患者会出现复杂的失眠症,由最初的睡眠时间和需求减少在数周或数月内演变为完全无法入睡并维持睡眠,同时伴自主神经和运动神经功能亢进,临床称为兴奋性失眠症(Agrypnia excitata) [26] 。患者在24小时内反复进行日常性活动,如穿衣、梳头、刷牙、吃饭、工作和对话等,眼睛闭上或睁开,被唤醒后可回忆大多过程,临床上将该种情况称为“梦样昏迷” [27] 。

2.1.4. 抗IgLON5抗体相关脑病

临床特点:抗IgLON5抗体相关脑病是一种新定义的临床疾病,以进行性发展、高致残率、高死亡率为特征,核心表现包括SDs、延髓综合征、多动综合征、步态异常和认知功能障碍等 [28] [29] 。中位发病年龄在60岁左右,目前尚未发现与肿瘤相关 [30] 。

相关SDs:抗IgLON5抗体相关脑病患者可出现阻塞性睡眠呼吸暂停(Obstructive Sleep Apnea, OSA)、打鼾、睡眠期不规则肢体运动等 [31] 。2014年,Sabater L等人在患有REM和非快速眼动期(Non-rapid Eye Movement, NREM) SDs及睡眠相关呼吸障碍的患者中首次描述并发现抗IgLON5抗体 [32] ,因此SDs被认为是抗IgLON5抗体相关脑病的首个标志 [33] 。迄今为止,一项最大的抗IgLON5抗体相关脑病患者病例系列研究报道了近90%的患者在诊断时存在SDs [34] 。病理生理学研究发现在下丘脑、脑干背侧及延髓常存在神经变性,表现为磷酸化的tau蛋白沉积和神经元缺失,这些部位的核团参与声带运动、REM期睡眠肌肉失张力、NREM期睡眠启动的控制等,因此为大多数睡眠提供了合理的解释 [35] 。睡眠期间,患者可在不同阶段出现肢体或躯体抽搐,伴喃喃自语或大喊大叫 [36] ,并因喉梗阻或气道塌陷反复出现OSA或低通气发作 [37] ,心脑血管系统、呼吸系统等重要系统长时间处于低氧环境导致疾病发展或恶化,死亡风险升高 [38] 。持续气道正压通气可改善症状,若因喉痉挛引起急性呼吸衰竭,需紧急行气管插管甚至气管切开术以改善通气 [39] 。

2.1.5. 抗AMPAR抗体相关脑炎

临床特点:抗AMPAR抗体相关脑炎主要表现为边缘性脑炎,超过50%的病例合并肿瘤,如小细胞肺癌、胸腺瘤、乳腺癌等 [40] 。临床表现多样,一部分表现为暴发性重症脑炎,另一部分表现为精神病性症状或癫痫发作,多数患者存在短期记忆缺失,在脑部MRI影像上显示双侧颞叶高信号 [41] 。

相关SDs:抗AMPAR抗体脑炎患者可出现失眠和嗜睡,目前相关SDs的报道有限。一项22例抗AMPAR抗体脑炎病例系列研究对每位患者的临床特征进行了描述,其中失眠2例,嗜睡1例 [34] ,另一项10例病例分析中报告了1例失眠,2例嗜睡 [42] ,上述两种SDs在疾病急性期及康复期均可出现。由于该抗体类型AE临床罕见性,且缺乏对睡眠症状的关注及标准化评估,在很大程度上限制了对该类患者睡眠情况的解释。

2.1.6. 抗DPPX抗体相关脑炎

临床特点:抗DPPX抗体相关脑炎与体重减轻、胃肠道症状及神经系统症状相关,主要特征包括认知改变、中枢神经系统(CNS)过度兴奋、小脑受累症状和睡眠障碍等 [43] 。据目前已报告的病例统计,该病的中位发病年龄为52岁,其中男性占66%,病程进展缓慢,大多数患者对免疫治疗有反应,症状可完全或部分缓解 [44] 。

相关SDs:抗DPPX抗体相关脑炎患者有典型的SDs,包括睡眠相关呼吸障碍(OSA)、REM期睡眠行为异常(睡眠相关运动障碍)、NREM期睡眠结构异常(异态睡眠)和失眠。一项大型病例研究收集了45例患者的临床资料,其中69%存在SDs,失眠占45%,RBD占26%,OSA占29%,对6名患者进行视频多导睡眠监测(Video-Polysomnography, V-PSG)检查,结果显示睡眠期间有周期性肢体运动 [45] 。这些异常运动及行为会导致睡眠反复中断,严重影响患者及伴侣,带来不良健康及心理社会影响,因此需对更多患者进行睡眠呼吸监测及V-PSG检查,系统性评估SDs对日常生起居的影响以促进患者更好的康复 [46] 。

2.2. 抗细胞内抗原抗体介导的AE

2.2.1. 抗Hu抗体相关脑炎

临床特点:抗Hu抗体又称为1型抗神经元核抗体(anti-neuronal nuclear antibody type-1, ANNA-1),常累及脑干、边缘系统、小脑等结构,发生的免疫介导反应会导致神经系统功能紊乱,表现出精神症状、癫痫发作、偏瘫、不明原因发热、视力及听力障碍等 [47] 。在副肿瘤综合征(Paraneoplastic Neurologic Syndrome, PNS)中,该抗体类型最为常见,成人通常与潜在的小细胞肺癌(Small Cell Lung Carcinoma, SCLC)密切相关,特征性表现常有周围神经病变、小脑共济失调、边缘性脑炎等,在儿童中多与神经母细胞瘤相关,两者对免疫治疗的反应均较差 [48] 。

相关SDs:抗Hu抗体脑炎患者可出现睡眠相关呼吸障碍。当免疫介导损伤累及延髓背侧、脑桥被盖或脑干其他部位时,患者可在困倦状态或睡眠期间无法自主控制呼吸,出现氧合指数下降,导致中枢性肺泡低通气 [49] 。目前针对抗Hu抗体脑炎相关SDs的病例报告较少,多数患者夜间喘鸣症状往往被忽视,在出现该症状时通常提示存在脑干损伤,猝死风险增加 [50] 。早期通过V-PSG进行睡眠和呼吸监测,有利于评估病情及指导临床治疗。

2.2.2. 抗Ma2抗体相关脑炎

临床特点:抗Ma2抗体介导的AE主要表现为边缘性脑炎、间脑炎或脑干脑炎,超过90%的患者与肿瘤相关,最常见的是睾丸生殖细胞肿瘤、肺癌或乳腺癌 [51] 。

潜在的病理生理学机制涉及T细胞介导的细胞内Ma2抗原相关免疫反应,通常对免疫治疗反应差 [52] 。在副肿瘤性脑炎病例中,肿瘤治疗对于改善预后至关重要,如果能做到早期识别和处理,超过50%的患者可得到临床改善 [53] 。

相关SDs:抗Ma2抗体相关脑炎患者可出现白天过度嗜睡和发作性睡病。在一项38例抗Ma2抗体相关脑炎患者的研究中,Dalmau J等人发现32%的患者存在白天过度嗜睡,其中89%表现为间脑功能障碍,有时伴发作性睡病及入睡前幻觉,查脑脊液见下丘脑分泌素水平减低 [54] 。最近一项研究对2例抗Ma2抗体相关脑炎继发发作性睡病进行了报告,其中患者1符合国际睡眠障碍分类中的1型嗜睡症标准,存在发作性嗜睡、猝倒、脑脊液下丘脑分泌素缺乏和多次睡眠潜伏期试验(Multiple Sleep Latency Test, MSLT)异常,患者2符合中枢性嗜睡标准,表现为发作性嗜睡、MSLT异常,但无猝倒,且脑脊液下丘脑分泌素水平中等 [55] 。Dauvilliers Y等人对抗Ma2抗体相关脑炎神经病理学研究表明,下丘脑分泌素神经元被CD8+ T细胞介导免疫反应破坏,导致下丘脑分泌素减少,产生SDs相关改变,但二者的关联机制目前尚未知 [56] 。

2.2.3. 其他抗细胞内抗原抗体相关脑炎

其他具有抗CV2、Ri、Kelch样蛋白11等胞内抗原抗体AE中,尚未有相关特异性SDs的报道。

3. AE相关SDs的评估及治疗

AE患者存在多种SDs,临床表现各不相同,有些在疾病急性期出现,通过适当的治疗逐渐消退,有些可在炎症控制后仍持续很长一段时间,影响康复和生活质量 [57] 。针对这些SDs,目前尚无统一的评判标准和指南,临床医生可通过症状学和V-PSG综合评估患者的睡眠质量、分期及效率,指导早期免疫及对症改善睡眠治疗,促进患者康复和获得更好的长期预后 [58] 。

3.1. AE相关SDs的评估

3.1.1. 临床评估

患者由急诊科或神经内科门诊收住入院,由经验丰富的临床医生进行初步评估,通过与疑似或明确AE患者或家属的有效访谈,获取可靠的临床表现和既往病史,提问应涵盖几个主要的问题:入睡时间、打鼾、OSA、失眠、嗜睡、异态睡眠和睡眠相关运动障碍等 [59] ,并且应比较当前状态和发病前睡眠的变化。

3.1.2. 睡眠评估

对考虑AE且存在睡眠改变的患者,应首先进行问卷调查,采用匹兹堡睡眠质量指数量表(PSQI) [60] 、Epworth嗜睡量表(ESS) [61] 、柏林问卷(BQ) [62] 和医疗结果研究睡眠量表(MOS-SS) [63] 对患者睡眠质量、日间嗜睡情况、夜间OSA样症状以及睡眠相关健康情况进行评估。其次,进行V-PSG,采用美国睡眠医学学会(American Academy of sleep Medicine, AASM) 2.6版 [64] 评估睡眠宏观结构及相关事件,测定以下参数:总睡眠时间(TST)、入睡潜伏期、REM睡眠潜伏期、NREM期睡眠(N1期、N2期、N3期)和REM期睡眠占比、睡眠效率(SE)和睡眠维持效率。评估睡眠相关呼吸障碍还应关注呼吸暂停低通气指数(AHI)、中枢性和阻塞性AHI、仰卧位和非仰卧位AHI、仰卧位和非仰卧位中枢性及阻塞性呼吸暂停次数,同时记录OSA、中枢性呼吸暂停和潮式呼吸(CSS) [65] ,通过特定的传感器(气流、呼吸强度、肢体肌电图等)以及同步视频和音频记录对解释这些睡眠行为至关重要。

3.2. AE相关SDs的治疗

AE相关SDs主要是对症治疗,临床上有应用镇静催眠类药物、兴奋剂类药物、抗惊厥类药物治疗AE合并失眠、嗜睡、发作性睡病猝倒患者的报道,但治疗效果未得到明确肯定 [66] 。目前尚未发现针对AE相关SDs的特异性药物,除对症治疗外,还应早期启动AE的免疫疗法,部分患者经规范化诊疗后睡眠症状可得到明显改善,但需要注意的是一些药物如类固醇激素会导致失眠,抗精神病类药物会导致嗜睡,非苯二氮卓类药物会导致睡眠期间的行为异常等,因此需对患者的病程进行更规范化评估和监测 [66] 。

4. 结论及未来方向

SDs是AE的重要组成部分,甚至有时是首发或最突出的症状,影响患者的康复和生活质量。目前对AE相关SDs缺乏标准化评估流程和诊疗指南,在未来可通过更长期、前瞻性的多中心数据收集及分析,确定不同抗体类型的AE相关SDs的真实患病率及特征,进行全面准确的临床和V-PSG评估,为临床诊疗以及特异性药物的研发提供经验指导。

NOTES

*通讯作者。

参考文献

[1] Dalmau, J. and Graus, F. (2018) Antibody-Mediated Encephalitis. The New England Journal of Medicine, 378, 840-851.
https://doi.org/10.1056/NEJMra1708712
[2] Hiesgen, J. and Schutte, C. (2023) Autoimmune Encephalitis: Part 1 (Epidemiology, Pathophysiology and Clinical Spectrum). South African Medical Journal, 113, 116-121.
https://doi.org/10.7196/SAMJ.2023.v113i3.780
[3] Orozco, E., Valencia-Sanchez, C., Britton, J., et al. (2023) Autoimmune Encephalitis Criteria in Clinical Practice. Neurology. Clinical Practice, 13, e200151.
https://doi.org/10.1212/CPJ.0000000000200151
[4] Blattner, M.S., de Bruin, G.S., Bucelli, R.C. and Day, G.S. (2019) Sleep Disturbances Are Common in Patients with Autoimmune Encephalitis. Journal of Neurology, 266, 1007-1015.
https://doi.org/10.1007/s00415-019-09230-2
[5] Iranzo, A. (2020) Sleep and Neurological Autoim-mune Diseases. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 45, 129-140.
https://doi.org/10.1038/s41386-019-0463-z
[6] Cornelius, J.R., Pittock, S.J., McKeon, A., et al. (2011) Sleep Manifestations of Voltage-Gated Potassium Channel Complex Autoimmunity. Archives of Neurology, 68, 733-738.
https://doi.org/10.1001/archneurol.2011.106
[7] Heine, J., Duchow, A., Rust, R., Paul, F., Prüß, H. and Finke, C. (2023) Autoimmune Encephalitis—An Update. Der Nervenarzt, 94, 525-537.
https://doi.org/10.1007/s00115-022-01411-1
[8] Braczkowski, M., Soszyński, D., Sierakowska, A., Braczkowski, R., Kufel, K. and Łabuz-Roszak, B. (2023) Autoimmune Encephalitis with Antibodies: Anti-NMDAR, Anti-AMPAR, Anti-GQ1b, Anti-DPPX, Anti-CASPR2, Anti-LGI1, Anti-RI, Anti-Yo, Anti-Hu, Anti-CV2 and Anti-GABAAR, in the Course of Psychoses, Neoplastic Diseases, and Paraneoplastic Syndromes. Diagnostics (Basel, Switzerland), 13, Article No. 2589.
https://doi.org/10.3390/diagnostics13152589
[9] Pérez-Carbonell, L. and Iranzo, A. (2023) Sleep Disturbances in Autoimmune Neurological Diseases. Current Neurology and Neuroscience Reports, 23, 617-625.
https://doi.org/10.1007/s11910-023-01294-y
[10] Titulaer, M.J., McCracken, L., Gabilondo, I., et al. (2013) Treatment and Prognostic Factors for Long-Term Outcome in Patients with Anti-NMDA Receptor Encephalitis: An Ob-servational Cohort Study. The Lancet Neurology, 12, 157-165.
https://doi.org/10.1016/S1474-4422(12)70310-1
[11] Samanta, D. and Lui, F. (2023) Anti-NMDAR Encephalitis. StatPearls Publishing, Treasure Island.
[12] Hacohen, Y., Deiva, K., Pettingill, P., et al. (2014) N-methyl-D-aspartate Receptor Antibodies in Post-Herpes Simplex Virus Encephalitis Neurological Relapse. Movement Disorders: Official Journal of the Movement Disorder Society, 29, 90-96.
https://doi.org/10.1002/mds.25626
[13] Ariño, H., Muñoz-Lopetegi, A., Martinez-Hernandez, E., et al. (2020) Sleep Disorders in Anti-NMDAR Encephalitis. Neurology, 95, e671-e684.
https://doi.org/10.1212/WNL.0000000000009987
[14] Marques, I.B., Teotónio, R., Cunha, C., Bento, C. and Sales, F. (2014) Anti-NMDA Receptor Encephalitis Presenting with Total Insomnia—A Case Report. Journal of the Neurological Sciences, 336, 276-280.
https://doi.org/10.1016/j.jns.2013.10.034
[15] Afolabi-Brown, O. and Mason, T.B.A. (2018) Kleine-Levin Syn-drome. Paediatric Respiratory Reviews, 25, 9-13.
https://doi.org/10.1016/j.prrv.2016.12.004
[16] van Sonderen, A., Petit-Pedrol, M., Dalmau, J. and Titulaer, M.J. (2017) The Value of LGI1, Caspr2 and Voltage-Gated Potassium Channel Antibodies in Encephalitis. Nature Reviews Neurology, 13, 290-301.
https://doi.org/10.1038/nrneurol.2017.43
[17] Gadoth, A., Pittock, S.J., Dubey, D., et al. (2017) Expanded Pheno-types and Outcomes among 256 LGI1/CASPR2- IgG-Positive Patients. Annals of Neurology, 82, 79-92.
https://doi.org/10.1002/ana.24979
[18] Gadoth, A., Nisnboym, M., Alcalay, Y., et al. (2023) Electrolyte Imbalance in Anti-LGI1 Encephalitis: It Is Not All in Your Head. Neurology Neuroimmunology & Neuroinflammation, 10, e200155.
https://doi.org/10.1212/NXI.0000000000200155
[19] Kong, D.-L. (2023) Anti-Leucine-Rich Glioma Inactivated Protein 1 Encephalitis with Sleep Disturbance as the First Symptom: A Case Report and Review of Literature. World Journal of Clinical Cases, 11, 408-416.
https://doi.org/10.12998/wjcc.v11.i2.408
[20] Lin, N., Hao, H., Guan, H., et al. (2020) Sleep Disorders in Leu-cine-Rich Glioma-Inactivated Protein 1 and Contactin Protein-Like 2 Antibody-Associated Diseases. Frontiers in Neu-rology, 11, Article No. 696.
https://doi.org/10.3389/fneur.2020.00696
[21] Liu, X., Yang, L., Han, Y., et al. (2021) Electrophysiological Evalu-ation in Identifying Unique Sleep Features among Anti-LGI1 Encephalitis Patients during Active and Recovery Phase. Nature and Science of Sleep, 13, 527-536.
https://doi.org/10.2147/NSS.S299467
[22] Uchida, S., Soya, S., Saito, Y.C., et al. (2021) A Discrete Glycinergic Neuronal Population in the Ventromedial Medulla That Induces Muscle Atonia during REM Sleep and Cataplexy in Mice. The Journal of Neuroscience: The Official Journal of the Society For Neuroscience, 41, 1582-1596.
https://doi.org/10.1523/JNEUROSCI.0688-20.2020
[23] van Sonderen, A., Ariño, H., Petit-Pedrol, M., et al. (2016) The Clinical Spectrum of Caspr2 Antibody-Associated Disease. Neurology, 87, 521-528.
https://doi.org/10.1212/WNL.0000000000002917
[24] Masood, W. and Sitammagari, K.K. (2023) Morvan Syn-drome. StatPearls Publishing, Treasure Island.
[25] Irani, S.R., Pettingill, P., Kleopa, K.A., et al. (2012) Morvan Syn-drome: Clinical and Serological Observations in 29 Cases. Annals of Neurology, 72, 241-255.
https://doi.org/10.1002/ana.23577
[26] Gauld, C., Lopez, R., Geoffroy, P.A., et al. (2021) A Systematic Analysis of ICSD-3 Diagnostic Criteria and Proposal for Further Structured Iteration. Sleep Medicine Reviews, 58, Article ID: 101439.
https://doi.org/10.1016/j.smrv.2021.101439
[27] Abgrall, G., Demeret, S., Rohaut, B., Leu-Semenescu, S. and Arnulf, I. (2015) Status Dissociatus and Disturbed Dreaming in a Patient with Morvan Syndrome plus Myasthenia Gravis. Sleep Medicine, 16, 894-896.
https://doi.org/10.1016/j.sleep.2015.03.017
[28] Grüter, T., Möllers, F.E., Tietz, A., et al. (2023) Clinical, Serolog-ical and Genetic Predictors of Response to Immunotherapy in Anti-IgLON5 Disease. Brain, 146, 600-611.
https://doi.org/10.1093/brain/awac090
[29] Theis, H., Bischof, G.N., Brüggemann, N., et al. (2023) In Vivo Meas-urement of Tau Depositions in Anti-IgLON5 Disease Using (18)F-PI-2620 PET. Neurology.
https://doi.org/10.1212/WNL.0000000000207870
[30] Gaig, C., Graus, F., Compta, Y., et al. (2017) Clinical Manifestations of the Anti-IgLON5 Disease. Neurology, 88, 1736-1743.
https://doi.org/10.1212/WNL.0000000000003887
[31] Grossauer, A., Hussl, A., Mahlknecht, P., et al. (2023) An-ti-IgLON5 Disease with Isolated Hemichorea: A Case Report and Review of the Literature. Movement Disorders Clinical Practice, 10, 115-119.
https://doi.org/10.1002/mdc3.13614
[32] Sabater, L., Gaig, C., Gelpi, E., et al. (2014) A Novel Non-Rapid-Eye Movement and Rapid-Eye-Movement Parasomnia with Sleep Breathing Disorder Associated with Antibodies to IgLON5: A Case Series, Characterisation of the Antigen, and Post-Mortem Study. The Lancet Neurology, 13, 575-586.
https://doi.org/10.1016/S1474-4422(14)70051-1
[33] Gaig, C., Iranzo, A., Santamaria, J. and Graus, F. (2018) The Sleep Disorder in Anti-lgLON5 Disease. Current Neurology and Neuroscience Reports, 18, Article No. 41.
https://doi.org/10.1007/s11910-018-0848-0
[34] Gaig, C., Compta, Y., Heidbreder, A., et al. (2021) Frequency and Characterization of Movement Disorders in Anti-IgLON5 Disease. Neurology, 97, e1367-e1381.
[35] Gelpi, E., Höftberger, R., Graus, F., et al. (2016) Neuropathological Criteria of Anti-IgLON5-Related Tauopathy. Acta Neuropa-thologica, 132, 531-543.
https://doi.org/10.1007/s00401-016-1591-8
[36] Gaig, C., Iranzo, A., Cajochen, C., et al. (2019) Characterization of the Sleep Disorder of Anti-IgLON5 Disease. Sleep, 42, zsz133.
https://doi.org/10.1093/sleep/zsz133
[37] Akset, M., Poppe, K.G., Kleynen, P., Bold, I. and Bruyneel, M. (2023) Endocrine Disorders in Obstructive Sleep Apnoea Syndrome: A Bidirectional Relationship. Clinical Endocrinology (Ox-ford), 98, 3-13.
https://doi.org/10.1111/cen.14685
[38] Tondo, P., Fanfulla, F., Sabato, R., Scioscia, G., Foschino Barbaro, M.P. and Lacedonia, D. (2023) Obstructive Sleep Apnoea-Hypopnoea Syndrome: State of the Art. Minerva Medica, 114, 74-89.
https://doi.org/10.23736/S0026-4806.22.08190-3
[39] Tankéré, P., Le Cam, P., Folliet, L., et al. (2023) Unveiled Central Hypoventilation after Tracheotomy in Anti-IgLON5 Disease: A Case Report. Journal of Clinical Sleep Medicine, 19, 1701-1704.
https://doi.org/10.5664/jcsm.10658
[40] Joubert, B., Kerschen, P., Zekeridou, A., et al. (2015) Clinical Spectrum of Encephalitis Associated with Antibodies against the α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor: Case Series and Review of the Literature. JAMA Neurology, 72, 1163-1169.
https://doi.org/10.1001/jamaneurol.2015.1715
[41] Schäfer, J., Christensen, P.B. and Jensen, K. (2023) AMPA and NMDA Receptor Antibody Autoimmune Encephalitis Preceded by Ocular Myasthenia Gravis: A Case Report. BMC Neurology, 23, Article No. 102.
https://doi.org/10.1186/s12883-023-03129-2
[42] Lai, M., Hughes, E.G., Peng, X., et al. (2009) AMPA Receptor Antibodies in Limbic Encephalitis Alter Synaptic Receptor Location. Annals of Neurology, 65, 424-434.
https://doi.org/10.1002/ana.21589
[43] Hara, M., Ariño, H., Petit-Pedrol, M., et al. (2017) DPPX Anti-body-Associated Encephalitis: Main Syndrome and Antibody Effects. Neurology, 88, 1340-1348.
https://doi.org/10.1212/WNL.0000000000003796
[44] Bjerknes, T.L., Steihaug, O.M., Haugen, M., Hjelland, I.E. and Vedeler, C.A. (2022) Case Report: Pain in Anti-DPPX Encephalitis. Frontiers in Neurology, 13, Article ID: 1091688.
https://doi.org/10.3389/fneur.2022.1091688
[45] Gadoth, A., Devine, M.F., Pittock, S.J., et al. (2023) Sleep Disturbances Associated with DPPX Autoantibodies: A Case Series. Journal of Neurology, 270, 3543-3552.
https://doi.org/10.1007/s00415-023-11698-y
[46] Sateia, M.J. (2014) International Classification of Sleep Disor-ders-Third Edition: Highlights and Modifications. Chest, 146, 1387-1394.
https://doi.org/10.1378/chest.14-0970
[47] Williams, C.M., Allison, D.B., Coleman, A.B., Bardhan, R., Miller, J.D. and Myint, Z.W. (2023) Primary Mediastinal Seminoma Presenting with Paraneoplastic Anti-Hu Encephalitis: A Case Report and Literature Review. Frontiers in Oncology, 13, Article ID: 1156566.
https://doi.org/10.3389/fonc.2023.1156566
[48] Budhram, A., Sharma, M. and Young, G.B. (2022) Seizures in Anti-Hu-Associated Extra-Limbic Encephalitis: Characterization of a Unique Disease Manifestation. Epilepsia, 63, e172-e177.
https://doi.org/10.1111/epi.17437
[49] Saiz, A., Bruna, J., Stourac, P., et al. (2009) An-ti-Hu-Associated Brainstem Encephalitis. Journal of Neurology, Neurosurgery and Psychiatry, 80, 404-407.
https://doi.org/10.1136/jnnp.2008.158246
[50] Graus, F., Saiz, A. and Dalmau, J. (2010) Antibodies and Neuronal Autoimmune Disorders of the CNS. Journal of Neurology, 257, 509-517.
https://doi.org/10.1007/s00415-009-5431-9
[51] Lamby, N., Leypoldt, F., Schulz, J.B. and Tauber, S.C. (2019) Atypical Presentation of Anti-Ma2-Associated Encephalitis with Choreiform Movement. Neurology(R) Neuroimmunol-ogy & Neuroinflammation, 6, e557.
https://doi.org/10.1212/NXI.0000000000000557
[52] Pilli, D., Zou, A., Tea, F., Dale, R.C. and Brilot, F. (2017) Expanding Role of T Cells in Human Autoimmune Diseases of the Central Nervous System. Frontiers in Immunology, 8, Article No. 652.
https://doi.org/10.3389/fimmu.2017.00652
[53] Wernz, C., Pupa, L., Ossimetha, A., Ansari, S. and Moron, F. (2023) Anti-Ma2 Encephalitis: An Atypical Case Associated with Klüver-Bucy Syndrome and Hypothalamic Dysfunc-tion. Cureus, 15, e40816.
https://doi.org/10.7759/cureus.40816
[54] Dalmau, J., Graus, F., Villarejo, A., et al. (2004) Clinical Analysis of Anti-Ma2-Associated Encephalitis. Brain, 127, 1831-1844.
https://doi.org/10.1093/brain/awh203
[55] Brunet de Courssou, J.B., Testard, P., Sallansonnet-Froment, M., et al. (2023) Narcolepsy Secondary to Anti-Ma2 Encephalitis: Two Case Reports. Journal of Clinical Sleep Medicine, 19, 837-841.
https://doi.org/10.5664/jcsm.10448
[56] Dauvilliers, Y., Bauer, J., Rigau, V., et al. (2013) Hypothalamic Immuno-pathology in Anti-Ma-Associated Diencephalitis with Narcolepsy-Cataplexy. JAMA Neurology, 70, 1305-1310.
https://doi.org/10.1001/jamaneurol.2013.2831
[57] Anderson, K.N., Kelly, T.P. and Griffiths, T.D. (2013) Primary Sleep Disorders Can Cause Long-Term Sleep Disturbance in Patients with Autoimmune Mediated Limbic Encephalitis. Clinical Neurology and Neurosurgery, 115, 1079-1082.
https://doi.org/10.1016/j.clineuro.2012.10.031
[58] Rundo, J.V. and Downey III, R. (2019) Polysomnography. Handbook of Clinical Neurology, 160, 381-392.
https://doi.org/10.1016/B978-0-444-64032-1.00025-4
[59] Koo, D.L. (2023) Sleep Disturbances in Autoim-mune Encephalitis. Encephalitis, 3, 1-6.
https://doi.org/10.47936/encephalitis.2022.00073
[60] Ørskov, P.T. and Norup, A. (2023) Validity and Reliability of the Danish Version of the Pittsburgh Sleep Quality Index. Scandinavian Journal of Public Health, 51, 1182-1188.
https://doi.org/10.1177/14034948221100099
[61] Gonçalves, M.T., Malafaia, S., Moutinho Dos Santos, J., Roth, T. and Marques, D.R. (2023) Epworth Sleepiness Scale: A Meta-Analytic Study on the Internal Consistency. Sleep Med-icine, 109, 261-269.
https://doi.org/10.1016/j.sleep.2023.07.008
[62] Navarrete-Martínez, E., Muñoz-Gómez, R., Serrano-Merino, J., et al. (2023) Validity and Reliability of the Berlin Questionnaire for the Detection of Moderate or Severe Obstructive Sleep Apnea in Patients Aged 40 Years or Older Detected from Primary Care. Frontiers in Medicine (Lausanne), 10, Article ID: 1229972.
https://doi.org/10.3389/fmed.2023.1229972
[63] Agrafiotis, M., Galanou, A., Fletsios, D., Chassiotou, A., Chloros, D. and Steiropoulos, P. (2022) Functional Comorbidity Index and Health-Related Quality of Life in Patients with Ob-structive Sleep Apnea. Advances in Respiratory Medicine, 90, 77-85.
https://doi.org/10.5603/ARM.a2022.0001
[64] Howell, M., Avidan, A.Y., Foldvary-Schaefer, N., et al. (2023) Management of REM Sleep Behavior Disorder: An American Academy of Sleep Medicine Clinical Practice Guideline. Journal of Clinical Sleep Medicine, 19, 759-768.
https://doi.org/10.5664/jcsm.10424
[65] Erkent, I., Elibol, B., Saka, E., Saygi, S. and Tezer, I. (2023) Sleep Disor-ders and Polysomnography Findings in Patients with Autoimmune Encephalitis. Neurological Sciences, 44, 1351-1360.
https://doi.org/10.1007/s10072-022-06513-x
[66] Brunetti, V., Della Marca, G., Spagni, G. and Iorio, R. (2019) Immunotherapy Improves Sleep and Cognitive Impairment in Anti-IgLON5 Encephalopathy. Neurology Neuroim-munology & Neuroinflammation, 6, e577.
https://doi.org/10.1212/NXI.0000000000000577