HER2阳性非小细胞肺癌临床治疗效果及安全性研究进展
Research Progress in Clinical Therapeutic Efficacy and Safety of HER2-Positive Non-Small Cell Lung Cancer
DOI: 10.12677/ACM.2024.141311, PDF, HTML, XML, 下载: 112  浏览: 177  科研立项经费支持
作者: 李 倩*, 封珊慧, 吕晓冉, 刘长民#:滨州医学院附属医院肿瘤科,山东 滨州
关键词: HER2阳性非小细胞肺癌治疗安全性HER2-Positive Non-Small Cell Lung Cancer Treatment Safety
摘要: 目的:肺癌作为一种常见的恶性肿瘤,是肿瘤患者死亡的主要原因之一。近年来,许多研究报道了靶向及免疫治疗在HER2阳性非小细胞肺癌(NSCLC)中的疗效。然而,目前仍然没有确切的方法应用于临床治疗中。方法:通过系统检索多个数据库,包括知网、万方、PubMed、Web of Science、Cochrane Library、Embase以及一些主要的肿瘤学会议,收集与HER2阳性NSCLC相关的临床试验,以了解各种治疗在HER2阳性NSCLC中的疗效。结果:系统分析发现在抗体药物偶联物(antibody-drug conju-gates, ADCs)、单克隆抗体、酪氨酸激酶抑制剂(tyrosine kinase inhibitors, TKIs)、免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)等药物中,选择性TKIs及ADCs显示出了良好的抗肿瘤活性;单克隆抗体联合化疗取得了较好的结果;免疫治疗或免疫联合化疗作为一线治疗HER2阳性NSCLC也是一种有前景的干预措施。结论:选择性TKIs及ADCs是目前很有前景的HER2阳性NSCLC治疗药物,且具有可接受的安全性。
Abstract: Objective: Lung cancer, as a common malignant tumor, is one of the major causes of death in tumor patients. In recent years, many studies have reported the efficacy of targeted and immunotherapy in HER2-positive non-small cell lung cancer (NSCLC). However, there is still no definitive method ap-plied in clinical treatment. Methods: We collected clinical trials related to HER2-positive NSCLC by systematically searching multiple databases, including CNKI, Wanfang, PubMed, Web of Science, Cochrane Library, Embase, and some major oncology conferences, to understand the efficacy of var-ious treatments in HER2-positive NSCLC. Results: Systematic analysis revealed that among anti-body-drug conjugates (ADCs), monoclonal antibodies, tyrosine kinase inhibitors (TKIs), and im-mune checkpoint inhibitors (ICIs), selective TKIs and ADCs showed good antitumor activity; mono-clonal antibodies in combination with chemotherapy yielded better results; and immunotherapy or immune-conjugated chemotherapy as a first-line treatment for HER2-positive NSCLC is also a prom-ising intervention. Conclusions: Selective TKIs and ADCs are currently promising agents for the treatment of HER2-positive NSCLC with an acceptable safety profile.
文章引用:李倩, 封珊慧, 吕晓冉, 刘长民. HER2阳性非小细胞肺癌临床治疗效果及安全性研究进展[J]. 临床医学进展, 2024, 14(1): 2217-2226. https://doi.org/10.12677/ACM.2024.141311

1. 引言

在最常诊断的癌症中,肺癌排在第二位。它是癌症相关死亡的首要原因,大约十分之一归因于癌症的死亡(18.0%)是由肺癌导致的 [1] 。非小细胞肺癌(non-small cell lung cancer, NSCLC)是肺癌的主要类型,约占肺癌的80%~85% [2] 。人表皮生长因子受体2 (human epidermal growth factor receptor 2, HER2)是表皮生长因子受体(epidermal growth factor receptor, EGFR)家族的酪氨酸激酶,在多种癌症中可自身过表达或突变 [3] 。携带HER2改变的NSCLC目前被认为是一种罕见的分子亚型,大约1%~2%的HER2突变发生在非小细胞肺癌(NSCLC)患者中,其往往与肺癌发病率低、预后差、生存期短有关 [4] [5] [6] 目前并没有效果显著的针对性药物投入临床使用之中。此前,许多关于化疗治疗HER2阳性NSCLC (包括HER2突变、HER2扩增或HER2过表达)患者的研究并未取得较优越的临床获益(中位PFS分别为4.03个月、5.9个月、5.1个月) [7] [8] [9] 。然而,最近发表的一些研究结果是相当有希望的。本文对HER2阳性NSCLC的靶向及免疫治疗结果及其安全性进行了综述,以期为后续相关临床试验提供参考。

2. 抗体药物偶联物(Antibody-Drug Conjugates, ADCs)

2.1. 曲妥珠单抗美坦辛(Ado-Trastuzumab Emtansine, T-DM1)

T-DM1是一种抗HER2 ADC,由曲妥珠单抗和细胞毒性微管药物——美坦辛衍生物(DM1)组成,其通过受体介导的内吞作用穿透HER2阳性细胞,可显著提高HER2阳性乳腺癌的生存率,这对NSCLC患者可能也有同样的作用 [10] [11] 。由Li及其同事进行的一项II期篮子试验的分析强调了T-DM1在HER2突变的NSCLC患者中的潜在作用,18例患者中有8例经历了PRs,中位缓解持续时间(DOR)为4个月(95% CI,2~9个月),中位PFS为5个月(95% CI,3~9个月) [12] 。随后,一项II期研究纳入了22名患者以评估T-DM1对HER2外显子−20插入突变的NSCLC的疗效,结果显示,患者客观缓解率(ORR)为38.1% (90%置信区间,23.0%~55.9%),疾病控制率(DCR)为52.4%,中位无进展生存期(mPFS)和中位总生存期(mOS)分别为2.8个月和8.1个月 [13] 。研究发现,一项T-DM1单药治疗复发性非小细胞肺癌的小型II期临床试验显示T-DM1对HER2阳性NSCLC的疗效有限,mPFS和mOS分别为2.0个月和10.9个月,此研究被提前终止 [14] 。另一项II期队列研究将49例患者根据HER2免疫组织化学IHC (2+, 3+)分为两组,队列间的中位无进展生存期和总生存期相似,在IHC 2+和3+组中,中位PFS分别为2.6个月(95% CI: 1.4~2.8)和2.7个月(95% CI: 1.4~8.3);中位生存期分别为12.2个月(95% CI: 3.8~23.3)和15.3个月(95% CI: 4.1~NE) [15] 。这也表明仅由IHC确定的HER2阳性状态不能作为T-DM1活性的预测生物标志物。

2.2. 曲妥珠单抗德鲁替康(Trastuzumab Deruxtecan, T-DXd或DS-8201a)

T-Dxd是一种新型靶向HER2的ADC,由曲妥珠单抗、一种酶可裂解的肽连接剂和一种新型拓扑异构酶I抑制剂MAAA-1181组成。其同通过诱导DNA双链断裂和细胞凋亡发挥抗肿瘤作用 [16] [17] 。HER2靶向治疗仅被批准用于HER2阳性乳腺癌和胃癌。一项I期临床试验首次评估了T-DXd治疗晚期实体瘤患者的有效性,患者接受6.4 mg/kg剂量的T-DXd治疗,在重度预处理、HER2表达和/或HER2突变实体瘤患者中具有可接受的安全性,特别是在HER2突变型NSCLC患者中显示出良好的抗肿瘤活性,ORR为72.7%;mPFS为11.3个月 [18] 。在随后的一项多中心国际2期研究中,T-DXd (6.4 mg/kg)显示出持久的抗癌活性:55%的患者出现了可证实的ORR,mDOR为9.3个月(95% CI: 5.7~14.7),mPFS为8.2个月(5% CI: 6.0~11.9),mOS为17.8个月(95% CI: 13.8~22.1)。这些结果支持T-DXd治疗HER2突变型NSCLC患者的临床益处,然而其较低的安全性却难以忽略。实验中46%的患者发生了3级或更高级别的药物相关不良事件(TRAEs),最常见的事件是中性粒细胞减少(占19%)。26%的患者发生药物相关性间质性肺疾病,导致2例患者死亡 [19] 。为了改善这一问题,研究者进行了一项剂量探索试验,该试验中HER2突变患者分别接受5.4 mg/kg及6.4 mg/kg T-DXd治疗,中期结果显示,5.4 mg/kg组和6.4 mg/kg组的ORR为分别为53.8%和42.9%;患者 ≥ 3级TRAEs发生率分别为31.7%和58%;间质性肺炎发生率分别为5.9%和14.0% [20] 。由此可见,T-DXd在HER2阳性NSCLC患者的治疗中具有良好的抗肿瘤活性,且较低剂量(5.4 mg/kg)的T-DXd拥有更好的疗效及安全性。

以上研究表明,尽管并非所有实验都获得了期望的结果,T-DM1仍然可能是HER2突变NSCLC患者的潜在治疗药物,然而,其治疗效果仍需进一步试验的验证。且由IHC确定的HER2阳性状态不能作为T-DM1活性的预测生物标志物,也需进一步研究T-DM1治疗的潜在生物标志物。同时,T-DXd在HER2阳性NSCLC患者中也显示出良好的抗肿瘤活性,且较低剂量的T-DXd在HER2突变患者中拥有较好的疗效及安全性。综上,ADC药物是目前很有前景的HER2阳性NSCLC治疗药物。

3. 单克隆抗体

单克隆抗体——曲妥珠单抗是一种单克隆免疫球蛋白G1人源化小鼠抗体,可与HER2受体的细胞外IV结构域结合,从而阻断其二聚 [21] 。在早前曲妥珠单抗联合顺铂和吉西他滨治疗HER2过表达的IIIB或IV期NSCLC患者的试验中,38%的患者出现部分缓解;1年生存率为62%;中位进展时间为36周。曲妥珠单抗联合顺铂和吉西他滨耐受性良好,但并不确定这种联合是否优于单独化疗 [22] 。为了进一步验证两者的关系,Gatzemeier U等将103例符合条件的未经治疗的IIIB/IV期HER2阳性NSCLC患者随机分为两组,51例患者接受曲妥珠单抗联合吉西他滨–顺铂治疗,50例患者单独接受吉西他滨–顺铂治疗。曲妥珠单抗组和对照组的疗效相似:ORR为36% vs 41%;中位进展时间6.3个月vs 7.2个月;mPFS为6.1个月 vs 7个月。且在6例曲妥珠单抗治疗的HER2 3+或荧光原位杂交(FISH)阳性NSCLC患者中,ORR (83%)和mPFS (8.5个月)更好 [23] 。随后又进行了曲妥珠单抗联合多西他赛的疗效试验,13例患者被纳入该研究,估计PFS和OS分别为4.3和5.7个月,治疗耐受性良好。但由于纳入患者较少,该研究被关闭以进一步积累 [24] 。与此同时,东方肿瘤合作小组启动了一项II期研究,评估卡铂、紫杉醇和曲妥珠单抗联合治疗晚期NSCLC患者的疗效,mPFS为3.3个月;mOS为10.1个月;1年生存率为42% [25] 。可见其总体生存期与单独使用卡铂和紫杉醇的历史数据相似,且与以往数据相比,HER-2/neu 3+表达的患者效果良好,这表明曲妥珠单抗在这种罕见的NSCLC亚群中有潜在的益处。

欧洲一项回顾性队列研究评估了HER2阳性晚期NSCLC患者的疗效,65例患者接受靶向治疗:ORR为50.9%;单抗或T-DM1治疗的PFS为4.8个月 [26] 。MyPathway是一项多中心、非随机、IIa期多篮子研究,36例HER2突变肿瘤患者中有14例为NSCLC,在该组中,3例患者(21%;95% CI (5%~51%)获得了完全缓解(PR) [27] 。近期,Mazieres J等人前瞻性地评估了HER2抗体曲妥珠单抗和帕妥珠单抗联合多西紫杉醇的有效性,45例患者入组并接受治疗。ORR为29%,mPFS为6.8个月(95% CI: 4.0~8.5)。确诊缓解的患者中位DOR为11个月(95% CI: 2.9~14.9)。该研究首次报道了HER2阳性NSCLC中曲妥珠单抗、帕妥珠单抗和多西他赛联合治疗的结果,结果表明将曲妥珠单抗、帕妥珠单抗和多西紫杉醇联合应用于乳腺癌的治疗推广到肺癌的治疗似乎是可行和有希望的 [28] 。

以上,尽管曲妥珠单抗在HER2阳性NSCLC亚群中表现出了潜在的益处,且双靶(曲妥珠单抗联合帕妥珠单抗)和多西紫杉醇联合应用取得了较好的结果,但其获益有限,仍需进一步研究来验证单克隆抗体的有效性。

4. 酪氨酸激酶抑制剂(Tyrosine Kinase Inhibitors, TKIs)

4.1. 选择性酪氨酸激酶抑制剂

4.1.1. 吡咯替尼(Pyrotinib)

吡洛替尼是一种3-氰基喹啉衍生物,是一种针对EGFR、HER2和HER4的小型共价泛HER抑制剂。在利用NSCLC患者样本建立的类器官和异种移植物以及携带HER2突变的PDX小鼠模型的体内外研究中,与阿法替尼相比,吡罗替尼对体外类器官有显著的生长抑制作用,且吡罗替尼的抗肿瘤作用优于阿法替尼(P < 0.0471)和T-DM1 (P < 0.0138)。在15例HER2突变NSCLC患者的II期队列中,ORR为53.3%,mPFS为6.4个月 [29] 。另一项前瞻性多中心单臂II期研究评估了吡罗替尼对HER2突变晚期NSCLC患者的疗效和安全性。60例患者接受了吡罗替尼单药治疗,ORR为30.0% (95% CI: 18.8%~43.2%),不同HER2突变类型患者的所有亚组均表现出良好的客观反应率。mDOR为6.9个月(95% CI: 4.9~11.1);mPFS为6.9个月(95% CI: 5.5~8.3);mOS为14.4个月(95% CI: 12.3~21.3)。吡罗替尼在HER2突变型NSCLC患者中显示出良好的抗肿瘤活性和可接受的安全性 [30] 。随后的一项前瞻性、多中心、单臂试验入组了27名HER2扩增患者,6个月的PFS率为51.9% (95% CI: 34.0~69.3);mPFS为6.3个月(95% CI: 3.0~9.6);mOS为12.5个月(95% CI: 8.2~16.8);ORR为22.2% (95% CI: 10.6%~40.8%)。并且接受吡罗替尼一线治疗的患者显示出了良好的有效性,mPFS为12.4个月 [31] 。

Song Z等的II期试验,纳入78例携带HER2外显子20和非外显子20突变的NSCLC患者,并以400 mg/天的剂量接受阿帕替尼治疗。其ORR为19.2% (95% CI: 11.2~30.0),中位PFS为5.6个月(95% CI: 2.8~8.4),中位OS为10.5个月(95% CI: 8.7~12.3)。中位反应持续时间为9.9个月(95% CI: 6.2~13.6) [32] 。可见,阿帕替尼对携带HER2外显子20和非外显子20突变的NSCLC患者具有良好的疗效和可接受的安全性,值得进一步研究。最近,有学者启动了一项由符合标准(CF)队列和符合扩大资格标准的同情使用(CU)队列组成的2期适应性伞形试验,以及一项前瞻性真实世界研究(RWS)。该研究纳入了48例未经治疗的晚期HER2突变NSCLC患者。CF队列(n = 28)中,经吡罗替尼治疗后ORR为35.7%,达到了主要终点。次要终点中DCR为89.3%、mPFS为7.3个月、mOS为14.3个月,其中毒性是可以接受的。CU队列(n = 12)显示,ORR为16.7%,DCR为83.4%,mPFS为4.7个月,mOS为14.2个月。RWS队列(n = 8)中,中位PFS和OS分别为3.0个月和12.2个月 [33] 。

Yang G等开展的一项2期临床试验,首次将吡罗替尼与抗血管生成药物阿帕替尼联合应用,结果显示:ORR为51.5% (17/33; 95% CI: 33.5~69.2%);DCR为93.9% (31/33; 95% CI: 79.8~99.3%);中位DOR、PFS和OS分别为6.0 (95% CI: 4.4~8.6)个月、6.9 (95% CI: 5.8~8.5)个月和14.8 (95% CI: 10.4~23.8)个月。吡罗替尼联合阿帕替尼在HER2突变或HER2扩增的转移性NSCLC患者中显示出有希望的抗肿瘤活性 [34] 。为进一步探索吡罗替尼联合治疗的有效性,一项开放标签、单臂II期试验共招募39例HER2外显子20插入的晚期NSCLC患者 [35] ,结果显示,吡咯替尼联合沙利度胺有望增加HER2外显子20插入的晚期NSCLC患者的临床获益,并降低吡咯替尼相关不良反应的发生率。

4.1.2. 波齐替尼(Poziotinib)

波齐替尼是一种共价不可逆的强效EGFR/HER2抑制剂,其为一种喹唑啉衍生物,通过更小的尺寸和更灵活结构规避20外显子的插入。体外和患者来源的异种移植(PDX)模型也显示波齐替尼似乎比其他HER2 TKIs更有效 [36] [37] 。在ERBB2外显子20突变的NSCLC的II期临床试验中,12名可评估的患者中,6名(50%)患者在波齐替尼治疗后8周有部分缓解(PR)的最佳反应。截至2019年7月,12名患者中有10名出现进展;mPFS为5.6个月,mDOR为4.6个月 [38] 。ZENITH20是一项多中心、多队列、开放标签的II期研究,评估了波齐替尼在晚期或转移性HER2阳性NSCLC患者中的应用,ORR为27.8% (95% CI: 18.9~38.2);DCR为70.0% (95% CI: 59.4~79.2);mPFS为5.5个月(95% CI: 3.9~5.8);mDOR为5.1个月(95% CI: 4.2~5.5)。2023年最新结果显示:ORR为39%;DCR为 73%;mDOR为5.7 (95% CI: 4.6~11.9)个月,mPFS为5.6 (95% CI: 5.4~7.3)个月 [39] [40] 。在随后的一项II期研究中,也出现了相似的结果:ORR为27%;mDOR为5.0个月;mPFS为5.5个月;并且该试验观察到mOS为15个月(95% CI:9.0至不可估计) [41] 。可见,波齐替尼在HER2外显子20突变或插入性的NSCLC患者中具有良好的抗肿瘤活性,包括先前接受过铂类化疗的患者。

4.2. 非选择性酪氨酸激酶抑制剂

4.2.1. 阿法替尼(Afatinib)

一项II期研究探索了阿法替尼在HER2或EGFR突变NSCLC患者队列中带来的临床益处,患者在病情进展后,可继续使用阿法替尼联合紫杉醇治疗。在7例HER2突变的患者中,接受阿法替尼单药治疗的患者只获得了未证实的部分缓解(PR)和疾病控制,而1例接受联合治疗的患者mPFS为6.7周,PR为41.9周。阿法替尼在HER2阳性患者中显示出临床活性迹象,Peters S等的研究也进一步验证了这一结论 [42] [43] 。随后,有学者进行了一项单组II期临床试验,探讨了阿法替尼在治疗前携带HER2外显子20突变的晚期NSCLC患者中控制疾病的潜力。共有13例患者入组,其中7例(53.8%)在12周时获得疾病控制,1例患者早期死亡,余下患者mPFS为15.9 (95% CI: 6.0~35.4)周,mOS为56.0周(95% CI: 16.3~NR) [44] 。另一项II期研究也同样未发现临床获益:mPFS为2.76个月(95% CI: 1.87~4.60),mOS为10.02个月(95% CI: 8.47~10.08) [45] 。可见阿法替尼在非小细胞肺癌的疾病控制中没有显示出预期的潜力。

4.2.2. 达克替尼(Dacomitinib)

达克替尼是一种不可逆的HER2、EGFR (HER1)和HER4酪氨酸激酶抑制剂,在HER2外显子20插入或扩增的细胞系模型中显示出活性。Kris MG等研究了达克替尼在HER2突变或扩增型肺癌患者中的作用。该研究纳入了30例HER2突变或扩增的IIIB/IV期肺癌患者,给予口服达克替尼30~45 mg/天。结果显示,12%携带HER2外显子20突变(95% CI: 2%~30%)的患者部分反应持续3+、11和14个月。在4例HER2扩增的肿瘤患者中没有出现部分反应。mOS为9个月(95% CI: 7~21) [46] 。由此可见,达克替尼对特异性HER2外显子20插入的肺癌患者产生客观反应。这一观察结果验证了HER2外显子20插入是可操作的靶点,并证明了进一步研究达克替尼治疗特异性HER2驱动的NSCLC的可行性。

4.2.3. 奈拉替尼(Neratinib)

与达克替尼一样,奈拉替尼也不可逆地与EGFR、HER2及HER4结合,从而在HER2阳性NSCLC患者中发挥抗肿瘤作用。Nagano等人以高通量方式全面评估了ERBB2突变的功能意义及转化活性和药物敏感性,发现对于A775_776insYVMA突变(肺癌中最常见的ERBB2突变),阿法替尼和来那替尼比其他抑制剂更有效。相反,L775P和L775S突变与对这些药物并不敏感 [47] 。一项II期篮子试验纳入了26例携带HER2突变的难治性NSCLC病例,每日使用奈拉替尼240 mg治疗。仅在1例患者(ORR 3.8%)中观察到PR,尽管反应率较低,但mPFS为5.5个月,且有6例患者继续接受1年以上的治疗 [48] 。

总体而言,选择性TKI,如:吡咯替尼、波齐替尼等,在HER2阳性NSCLC的治疗中显示出了良好的抗肿瘤活性,且吡咯替尼联合抗血管药物治疗似乎有更高的临床获益;而非选择性TKI,如:阿法替尼、达克替尼、奈拉替尼等,并未获得理想的疗效,仍需更多的研究来探索其有效性及安全性。

5. 免疫检查点抑制剂(Immune Checkpoint Inhibitors, ICIs)

免疫检查点抑制剂(ICI)是一种可以恢复抗肿瘤T细胞反应的新型药物,它的出现改变了传统的癌症治疗方法 [49] [50] ,近年来,许多研究发现免疫治疗可能使基因阳性的NSCLC患者获益。Chiara-Catania等报道了一例纳武利尤单抗治疗晚期HER2阳性肺癌并发现了较强的抗肿瘤活性 [51] 。与此相反,Chuang等报道1例HER2突变的NSCLC患者对纳武利尤单抗无阳性反应 [52] ,研究中患者接受化疗联合靶向治疗后出现疾病进展,随后接受纳武利尤单抗治疗1个月,并继续出现进展。有趣的是,当免疫治疗作为一线治疗时,患者的中位PFS显著提高。Mazieres等报道29例HER2突变晚期肺癌患者接受单药免疫检查点抑制剂治疗后,ORR为7%,中位PFS为2.5个月 [53] 。Guisier等的试验也显示,HER2突变的非小细胞肺癌单纯免疫治疗的mPFS为2.2个月(95% CI: 1.7~15.2),但中位OS显著提高(mOS 20.4个月) [54] 。在随后的一项研究中,Saalfeld等在27例一线治疗的患者中应用ICI联合化疗或单药治疗。在中位随访时间11个月时,接受一线ICI单药治疗的5例患者中,有3例已接受6个月(最佳反应:PR)、18个月(SD)和26个月(SD,进行中)的治疗 [55] 。同时,Chu等的试验发现,早期接受免疫治疗的患者有延长PFS的趋势,其中9例接受免疫治疗作为一线治疗的患者mPFS达到9.1个月(7.9~10.2),这一结果显然令人鼓舞 [56] 。除了免疫单药治疗取得的良好效果外,免疫联合铂类化疗也取得了理想的效果。Zhao等报道了5例接受免疫治疗联合化疗一线治疗的HER2插入突变或扩增的晚期NSCLC患者,化疗联合免疫治疗mPFS为8个月(95% CI: 2~12个月) [57] 。Chu等的研究显示,在接受免疫联合化疗方案治疗的16例患者的整个队列中,中位PFS为8.4个月 [56] 。

综上,免疫治疗或免疫联合化疗作为HER2阳性NSCLC的一线治疗具有良好的应用前景。然而,目前的实验研究较少且样本量较小。仍需更大、设计更好的随机对照试验和长期随访来证实免疫治疗在HER-2阳性NSCLC中的疗效。

6. 安全性

ADC药物T-DM1毒性较轻,3级以上的不良反应发生率较低。研究中,3级或4级不良事件多为血小板减少和肝毒性,并未出现治疗相关的死亡 [14] 。各试验中T-DXd的安全性结果基本一致,在Li BT等人的研究中,46%的患者发生了3级或更高级别的药物相关不良事件,最常见的事件是中性粒细胞减少。26%的患者发生药物相关性间质性肺疾病,导致2例患者死亡。各治疗中出现的常见不良事件还包括恶心、食欲下降和呕吐 [13] [18] [19] 。

在关于单克隆抗体对HER2阳性NSCLC的疗效研究中,一半以上的患者中观察出现3级以上治疗相关不良事件,但并没有病人因为毒性而停止治疗。最常见的3级治疗相关不良事件是中性粒细胞减少症、腹泻和贫血。极少患者出现1/2级呼吸困难。无间质性肺疾病病例报告。并且曲妥珠单抗联合吉西他滨–顺铂或卡铂–紫杉醇耐受性良好,曲妥珠单抗并未加剧化疗的已知毒性 [22] [23] [24] [25] [28] 。可见单克隆抗体与化疗联合应用是可行的,毒性并不比单独使用细胞毒治疗更严重。

然而,作为在HER2阳性NSCLC的治疗中显示出了良好抗肿瘤活性的选择性TKI——波齐替尼,其不良反应是无法忽视的。几乎所有患者都出现了3级或以上治疗相关不良反应,最常见的为皮疹、腹泻和口腔炎,并且大多数患者因不良反应较重而至少一次减少了波齐替尼的剂量,甚至有的患者因治疗相关不良事件而停止治疗,这显然是波奇替尼应用的一大挑战。相比之下,吡咯替尼3级及以上治疗相关不良反应的发生率更低,腹泻也是吡咯替尼最常见的不良反应,其无治疗相关死亡报告,毒性是可接受的。在非选择性TKI阿法替尼的研究中,所有患者均出现至少1次治疗相关不良反应,最常见的是腹泻和皮疹,其毒性分布在预期范围内,而达克替尼治疗相关的毒性包括腹泻、皮炎以及疲劳,其毒性分布在预期范围内 [31] [32] [33] [34] [38] [39] [40] [41] [46] [47] 。总而言之,选择性TKI的治疗相关不良事件是不容忽视、亟待解决的问题。

7. 结语与展望

随着靶向治疗HER2阳性NSCLC的出现,众多学者致力于探索新的治疗方法,以为这种难治性肺癌患者带来希望。目前的研究显示,与非选择性TKIs相比,选择性TKIs (如波齐替尼、吡罗替尼)对HER2阳性NSCLC显示出更大的临床活性。同样地,ADCs在HER2阳性NSCLC患者的治疗中也表现出更高的应答率和更佳的生存结果,NCCN指南已将T-DXd列入了HER2阳性NSCLC的推荐用药。然而,ICI作为近几年的HER2阳性NSCLC治疗的新兴手段,尽管存在一定的应用前景,但其效果仍存在争议,需要进一步探索。与此同时,药物治疗相关不良事件的发生也是不可忽略的,而且,“HER2阳性NSCLC”的定义也不足以描述HER2改变的复杂性上的差异,接下来的临床试验可将HER2突变、扩增和过表达进一步划组区分,或许能更好地解决这种改变对试验结果的影响。同时,为了进一步提高抗HER2药物的疗效及临床获益,其联合治疗模式的探索也是十分必要的。

基金项目

本章节由北京科创医学发展基金会(KC2021-JX-0186-43)课题支持。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Siegel, R.L., Miller, K.D., Fuchs, H.E., et al. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71, 7-33.
https://doi.org/10.3322/caac.21654
[3] Chi, F., Wu, R., Jin, X., et al. (2016) HER2 Induces Cell Proliferation and Invasion of Non-Small-Cell Lung Cancer by Upregulating COX-2 Expression via MEK/ERK Signaling Pathway. OncoTargets and Therapy, 9, 2709-2716.
https://doi.org/10.2147/OTT.S96197
[4] Riudavets, M., Sullivan, I., Abdayem, P., et al. (2021) Targeting HER2 in Non-Small-Cell Lung Cancer (NSCLC): A Glimpse of Hope? An Updated Review on Therapeutic Strategies in NSCLC Harbouring HER2 Alterations. ESMO Open, 6, Article ID: 100260.
https://doi.org/10.1016/j.esmoop.2021.100260
[5] Aix, S.P., Navarro, A., Bernabe, R., et al. (2021) 464 2SMALL (Nct04253145) Phase I Part: Lurbinectidine (Lur) in Combination with Atezolizumab (Atz) for Second Line Extensive Stage Small Cell Lung Cancer (Es-Sclc) Patients (Pts). Journal for Immunotherapy of Cancer, 9, A493.
https://doi.org/10.1136/jitc-2021-SITC2021.464
[6] Barlesi, F., Mazieres, J., Merlio, J.P., et al. (2016) Routine Molecular Profiling of Patients with Advanced Non-Small-Cell Lung Cancer: Results of a 1-Year Nationwide Pro-gramme of the French Cooperative Thoracic Intergroup (IFCT). The Lancet, 387, 1415-1426.
https://doi.org/10.1016/S0140-6736(16)00004-0
[7] Yang, G., Yang, Y., Liu, R., et al. (2022) First-Line Immu-notherapy or Angiogenesis Inhibitor plus Chemotherapy for HER2-Altered NSCLC: A Retrospective Real-World POLISH Study. Therapeutic Advances in Medical Oncology, 14.
https://doi.org/10.1177/17588359221082339
[8] Zhou, J., Hu, J., Song, Y., et al. (2020) Clinical Outcomes of Patients with HER2-Mutant Advanced Lung Cancer: Chemotherapies versus HER2-Directed Therapies. American Jour-nal of Respiratory and Critical Care Medicine, 201, A2455.
https://doi.org/10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A2455
[9] Wang, Y., Zhang, S.J., Wu, F.Y., et al. (2018) Outcomes of Pemetrexed-Based Chemotherapies In-Mutant Lung Cancers. BMC Cancer, 18, Article No. 326.
https://doi.org/10.1186/s12885-018-4277-x
[10] Lewis Phillips, G.D., Li, G., Dugger, D.L., et al. (2008) Targeting HER2-Positive Breast Cancer with Trastuzumab-DM1: An Antibody-Cytotoxic Drug Conjugate. Cancer Re-search, 68, 9280-9290.
https://doi.org/10.1158/0008-5472.CAN-08-1776
[11] De Langen, A.J., Jebbink, M., Hashemi, S.M.S., et al. (2018) Trastuzumab and Paclitaxel in Patients with EGFR Mutated NSCLC That Express HER2 after Progression on EGFR TKI Treatment. British Journal of Cancer, 119, 558-564.
https://doi.org/10.1038/s41416-018-0194-7
[12] Li, B.T., Shen, R., Buonocore, D., et al. (2018) Ado-Trastuzumab Emtansine for Patients with HER2-Mutant Lung Cancers: Results from a Phase II Basket Trial. Journal of Clinical On-cology: Official Journal of the American Society of Clinical Oncology, 36, 2532-2537.
https://doi.org/10.1200/JCO.2018.77.9777
[13] Iwama, E., Zenke, Y., Sugawara, S., et al. (2022) Trastuzumab Emtansine for Patients with Non-Small Cell Lung Cancer Positive for Human Epidermal Growth Factor2 Exon-20 Inser-tion Mutations. European Journal of Cancer, 162, 99-106.
https://doi.org/10.1016/j.ejca.2021.11.021
[14] Hotta, K., Aoe, K., Kozuki, T., et al. (2018) A Phase II Study of Trastuzumab Emtansine in HER2-Positive Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 13, 273-279.
https://doi.org/10.1016/j.jtho.2017.10.032
[15] Peters, S., Stahel, R., Bubendorf, L., et al. (2019) Trastuzumab Emtansine (T-DM1) in Patients with Previously Treated HER2-Overexpressing Metastatic Non-Small Cell Lung Cancer: Efficacy, Safety, and Biomarkers. Clinical Cancer Re-search, 25, 64-72.
https://doi.org/10.1158/1078-0432.CCR-18-1590
[16] Ogitani, Y., Aida, T., Hagihara, K., et al. (2016) DS-8201a, a Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Prom-ising Antitumor Efficacy with Differentiation from T-DM1. Clinical Cancer Research, 22, 5097-5108.
https://doi.org/10.1158/1078-0432.CCR-15-2822
[17] Ogitani, Y., Hagihara, K., Oitate, M., et al. (2016) Bystand-er Killing Effect of DS-8201a, a Novel Anti-Human Epidermal Growth Factor Receptor 2 Antibody-Drug Conjugate, in Tumors with Human Epidermal Growth Factor Receptor 2 Heterogeneity. Cancer Science, 107, 1039-1046.
https://doi.org/10.1111/cas.12966
[18] Tsurutani, J., Iwata, H., Krop, I., et al. (2020) Targeting HER2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase I Study in Multiple Advanced Solid Tumors. Cancer Discovery, 10, 688-701.
https://doi.org/10.1158/2159-8290.CD-19-1014
[19] Li, B.T., Smit, E.F., Goto, Y., et al. (2022) Trastuzumab Deruxtecan in HER2-Mutant Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 386, 241-251.
https://doi.org/10.1056/NEJMoa2112431
[20] Goto, K., Goto, Y., Kubo, T., et al. (2023) Trastuzumab Deruxtecan in Patients with HER2-Mutant Metastatic Non-Small-Cell Lung Cancer: Primary Results from the Randomized, Phase II DESTINY-Lung02 Trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 41, 4852-4863.
[21] Klapper, L.N., Waterman, H., Sela, M., et al. (2000) Tumor-Inhibitory Antibodies To HER-2/ErbB-2 May Act by Recruiting C-Cbl and Enhancing Ubiquitination of HER-2. Cancer Research, 60, 3384-3388.
[22] Zinner, R.G., Glisson, B.S., Fossella, F.V., et al. (2004) Trastuzumab in Combination with Cisplatin and Gemcitabine in Patients with Her2-Overexpressing, Untreated, Advanced Non-Small Cell Lung Cancer: Report of A Phase II Trial and Findings Regarding Optimal Identification of Patients with Her2-Overexpressing Disease. Lung Can-cer, 44, 99-110.
https://doi.org/10.1016/j.lungcan.2003.09.026
[23] Gatzemeier, U., Groth, G., Butts, C., et al. (2004) Randomized Phase II Trial of Gemcitabine-Cisplatin with or without Trastuzumab in HER2-Positive Non-Small-Cell Lung Cancer. Annals of Oncology, 15, 19-27.
https://doi.org/10.1093/annonc/mdh031
[24] Lara, P.N., Laptalo, L., Longmate, J., et al. (2004) Trastuzumab plus Docetaxel in HER2/Neu-Positive Non-Small-Cell Lung Cancer: A California Cancer Consortium Screening and Phase II Trial. Clinical Lung Cancer, 5, 231-236.
https://doi.org/10.3816/CLC.2004.n.004
[25] Langer, C.J., Stephenson, P., Thor, A., et al. (2004) Trastuzumab in the Treatment of Advanced Non-Small-Cell Lung Cancer: Is There a Role? Focus on Eastern Cooperative Oncology Group Study 2598. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 22, 1180-1187.
https://doi.org/10.1200/JCO.2004.04.105
[26] Mazières, J., Barlesi, F., Filleron, T., et al. (2016) Lung Cancer Pa-tients with HER2 Mutations Treated with Chemotherapy and HER2-Targeted Drugs: Results from the European EUHER2 Cohort. Annals of Oncology, 27, 281-286.
https://doi.org/10.1093/annonc/mdv573
[27] Hainsworth, J.D., Meric-Bernstam, F., Swanton, C., et al. (2018) Targeted Therapy for Advanced Solid Tumors on the Basis of Molecular Profiles: Results from MyPathway, an Open-Label, Phase IIa Multiple Basket Study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 36, 536-542.
https://doi.org/10.1200/JCO.2017.75.3780
[28] Mazieres, J., Lafitte, C., Ricordel, C., et al. (2022) Combination of Trastuzumab, Pertuzumab, and Docetaxel in Patients with Advanced Non-Small-Cell Lung Cancer Harboring HER2 Mutations: Results from the IFCT-1703 R2D2 Trial. Journal of Clinical Oncology: Official Journal of the American So-ciety of Clinical Oncology, 40, 719-728.
https://doi.org/10.1200/JCO.21.01455
[29] Wang, Y., Jiang, T., Qin, Z., et al. (2019) HER2 Exon 20 Insertions in Non-Small-Cell Lung Cancer Are Sensitive to the Irreversible Pan-HER Receptor Tyrosine Kinase Inhibitor Pyrotinib. Annals of Oncology, 30, 447-455.
https://doi.org/10.1093/annonc/mdy542
[30] Zhou, C., Li, X., Wang, Q., et al. (2020) Pyrotinib in HER2-Mutant Advanced Lung Adenocarcinoma after Platinum-Based Chemotherapy: A Multicenter, Open-Label, Single-Arm, Phase II Study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 38, 2753-2761.
https://doi.org/10.1200/JCO.20.00297
[31] Song, Z.B., Lv, D.Q., Chen, S.Q., et al. (2022) Pyrotinib in Patients with HER2-Amplified Advanced Non-Small Cell Lung Cancer: A Prospective, Multicenter, Single-Arm Trial. Clinical Cancer Research, 28, 461-467.
https://doi.org/10.1158/1078-0432.CCR-21-2936
[32] Song, Z., Li, Y., Chen, S., et al. (2022) Efficacy and Safety of Pyrotinib in Advanced Lung Adenocarcinoma with HER2 Mutations: A Multicenter, Single-Arm, Phase II Trial. BMC Medicine, 20, Article No. 42.
https://doi.org/10.1186/s12916-022-02245-z
[33] Liu, S.M., Tu, H.Y., Wei, X.W., et al. (2023) First-Line Pyro-tinib in Advanced HER2-Mutant Non-Small-Cell Lung Cancer: A Patient-Centric Phase 2 Trial. Nature Medicine, 29, 2079-2086.
https://doi.org/10.1038/s41591-023-02461-x
[34] Yang, G., Xu, H., Yang, Y., et al. (2022) Pyrotinib Combined with Apatinib for Targeting Metastatic Non-Small Cell Lung Cancer with HER2 Alterations: A Prospective, Open-Label, Single-Arm Phase 2 Study (PATHER2). BMC Medicine, 20, Article No. 277.
https://doi.org/10.1186/s12916-022-02470-6
[35] Ai, X., Song, Z., Jian, H., et al. (2021) Pyrotinib Combined with Thalidomide in Advanced Non-Small-Cell Lung Cancer Patients Harboring HER2 Exon 20 Insertions (PRIDE): Protocol of an Open-Label, Single-Arm Phase II Trial. BMC Cancer, 21, Article No. 1033.
https://doi.org/10.1186/s12885-021-08759-8
[36] Robichaux, J.P., Elamin, Y.Y., Tan, Z., et al. (2018) Mecha-nisms and Clinical Activity of an EGFR and HER2 Exon 20-Selective Kinase Inhibitor in Non-Small Cell Lung Cancer. Nature Medicine, 24, 638-646.
https://doi.org/10.1038/s41591-018-0007-9
[37] Koga, T., Kobayashi, Y., Tomizawa, K., et al. (2018) Activity of a Novel HER2 Inhibitor, Poziotinib, for HER2 Exon 20 Mutations in Lung Cancer and Mechanism of Acquired Re-sistance: An in Vitro Study. Lung Cancer, 126, 72-79.
https://doi.org/10.1016/j.lungcan.2018.10.019
[38] Robichaux, J.P., Elamin, Y.Y., Vijayan, R.S.K., et al. (2019) Pan-Cancer Landscape and Analysis of ERBB2 Mutations Identifies Poziotinib as a Clinically Active Inhibitor and En-hancer of T-DM1 Activity. Cancer Cell, 36, 444-457.e447.
https://doi.org/10.1016/j.ccell.2019.09.001
[39] Le, X., Cornelissen, R., Garassino, M., et al. (2022) Poziotinib in Non-Small-Cell Lung Cancer Harboring HER2 Exon 20 In-sertion Mutations after Prior Therapies: ZENITH20-2 Trial. Journal of Clinical Oncology: Official Journal of the Ameri-can Society of Clinical Oncology, 40, 710-718.
https://doi.org/10.1200/JCO.21.01323
[40] Cornelissen, R., Prelaj, A., Sun, S., et al. (2023) Poziotinib in Treatment-Naive NSCLC Harboring HER2 Exon 20 Mutations: ZENITH20-4, a Multicenter, Multicohort, Open-Label, Phase 2 Trial (Cohort 4). Journal of Thoracic Oncology, 18, 1031-1041.
https://doi.org/10.1016/j.jtho.2023.03.016
[41] Elamin, Y.Y., Robichaux, J.P., Carter, B.W., et al. (2022) Pozio-tinib for Patients with HER2 Exon 20 Mutant Non-Small-Cell Lung Cancer: Results from a Phase II Trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 40, 702-709.
https://doi.org/10.1200/JCO.21.01113
[42] De Grève, J., Moran, T., Graas, M.P., et al. (2015) Phase II Study of Afatinib, an Irreversible ErbB Family Blocker, in Demographically and Genotypically Defined Lung Adenocarcinoma. Lung Cancer, 88, 63-69.
https://doi.org/10.1016/j.lungcan.2015.01.013
[43] Peters, S., Curioni-Fontecedro, A., Nechushtan, H., et al. (2018) Activity of Afatinib in Heavily Pretreated Patients with ERBB2 Mutation-Positive Advanced NSCLC: Findings from a Global Named Patient Use Program. Journal of Thoracic Oncology, 13, 1897-1905.
https://doi.org/10.1016/j.jtho.2018.07.093
[44] Dziadziuszko, R., Smit, E.F., Dafni, U., et al. (2019) Afatinib in NSCLC with HER2 Mutations: Results of the Prospective, Open-Label Phase II NICHE Trial of European Thoracic Oncology Platform (ETOP). Journal of Thoracic Oncology, 14, 1086-1094.
https://doi.org/10.1016/j.jtho.2019.02.017
[45] Fan, Y., Chen, J., Zhou, C., et al. (2020) Afatinib in Patients with Advanced Non-Small Cell Lung Cancer Harboring HER2 Mutations, Previously Treated with Chemotherapy: A Phase II Trial. Lung Cancer, 147, 209-213.
https://doi.org/10.1016/j.lungcan.2020.07.017
[46] Kris, M.G., Camidge, D.R., Giaccone, G., et al. (2015) Target-ing HER2 Aberrations as Actionable Drivers in Lung Cancers: Phase II Trial of the Pan-HER Tyrosine Kinase Inhibitor Dacomitinib in Patients with HER2-Mutant or Amplified Tumors. Annals of Oncology, 26, 1421-1427.
https://doi.org/10.1093/annonc/mdv186
[47] Nagano, M., Kohsaka, S., Ueno, T., et al. (2018) High-Throughput Functional Evaluation of Variants of Unknown Significance in ERBB2. Clinical Cancer Research, 24, 5112-5122.
https://doi.org/10.1158/1078-0432.CCR-18-0991
[48] Hyman, D.M., Piha-Paul, S.A., Won, H., et al. (2018) HER Kinase Inhibition in Patients with HER2- and HER3-Mutant Cancers. Nature, 554, 189-194.
https://doi.org/10.1038/nature25475
[49] Sharma, P. and Allison, J.P. (2015) The Future of Immune Checkpoint Therapy. Science, 348, 56-61.
https://doi.org/10.1126/science.aaa8172
[50] Pardoll, D.M. (2012) The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nature Reviews Cancer, 12, 252-264.
https://doi.org/10.1038/nrc3239
[51] Catania, C., Passaro, A., Rocco, E.G., et al. (2016) Dramatic Antitumor Activity of Nivolumab in Advanced HER2-Positive Lung Cancer. Clinical Lung Cancer, 17, E179-E183.
https://doi.org/10.1016/j.cllc.2016.05.004
[52] Chuang, J.C., Stehr, H., Liang, Y., et al. (2017) ERBB2-Mutated Metastatic Non-Small Cell Lung Cancer: Response and Resistance to Targeted Therapies. Journal of Thoracic Oncology, 12, 833-842.
https://doi.org/10.1016/j.jtho.2017.01.023
[53] Mazieres, J., Drilon, A., Lusque, A., et al. (2019) Immune Check-point Inhibitors for Patients with Advanced Lung Cancer and Oncogenic Driver Alterations: Results from the IMMUNOTARGET Registry. Annals of Oncology, 30, 1321-1328.
https://doi.org/10.1093/annonc/mdz167
[54] Guisier, F., Dubos-Arvis, C., Vinas, F., et al. (2020) Efficacy and Safety of Anti-PD-1 Immunotherapy in Patients with Advanced NSCLC with BRAF, HER2, or MET Mutations or RET Translocation: GFPC 01-2018. Journal of Thoracic Oncology, 15, 628-636.
https://doi.org/10.1016/j.jtho.2019.12.129
[55] Saalfeld, F.C., Wenzel, C., Christopoulos, P., et al. (2021) Efficacy of Immune Checkpoint Inhibitors Alone or in Combination with Chemotherapy in NSCLC Harboring ERBB2 Mutations. Journal of Thoracic Oncology, 16, 1952-1958.
https://doi.org/10.1016/j.jtho.2021.06.025
[56] Chu, X., Qiang, H., Xie, M., et al. (2022) Treatment Efficacy of HER2-Mutant Lung Adenocarcinoma by Immune Checkpoint Inhibitors: A Multicenter Retrospective Study. Cancer Immunology Immunotherapy, 71, 1625-1631.
https://doi.org/10.1007/s00262-021-03100-5
[57] Zhao, S., Xian, X., Tian, P., et al. (2021) Efficacy of Combina-tion Chemo-Immunotherapy as a First-Line Treatment for Advanced Non-Small-Cell Lung Cancer Patients with HER2 Alterations: A Case Series. Frontiers in Oncology, 11, Article ID: 633522.
https://doi.org/10.3389/fonc.2021.633522