儿童难治性肺炎支原体肺炎生物标志物研究进展
Research Progress on Biomarkers of Refractory Mycoplasma pneumoniae Pneumonia in Children
DOI: 10.12677/ACM.2024.143685, PDF, HTML, XML, 下载: 52  浏览: 94 
作者: 邓如玉, 罗征秀*:重庆医科大学附属儿童医院呼吸科,重庆;国家儿童健康与疾病临床医学研究中心,重庆;儿童发育疾病研究教育部重点实验室,重庆;儿科学重庆市重点实验室,重庆
关键词: 难治性肺炎支原体肺炎生物标志物Refractory Mycoplasma pneumoniae Pneumonia Biomarkers
摘要: 肺炎支原体肺炎是儿童社区获得性肺炎重要组成部分,近年难治性肺炎支原体肺炎(refractory My-coplasma pneumoniae pneumonia, RMPP)发病率升高,肺炎支原体感染导致过度免疫炎症反应是RMPP发病的重要原因之一,因此检测免疫相关标志物有可能是早期预测RMPP的重要方法。本文就近年来儿童RMPP中新型免疫相关生物标志物及其预测作用进行综述。
Abstract: Mycoplasma pneumoniae is an important pathogen of community-acquired pneumonia in children. The incidence of refractory Mycoplasma pneumoniae pneumonia (RMPP) increased in recent years. It is accepted that the excessive immune inflammatory response caused by Mycoplasma pneumoni-ae infection is one of the important causes of RMPP. To measure the immune-related biomarkers could be an important method for early prediction of RMPP. We aim to review the novel im-mune-related biomarkers and their predictive roles in children with RMPP in this article.
文章引用:邓如玉, 罗征秀. 儿童难治性肺炎支原体肺炎生物标志物研究进展[J]. 临床医学进展, 2024, 14(3): 200-205. https://doi.org/10.12677/ACM.2024.143685

1. 前言

肺炎支原体(Mycoplasma pneumonia, MP)是儿童社区获得性肺炎(community-acquired pneumonia, CAP)重要病原体之一,占儿童CAP的10%~40%,在5岁以上CAP患儿中甚至超过50% [1] 。部分肺炎支原体肺炎(Mycoplasma pneumoniae pneumonia, MPP)可进展为难治性肺炎支原体肺炎(Refractory Mycoplasma pneumoniae pneumonia, RMPP),伴发肺不张、坏死性肺炎、塑型性支气管炎、闭塞性支气管炎、肺栓塞等肺内并发症及肺外损害,为MPP诊治带来了新的挑战 [2] [3] [4] [5] 。目前,国内外对于RMPP的定义尚未统一,引用最多的是Tamura等 [6] 2008年研究中的标准:合理使用抗菌药物治疗7天或以上,仍持续发热并伴随影像学征象继续进展者。我国儿童肺炎支原体肺炎诊疗指南(2023年版) [7] 指出,RMPP指MPP患儿使用大环内酯类抗菌药物正规治疗7天及以上,仍持续发热、临床征象及肺部影像学所见加重、出现肺外并发症者。如何早期识别儿童RMPP仍是临床工作中的重点及难点。目前RMPP发病机制尚未完全明确,可能与MP对大环内酯类药物耐药、机体对MP过度免疫炎症反应、混合感染、高凝状态等因素相关 [8] ,其中免疫相关生物标志物是近年研究热点。既往研究表明,乳酸脱氢酶(LDH)、C-反应蛋白(CRP)、白细胞介素(IL)-17、肿瘤坏死因子(TNF)-α、IL-6、D-二聚体等对RMPP具有较好预测价值 [9] - [14] ,随着RMPP发病率上升,国内外学者亦在不断探索新的RMPP预测生物标志物,因此本文对近年报道的新型免疫相关生物标志物在RMPP中的研究进展进行综述,以期为临床提供新思路。

2. 高迁移率群盒蛋白1 (High Mobility Group Box Protein 1, HMGB1)

HMGB1是介导感染、损伤和炎症反应的一种关键细胞因子,几乎在所有细胞中都有表达 [15] 。在细胞内,HMGB1是一种高度保守的核蛋白。HMGB1可通过免疫活性细胞主动分泌或由凋亡或坏死细胞被动释放到细胞外。在细胞外,HMGB1属典型损伤相关分子模式,可通过与晚期糖基化终产物受体(RAGE)、Toll样受体(TLR)2、TLR4等受体结合,激活髓样分化因子依赖的NF-κB通路,促进免疫细胞成熟、激活以及细胞因子产生 [15] [16] [17] [18] 。研究表明表面活性剂蛋白A可抑制免疫细胞释放HMGB1,进而抑制肺炎支原体诱导的树突状细胞成熟,从而减轻肺部炎症 [19] 。Ding等 [16] 指出RMPP患者外周血HMGB1水平较非RMPP患者显著增高,外周血HMGB1较TNF-α与IL-6对RMPP具有更好预测价值(AUC为0.876,当诊断阈值为5.25 × 10−3时,灵敏度为83.3%,特异度为82.4%)。徐迎春等 [20] 研究发现RMPP组支气管肺泡灌洗液(BALF)中HMGB1较非RMPP组明显升高,HMGB1是MPP患儿进展为RMPP的独立危险因素(AUC = 0.666),也是RMPP合并肺外损伤的独立危险因素(AUC = 0.814)。由此可见,外周血及BALF中HMGB1水平对RMPP均有一定预测价值,尚需对HMGB1诱导的免疫炎症反应机制进行深入研究,以开发新的治疗策略抑制HMGB1通路,从而防止其在RMPP中发挥的过度炎症作用。

3. 中性粒细胞与淋巴细胞比值(Neutrophil to Lymphocyte Ratio, NLR)

NLR是外周血中中性粒细胞与淋巴细胞计数之间的简单比值,是一种结合固有免疫反应(主要由中性粒细胞引起)和适应性免疫(由淋巴细胞支持)的生物标志物,是一种新的系统性炎症生物标志物,已用于预测多种感染性疾病不良预后 [21] 。中性粒细胞作为抵抗感染的第一道防线,在MPP发生发展中起关键作用。MP感染后,中性粒细胞在外周血 [22] 、BALF [23] 和肺组织 [24] 中增加,发挥局部杀伤、吞噬病原体作用。然而,中性粒细胞过度聚集和激活会导致炎症瀑布效应及免疫失衡,引起组织损伤 [25] 。同时,过度炎症可诱导淋巴细胞凋亡,导致淋巴细胞数量减少,国内研究发现22.3%患儿入院时存在外周血淋巴细胞数量下降 [26] 。有研究发现 [27] ,6岁以上RMPP患儿中性粒细胞、NLR均显著高于非RMPP组,且NLR较CRP对RMPP有更高预测价值。Li等 [28] 研究发现RMPP组患儿NLR水平明显高于非RMPP组,NLR是RMPP独立预测因子,高NLR (≥1.9)患儿较低NLR (<1.9)患儿更易发生坏死性肺炎、总热程及住院时间更长、入住ICU比例及住院费用更高。高NLR是中性粒细胞计数增加和淋巴细胞计数减少的共同结果,能更好地反应机体全身性炎症状态。NLR作为一种价格低廉、容易获取的生物标志物,与RMPP发生发展可能相关,未来尚需进行前瞻性、多中心队列研究来证实其在RMPP中的预测价值。

4. 铁蛋白

铁蛋白水平升高被认为是一种炎症标志物。在感染早期阶段,巨噬细胞受到刺激后合成并释放细胞因子,从而刺激铁蛋白合成。血清铁蛋白升高通过抑制淋巴细胞增殖发挥免疫抑制作用。过量的铁蛋白能反映TNF-α水平升高,以及细胞毒性标志物如天冬氨酸转氨酶、乳酸脱氢酶和肌酸激酶水平升高 [29] 。铁蛋白明显升高可反映机体铁代谢紊乱,可作为判断疾病严重程度的指标 [30] 。Choi等 [22] 研究显示,RMPP组血清铁蛋白明显高于非RMPP组,铁蛋白可作为RMPP早期预测标志物,当铁蛋白 ≥ 230 pg/mL,诊断RMPP的敏感性和特异性均为67%。Wen等 [31] 研究发现铁蛋白 ≥ 329.01 ng/mL,诊断RMPP的敏感性和特异性分别为67.09%及93.13%,AUC为0.90,其诊断价值高于CRP (AUC为0.81),Logistic回归性分析显示铁蛋白是预测RMPP的独立危险因素,提示铁蛋白对RMPP具有较好预测作用。

5. 趋化因子

趋化因子和其受体相互作用,构成复杂的趋化因子调控网络,特异性控制免疫细胞活动,参与免疫和炎症反应 [32] 。研究表明,MP感染发病机制与MP通过TLR刺激巨噬细胞释放炎症细胞因子及趋化因子密切相关 [33] [34] 。MP产生的社区获得性呼吸窘迫综合征(CARDS)毒素可指数级地刺激Th2细胞因子和趋化因子CCL17、CCL22表达,导致气道过敏反应和高反应性 [35] [36] 。研究报道CCL11可募集并动员嗜酸性粒细胞至肺部,引起气道高反应性 [37] 。抑制CCL3可募集促炎T细胞,导致疾病加重 [38] 。抗菌治疗显著降低了MPP小鼠模型BALF中CXCL10水平 [39] 。Lee等 [40] 发现RMPP组患儿血浆CXCL10高于非RMPP组,血浆CCL3和CCL11低于非RMPP组。CCL2是一种重要的促炎症趋化因子,参与炎症、免疫、创伤等过程 [41] 。Zhu等 [42] 研究发现,RMPP组患儿BALF中CCL2水平高于非RMPP组,当BALF中CCL2截断值为0.645 ng/ml时,预测RMPP的AUC为0.94,敏感性为85%,特异性为94%,诊断价值优于血清CRP和LDH。

6. 其他

除HMGB1、NLR、铁蛋白、趋化因子等新型生物标志物外,亦有研究报道血清可溶性B7树突状细胞(sB7-DC)、自分泌运动因子(autotoxin, ATX)可用于预测RMPP。Zhang等 [43] 研究指出,RMPP患儿sB7-DC浓度明显高于非RMPP组,sB7-DC ≥ 1109.7 pg/ml时,诊断RMPP的灵敏度和特异度分别为86.7%及62.9%,AUC为0.794,其诊断价值高于IL-17 (AUC = 0.741)。ATX是一种分泌型糖蛋白,与血管炎症、糖脂代谢及肺部炎症反应有关。付彬彬等 [44] 研究发现RMPP患儿血清及BALF中ATX水平均高于非RMPP组,对RMPP具有较好预测价值(AUC分别为0.874、0.862),相关性分析显示,血清和BALF中ATX水平与IL-6、IL-8及CRP均呈正相关,提示ATX可能通过调节机体免疫炎症反应参与RMPP发病过程。目前sBC-D7、ATX对RMPP的预测研究较少,其预测价值尚需进一步验证。

7. 小结

RMPP诊断滞后可影响患儿预后,给家庭及社会带来不同程度负担,探索早期预测RMPP的生物标志物及不同生物标志物在RMPP发生发展中的机制,为RMPP早期诊断提供高敏感性及高特异性生物标志物,将有助于减轻RMPP疾病负担。

NOTES

*通讯作者。

参考文献

[1] Song, M., Zhang, Y., Li, S., et al. (2017) A Sensitive and Rapid Immunoassay for Mycoplasma pneumoniae in Children with Pneumonia Based on Single-Walled Carbon Nanotubes. Scientific Reports, 7, Article No. 16442.
https://doi.org/10.1038/s41598-017-16652-3
[2] Zhang, H., Yang, J., Zhao, W., et al. (2023) Clinical Features and Risk Factors of Plastic Bronchitis Caused by Refractory Mycoplasma pneumoniae Pneumonia in Children: A Practi-cal Nomogram Prediction Model. European Journal of Pediatrics, 182, 1239-1249.
https://doi.org/10.1007/s00431-022-04761-9
[3] Liu, J.H., Liu, J.R., Tang, X.L., et al. (2023) Predictive Factors for Sequelae of Bronchitis Obliterans in Refractory Mycoplasma pneumoniae Pneumonia. Chinese Journal of Pediatrics, 61, 317-321.
[4] Wang, X., Zhong, L.J., Chen, Z.M., et al. (2018) Necrotizing Pneumonia Caused by Refractory My-coplasma Pneumonia Pneumonia in Children. World Journal of Pediatrics, 14, 344-349.
https://doi.org/10.1007/s12519-018-0162-6
[5] Song, S. and Xu, Y. (2023) A Retrospective Study of the Clinical Characteristics of 9 Children with Pulmonary Embolism Associated with Mycoplasma pneumoniae Pneumonia. BMC Pediatrics, 23, Article No. 370.
https://doi.org/10.1186/s12887-023-04188-7
[6] Tamura, A., Matsubara, K., Tanaka, T., et al. (2008) Methylprednisolone Pulse Therapy for Refractory Mycoplasma pneumoniae Pneumonia in Children. Journal of Infection, 57, 223-228.
https://doi.org/10.1016/j.jinf.2008.06.012
[7] 儿童肺炎支原体肺炎诊疗指南(2023年版) [J]. 全科医学临床与教育, 2023, 21(3): 196-202.
[8] Tong, L., Huang, S., Zheng, C., et al. (2022) Refractory Mycoplasma pneumoniae Pneumonia in Children: Early Recognition and Management. Journal of Clinical Medicine, 11, Article No. 2824.
https://doi.org/10.3390/jcm11102824
[9] Wang, S., Jiang, Z., Li, X., et al. (2023) Diagnostic Value of Se-rum LDH in Children with Refractory Mycoplasma pneumoniae Pneumoniae: A Systematic Review and Meta-Analysis. Frontiers in Pediatrics, 11, Article ID: 1094118.
https://doi.org/10.3389/fped.2023.1094118
[10] Lee, E. and Choi, I. (2022) Clinical Usefulness of Serum Lactate Dehydrogenase Levels in Mycoplasma pneumoniae Pneumonia in Children. Indian Journal of Pediatrics, 89, 1003-1009.
https://doi.org/10.1007/s12098-022-04205-0
[11] Zhao, J., Ji, X., Wang, Y., et al. (2020) Clinical Role of Serum Interleukin-17A in the Prediction of Refractory Mycoplasma pneumoniae Pneumonia in Children. Infection and Drug Resistance, 13, 835-843.
https://doi.org/10.2147/IDR.S240034
[12] Li, G., Fan, L., Wang, Y., et al. (2019) High Co-Expression of TNF-α and CARDS Toxin Is a Good Predictor for Refractory Mycoplasma pneumoniae Pneumonia. Molecular Medicine, 25, Article No. 38.
https://doi.org/10.1186/s10020-019-0105-2
[13] Fan, F., Lv, J., Yang, Q., et al. (2023) Clinical Characteristics and Serum Inflammatory Markers of Community-Acquired Mycoplasma Pneumonia in Children. The Clinical Respiratory Journal, 17, 607-617.
https://doi.org/10.1111/crj.13620
[14] Shen, F., Dong, C., Zhang, T., et al. (2022) Development of a Nomogram for Predicting Refractory Mycoplasma pneumoniae Pneumonia in Children. Frontiers in Pediatrics, 10, Article ID: 813614.
https://doi.org/10.3389/fped.2022.813614
[15] Paudel, Y.N., Angelopoulou, E., Piperi, C., et al. (2019) Enlighten-ing the Role of High Mobility Group Box 1 (HMGB1) in Inflammation: Updates on Receptor Signalling. European Journal of Pharmacology, 858, Article ID: 172487.
https://doi.org/10.1016/j.ejphar.2019.172487
[16] Ding, Y., Chu, C., Li, Y., et al. (2018) High Expression of HMGB1 in Children with Refractory Mycoplasma pneumoniae Pneumonia. BMC Infectious Diseases, 18, Article No. 439.
https://doi.org/10.1186/s12879-018-3346-8
[17] Yang, Q., Li, M., Hou, Y., et al. (2023) High-Mobility Group Box 1 Emerges as a Therapeutic Target for Asthma. Immunity, Inflammation and Disease, 11, e1124.
https://doi.org/10.1002/iid3.1124
[18] Ren, W., Zhao, L., Sun, Y., et al. (2023) HMGB1 and Toll-Like Receptors: Potential Therapeutic Targets in Autoimmune Diseases. Molecular Medicine, 29, Article No. 117.
https://doi.org/10.1186/s10020-023-00717-3
[19] Ledford, J.G., Lo, B., Kislan, M.M., et al. (2010) Surfactant Protein-A Inhibits Mycoplasma-Induced Dendritic Cell Maturation through Regulation of HMGB-1 Cytokine Activity. The Journal of Immunology, 185, 3884-3894.
https://doi.org/10.4049/jimmunol.1000387
[20] 徐迎春, 李北方, 张志刚. 肺泡灌洗液高迁移率族蛋白B1水平在难治性肺炎支原体肺炎患儿预后中的意义[J]. 实用临床医学, 2022, 23(1): 44-48.
[21] Buonacera, A., Stancanelli, B., Colaci, M., et al. (2022) Neutrophil to Lymphocyte Ratio: An Emerging Marker of the Relationships be-tween the Immune System and Diseases. International Journal of Molecular Sciences, 23, Article No. 3636.
https://doi.org/10.3390/ijms23073636
[22] Choi, Y.J., Jeon, J.H. and Oh, J.W. (2019) Critical Combination of Ini-tial Markers for Predicting Refractory Mycoplasma pneumoniae Pneumonia in Children: A Case Control Study. Respir-atory Research, 20, Article No. 193.
https://doi.org/10.1186/s12931-019-1152-5
[23] Guo, L., Liu, F., Lu, M.P., et al. (2015) Increased T Cell Activa-tion in BALF from Children with Mycoplasma pneumoniae Pneumonia. Pediatric Pulmonology, 50, 814-819.
https://doi.org/10.1002/ppul.23095
[24] Tamiya, S., Yoshikawa, E., Ogura, M., et al. (2021) Neutrophil-Mediated Lung Injury both via TLR2-Dependent Production of IL-1α and IL-12 P40, and TLR2-Independent CARDS Toxin after Mycoplasma pneumoniae Infection in Mice. Microbiology Spectrum, 9, e0158821.
https://doi.org/10.1128/spectrum.01588-21
[25] Tsai, C.Y., Hsieh, S.C., Liu, C.W., et al. (2021) Cross-Talk among Polymorphonuclear Neutrophils, Immune, and Non-Immune Cells via Released Cytokines, Granule Proteins, Microvesi-cles, and Neutrophil Extracellular Trap Formation: A Novel Concept of Biology and Pathobiology for Neutrophils. In-ternational Journal of Molecular Sciences, 22, Article No. 3119.
https://doi.org/10.3390/ijms22063119
[26] 张芙荣, 周卫芳, 李玉琴, 等. 中性粒细胞与淋巴细胞比值、血小板与淋巴细胞比值在重症肺炎支原体肺炎中的诊断价值[J]. 中华实用儿科临床杂志, 2022, 37(4): 260-264.
[27] Ling, Y., Ning, J. and Xu, Y. (2021) Explore the Pre-dictive Value of Peripheral Blood Cell Parameters in Refractory Mycoplasma pneumoniae Pneumonia in Children over 6 Years Old. Frontiers in Pediatrics, 9, Article ID: 659677.
https://doi.org/10.3389/fped.2021.659677
[28] Li, D., Gu, H., Chen, L., et al. (2023) Neutrophil-to-Lymphocyte Ratio as a Predictor of Poor Outcomes of Mycoplasma pneumoniae Pneumonia. Frontiers in Immunology, 14, Article ID: 1302702.
https://doi.org/10.3389/fimmu.2023.1302702
[29] Mahroum, N., Alghory, A., Kiyak, Z., et al. (2022) Ferri-tin—From Iron, through Inflammation and Autoimmunity, to COVID-19. Journal of Autoimmunity, 126, Article ID: 102778.
https://doi.org/10.1016/j.jaut.2021.102778
[30] De Palma, R.G., Hayes, V.W. and O’Leary, T.J. (2021) Optimal Serum Ferritin Level Range: Iron Status Measure and Inflammatory Biomarker. Metallomics, 13, mfab030.
https://doi.org/10.1093/mtomcs/mfab030
[31] Wen, J., Su, Y., Sun, H., et al. (2021) The Combination of Initial Markers to Predict Refractory Mycoplasma pneumoniae Pneumonia in Chinese Children: A Case Control Study. Respir-atory Research, 22, Article No. 89.
https://doi.org/10.1186/s12931-020-01577-9
[32] Hughes, C.E. and Nibbs, R.J.B. (2018) A Guide to Chemokines and Their Receptors. The FEBS Journal, 285, 2944-2971.
https://doi.org/10.1111/febs.14466
[33] Inamura, N., Miyashita, N., Hasegawa, S., et al. (2014) Management of Refractory Mycoplasma pneumoniae Pneumonia: Utility of Measuring Serum Lactate Dehydrogenase Level. Journal of Infection and Chemotherapy, 20, 270-273.
https://doi.org/10.1016/j.jiac.2014.01.001
[34] Fan, Y., Ding, Y., Li, Y., et al. (2022) Investigation of the Rela-tionship between Community-Acquired Respiratory Distress Syndrome Toxin and the High-Mobility Group Box Protein 1-Toll-Like Receptors-Myeloid Differentiation Factor 88 Signaling Pathway in Mycoplasma pneumoniae Pneumonia. Italian Journal of Pediatrics, 48, Article No. 64.
https://doi.org/10.1186/s13052-022-01254-1
[35] Medina, J.L., Coalson, J.J., Brooks, E.G., et al. (2014) Myco-plasma pneumoniae CARDS Toxin Exacerbates Ovalbumin-Induced Asthma-Like Inflammation in BALB/C Mice. PLOS ONE, 9, e102613.
https://doi.org/10.1371/journal.pone.0102613
[36] Medina, J.L., Coalson, J.J., Brooks, E.G., et al. (2012) Myco-plasma pneumoniae CARDS Toxin Induces Pulmonary Eosinophilic and Lymphocytic Inflammation. American Journal of Respiratory Cell and Molecular Biology, 46, 815-822.
https://doi.org/10.1165/rcmb.2011-0135OC
[37] Chu, Y.T., Chiang, W., Wang, T.N., et al. (2010) Changes in Serum Eotaxin and Eosinophil Cationic Protein Levels, and Eo-sinophil Count during Treatment of Childhood Asthma. Journal of Microbiology, Immunology and Infection, 40, 162-167.
[38] Tregoning, J.S., Pribul, P.K., Pennycook, A.M., et al. (2010) The Chemokine MIP1alpha/CCL3 Deter-mines Pathology in Primary RSV Infection by Regulating the Balance of T Cell Populations in the Murine Lung. PLOS ONE, 5, e0009381.
https://doi.org/10.1371/journal.pone.0009381
[39] Salvatore, C.M., Techasaensiri, C., Taglia-bue, C., et al. (2009) Tigecycline Therapy Significantly Reduces the Concentrations of Inflammatory Pulmonary Cyto-kines and Chemokines in a Murine Model of Mycoplasma pneumoniae Pneumonia. Antimicrobial Agents and Chemo-therapy, 53, 1546-1551.
https://doi.org/10.1128/AAC.00979-08
[40] Lee, Y.C., Chang, C.H., Lee, W.J., et al. (2021) Altered Chemokine Profile in Refractory Mycoplasma pneumoniae Pneumonia Infected Children. Journal of Mi-crobiology, Immunology and Infection, 54, 673-679.
https://doi.org/10.1016/j.jmii.2020.03.030
[41] Gibellini, L., De Biasi, S., Paolini, A., et al. (2020) Altered Bioen-ergetics and Mitochondrial Dysfunction of Monocytes in Patients with COVID-19 Pneumonia. EMBO Molecular Medi-cine, 12, e13001.
https://doi.org/10.15252/emmm.202013001
[42] Zhu, J., Liu, X., Zhan, X., et al. (2023) Predictive Value of Chemokines (CCL 2) in Bronchoalveolar Lavage Fluid for Refractory Mycoplasma Pneumonia in Children. Italian Journal of Pediatrics, 49, Article No. 125.
https://doi.org/10.1186/s13052-023-01528-2
[43] Zhang, W.H., Zhou, M.P., Zou, Y.Y., et al. (2023) The Predic-tive Values of Soluble B7-DC in Children with Refractory Mycoplasma pneumoniae Pneumonia. Translational Pediat-rics, 12, 396-404.
https://doi.org/10.21037/tp-23-86
[44] 付彬彬, 钟兰兰, 叶婷婷, 等. Autotaxin对儿童难治性肺炎支原体肺炎的预测价值及其与炎性细胞因子的相关性[J]. 中国当代儿科杂志, 2022, 24(7): 765-770.