成人急性髓系白血病的生物学特点及治疗进展
Biological Characteristics and Treatment Progress of Adult Acute Myeloid Leukemia
摘要: 急性髓系白血病(Acute Myeloid Leukemia, AML)是一类起源于造血干细胞的克隆性血液系统恶性肿瘤。目前AML患者的诊断分型、治疗选择及预后评估已经进入了分子生物学时代,随着二代测序等新的分子生物学技术的发展和应用,我们对AML患者有了更全面和更深入的了解。AML患者具有高度异质性,预后差,对不能耐受强化疗以及复发难治的AML患者来说,靶向治疗、免疫治疗等新的治疗选择的出现为这部分患者带来了希望。本文将对成人AML患者的生物学特点及治疗进展进行综述。
Abstract: Acute Myeloid Leukemia (AML) is a type of clonal hematological malignancies originating from hematopoietic stem cells. At present, the diagnosis and classification, treatment selection and prognosis assessment of AML patients have entered the era of molecular biology. With the development and application of new molecular biology technologies such as second-generation sequencing, we have a more comprehensive and in-depth understanding of AML patients. AML patients are highly heterogeneous and have a poor prognosis. For AML patients who cannot tolerate strong chemotherapy or relapse and are difficult to treat, the emergence of new treatment options such as targeted therapy and immunotherapy has brought hope to these patients. This article reviews the biological characteristics and treatment progress of adult AML patients.
文章引用:路肖肖, 赵芳. 成人急性髓系白血病的生物学特点及治疗进展[J]. 临床医学进展, 2024, 14(3): 2076-2089. https://doi.org/10.12677/acm.2024.143947

1. 引言

急性髓系白血病(Acute Myeloid Leukemia, AML)是一种血液系统恶性克隆性疾病,其特征在于骨髓母细胞增殖伴扩增和分化阻滞,导致无效的正常造血,并导致危及生命的血细胞减少和输血依赖的发生。AML可发生于任何年龄段的人,5年相对生存率仅为30.5%,预后差,然而,它在老年人中最常见,诊断时的中位年龄为68岁,超过三分之二的AML患者诊断时的年龄为55岁以上 [1] ,65岁以下患者的中位总生存期(OS)从1975年至1979年的8个月改善到2010年至2014年的46个月,然而,65岁以上患者的生存率在同一时期仅略有提高 [2] [3] 。在过去的十年中,我们对AML患者的细胞遗传学和分子生物学等特点以及及时启动最佳治疗的重要性有了更深层次的了解,对于年轻或者没有不良风险细胞遗传学的患者,临床治疗倾向于传统“3 + 7”诱导化疗方案,此方案不推荐用于高龄(>75岁)、体能状态差或因发病率和早期死亡率增加而导致潜在器官功能障碍的患者 [4] [5] 。AML的治疗现在可以基于患者年龄和细胞遗传学/分子生物学特征进行个体化,近年来多种新型药物和靶向疗法等逐渐走进临床。本文对成人AML患者的生物学特点及治疗进展进行综述。

2. 成人AML生物学特点及预后因素

2.1. 成人AML细胞遗传学特点

细胞遗传学改变对AML患者的预后分层评估有至关重要的作用,对于提供分期和分类信息是必不可少的 [6] 。在AML中,细胞遗传学研究具有双重意义。首先,细胞遗传学极大地扩展了我们对围绕在白血病发生中的基本遗传机制的认识,从而有助于我们理解AML显著的组织病理、免疫表型和临床同源性。第二,染色体变异已被证明构成肿瘤标志物的诊断和预后价值 [7] 。据报道,AML中成人核型异常率为55%~78%,儿童核型异常率为77%~85%,相比之下,约40%~50%的AML病例是细胞遗传学正常(CN-AML)的,但这一组有中度复发的风险 [8] 。研究表明 [9] 染色体核型异常的类型与发病年龄及预后密切相关,复发性染色体结构异常是公认的诊断和诊断预后标志物,提示获得性遗传异常在发病机制中具有关键作用 [10] 。

根据疾病的遗传起源,AML中出现的主要复发性细胞遗传学异常是t(8;21)(q22;q22),t(15;17)(q22;q12)和inv(16)(p13q22)/t(16;16)(p13;q22),它们作为预测最有利预后的标记出现,与较长的缓解期和生存期相关。许多核型异常,如5号染色体和/或7号染色体的单体,5号染色体长臂的缺失,以及3号染色体长臂的异常,如inv(3)(q21q26)和t(3;3)(q21;q26)或复杂的核型与初始治疗不良反应和复发风险显著增加相关,这些被归类为不良预后组,总生存期较短 [11] 。最近,WHO和国际共识分类(ICC),其中ICC被欧洲白血病网推荐采用,并且两种分类都强调了在疾病表征中对细胞遗传学和分子特征的依赖性增加 [12] [13] [14] 。

2.2. 成人AML分子生物学特点

传统的基于细胞遗传学的AML危险分层不能满足准确评估预后的需求,近年来,分子遗传学异常被发现是更准确的危险分层的潜在标志物。

新一代基因测序(NGS)技术是一种敏感、特异、准确的实验室方法,随着NGS技术的发展,通过对海量数据的生物信息学分析,结合临床验证,越来越多的基因突变等分子标志被筛选出来,并逐渐勾勒出AML的分子遗传学异常概貌。基因组学及表观遗传组学研究发现,AML通常伴随多种基因突变和基因融合,继而产生多种分子畸变。目前,经过国际上多个研究组证实,在AML患者中,尤其是CN-AML中高频发生的基因突变有20余种。Papaemmanuil等通过二代测序检测了5000余例AML患者的基因表达谱,发现95%以上的患者有基因突变,超过10%的患者会同时伴有3种以上的基因突变。常见的突变基因有FMS-样酪氨酸激酶3 (FLT3)、核仁磷酸蛋白1 (NPM1)、DNA甲基转移酶3A (DNMT3A),这3种基因的突变率约占全部突变的25%。

基因突变或基因表达失调等分子异常揭示了这些细胞遗传学定义的亚群之间的巨大异质性 [15] 。在一组核心致病基因中发现了复发性体细胞突变,包括FLT3 (25%~30%患病率)、NPM1 (25%~30%患病率)、DNMT3A (25%~30%患病率)、IDH1/2 (5%~15%患病率)和TET2 (5%~15%患病率),具有直接诊断、预后和靶向治疗意义。基于骨髓增生异常综合征(MDS)、原发性AML和继发性AML (sAML)的最新预后研究,ASXL1、BCOR、EZH2、RUNX1、SF3B1、SRSF2、STAG2、U2AF1或ZRSR2突变现在被认为是不良风险 [16] 。最后,涉及MECOM基因 [17] [18] 或KAT6A::CREBBP融合基因 [19] 的新疾病定义细胞遗传学变化已被认为不良风险疾病中出现,而具有多个三体/多体性的超二倍体核型不再被认为是复杂核型。

3. 成人AML传统治疗

治疗的概念包括诱导(以形态学缓解为目标),随后是缓解后巩固治疗以减少或消除残留疾病。最常见的强化化疗方案仍然是“3 + 7”方案,巩固治疗可包括中剂量或高剂量阿糖胞苷(cytarabine, Ara-C)为基础的治疗。

3.1. 标准治疗方案

AML患者的初始治疗决策需要评估适应性,对于新诊断为AML的成年患者,目前普遍使用的标准治疗方案为蒽环类药物包括去甲氧柔红霉素(Idarubicin, IDA)、柔红霉素(Daunorubicin, DNR)、米托蒽醌(Mitoxantrone, MIT)联合标准剂量的Ara-C组成的“3 + 7”化疗方案 [20] ,对于此方案,<60岁患者的完全缓解(CR)率可达60%~80% [21] ,但不建议对年龄 ≥ 75岁或年龄 < 75岁且合并严重非血液系统并发症、不良预后突变基因的患者使用“3 + 7”化疗方案。SWOG试验分析了1980年以来接受“3 + 7”方案治疗的患者从第一次完全缓解(CR1)和从CR1复发后的生存时间是否发生了变化 [22] ,结果显示,OS率有了显著提高。在过去的40年中,65岁以下患者中CR1持续时间和复发后的生存率都有所增加,获得CR1并持续2年的患者比例从中位数58%提高到96%,CR1后前2年复发的患者中,复发后至少生存1年的患者比例从32%提高到52%。

3.2. 低强度化疗方案

近年来,低强度诱导治疗方案被逐渐广泛应用于一些复发/难治性(R/R)的AML患者或一些不适宜强化疗的老年AML患者。STAHL等 [23] 通过国际多中心回顾性数据库,对655例复发难治性AML患者的治疗进行了研究,其中57%的患者采用阿扎胞苷治疗,43%的患者采用地西他滨治疗。结果显示,11%的患者达到CR,5.3%的患者达到CR伴不完全血象恢复(CRi)。由于老年AML患者身体机能差、高龄、合并症多、药物耐受性差等因素的影响,虽然标准化疗提高了老年AML患者的CR率与生存期,但是老年AML患者的死亡率也同时升高,特别是年龄在70岁以上的老年AML患者,其5年生存率仅为10%左右 [24] ,常用的低强度化疗方案包括CAG方案(阿糖胞苷 + 阿克拉霉素 + 粒细胞集落刺激因子)以及HAG方案(高三尖杉酯碱 + 阿糖胞苷 + 粒细胞集落刺激因子)等,1995年,Yamada等 [25] 首先提出使用CAG方案治疗18例R/R AML患者,CR率为83%。既往多项研究表明,CAG方案能使不适合强化疗AML患者的客观缓解率(ORR)达到40%~60%;HAG方案的疗效略好于CAG方案。CAG方案是目前最常用治疗AML患者的方案,能有效杀灭肿瘤细胞,降低病死率,对比CAG方案,去甲基化药物(HMAs)例如地西他滨或阿扎胞苷等联合CAG能够进一步提升不适合强化化疗AML患者的疗效。河南科技大学第一附属医院血液科的临床研究显示 [26] 地西他滨联合CAG方案能有效改善AML患者的免疫功能,效果较好,并且没有明显增加相关不良反应。

总体而言,传统治疗方案在不适合强化化疗AML患者中的整体疗效不佳,缓解率较低,中位总生存期(OS)短。目前越来越多的老年AML患者更倾向于采取非强化化疗,虽然在疗效或生活质量方面没有强化化疗更能展现优势,但对于那些不能耐受强化化疗的AML患者却获益良多。

4. 成人AML治疗进展

4.1. 分子靶向治疗

4.1.1. 去甲基化药物

DNA异常甲基化可以导致基因表达异常、转录失活和抑癌基因失活,进而促进肿瘤的发生。与遗传突变不同,表观遗传学改变是可逆的。因此,去甲基化药物被开发出来,它们能够抑制DNA甲基化转移酶的活性,降低DNA甲基化水平,从而发挥抗肿瘤作用。此外,去甲基化药物还可以使一些肿瘤抑制基因重新表达,修复正常细胞的生长与分化 [27] 。

在21世纪初,最初开发用于治疗MDS的DNA低甲基化药物(HMAs)阿扎胞苷(AZA)或地西他滨(DAC)也被发现对AML有效,HMAs单药治疗的预期值适中,CR率为15%~20% [28] [29] 。随着对AML表观遗传学研究的深入,去甲基化药物AZA及DAC的先后问世为不能耐受常规化疗的患者及老年AML患者带来新的治疗选择。但在历史上,非强化治疗包括使用AZA或DAC单药治疗,中位OS仅仅达到7.7至10.4个月 [29] [30] 。目前,HMAs与维奈克拉(Bcl-2抑制剂)方案仅被批准用于不适合强化化疗的患者的一线方案,也通常用于强化化疗方案后复发的患者。在一项纳入55例R/R AML患者的单组研究中,DAC联合维奈克拉治疗10天后,CR伴血液学不完全恢复(CRi)为42%,另有18%达到了形态学无白血病状态 [31] 。在一项随机安慰剂对照3期试验中,AZA加或不加维奈克拉的疗效和生存率均有显著改善,复合缓解率(CR + CRi)为66% (相比28%),中位OS为14.7个月(相比9.6个月) [32] 。

由此我们可知,大多数老年AML患者基础情况差,合并基础疾病较多,去甲基化药物(AZA或DAC)的应用使很多不能耐受强化疗的老年AML患者获益,同时对于不适合强化化疗的其他AML患者以及R/R的AML患者去甲基化药物治疗也同样有效。

4.1.2. Bcl-2突变抑制剂

Bcl-2蛋白家族于内源性细胞凋亡通路上发挥重要把关作用,维奈克拉(Venetoclax, VEN)是一种B细胞淋巴瘤2 (Bcl-2)的口服、强效的小分子抑制剂,可取代Bcl-2中的促凋亡蛋白,并导致致癌细胞的凋亡 [33] ,其在AML中的应用已经得到广大学者的关注。该药于2018年获FDA批准用于新诊断AML (≥75岁或不适合强化疗)的患者 [34] ,于2020年12月在国内获批用于治疗不适合强化疗的老年AML患者,也是中国唯一一个获批的Bcl-2抑制剂,因此,Bcl-2已被证明有参与化疗耐药性和提高白血病母细胞和祖细胞的生存的作用 [35] 。

一项分析比较了在两项研究(“FLAG-Ida”加VEN,“CLIA”加VEN)中招募的患者与用类似传统强化疗(IC)而无VEN治疗的匹配历史队列的结果,该分析表明,与IC单药治疗相比,IC + VEN治疗的微小残留病灶(MRD)阴性复合CR (CR + CR伴部分血液学恢复(CRh) + CRi)率有所提高(MRD可评价患者中为86% vs 61%,p = 0.0028),缓解患者中能达到干细胞移植(SCT)条件的患者比率更高(79% vs 57%,p = 0.012),IC + VEN组的OS (未达到vs 32个月,p = 0.13)较IC单药组更长 [36] 。其他研究在≤60岁的新诊断AML患者中将VEN与“3 + 7”联合治疗,采用“3 + 7”加VEN组CR + CRi率为91%,“3 + 7”加VEN组未达到中位OS (12个月时为97%) [37] [38] 。总体而言,这些研究支持VEN与IC联合使用的新作用,这种方法在携带对VEN敏感性增加的突变(NPM1、IDH1、IDH2)的AML中更有效 [39] 。VEN敏感基因组学(即二倍体细胞遗传学和NPM1和IDH2突变)也与临床有用的缓解率相关。

因此,我们可知,特异性Bcl-2小分子抑制剂VEN单用和联用其他化疗药物均显示出较好的抗肿瘤活性,国内已经批准VEN联合HMAs作为不适合强化疗的老年AML患者的一线治疗,靶向Bcl-2小分子抑制剂的研究取得了很大进展,为AML治疗开辟了一条新的途径。

4.1.3. FLT3突变抑制剂

FMS样酪氨酸激酶3 (FLT3)突变发生在约30%的新诊断AML患者中,是最常见的突变基因之一,FLT3是位于染色体13q12上的原癌基因FLT3的表达产物,属于III型受体酪氨酸激酶家族。FLT3在AML中经常被内部串联复制(ITD)和酪氨酸激酶结构域(TKD)突变过表达或组成性激活,其中FLT3-ITD突变患者较为常见,频率为10%~25%,FLT3-TKD突变发生在5%~10%的患者中 [40] [41] 。但FLT3-ITD突变的患者具有高肿瘤负荷,与高复发风险和较差的临床结局相关,预后还与并发的核磷酸蛋白1 (NPM1)突变、等位基因比率低(<0.05)对比高等位基因比率(≥0.5)和ITD插入位点的位置相关 [42] 。在单独接受IC治疗的患者中,FLT3-ITD与缓解持续时间(DOR)缩短和OS恶化相关 [43] ,而FLT3-TKD突变对患者的预后影响尚不明确 [41] [44] 。

随着有效FLT3抑制剂的出现,FLT3突变的AML患者的OS正在改善。在患有FLT3突变的AML的年轻/健康患者中,第一代FLT3抑制剂如索拉非尼和米哚妥林已与IC联合治疗,2017年FDA批准米哚妥林与IC联合治疗新诊断的FLT3突变AML。新一代FLT3抑制剂通常更有效和具有特异性,其中包括吉瑞替尼和奎扎替尼等。

吉瑞替尼(gilteritinib)是第二代FLT3抑制剂,具有高选择性和高活性,目前,gilteritinib是唯一FDA批准用于具有FLT3突变的R/R AML单药的FLT3抑制剂 [45] ,ADMIRAL研究是一项在接受gilteritinib或补救化疗的R/R AML和FLT3突变患者中进行的III期随机对照试验,试验比较了单药gilteritinib与化疗对FLT3突变R/R AML患者的疗效,371例患者按2:1随机分配为gilteritinib组和化疗组,结果两组患者的中位OS分别为9.3和5.6个月,无事件生存期(EFS)分别为2.8和0.7个月,CR/CRh分别为34%和15.3%,gilteritinib组的CR率也显著高于化疗组(21.1% vs 10.5%) [46] ,接受gilteritinib的患者的中位OS为9.3个月,而接受挽救化疗的患者为5.6个月。近期日本学者的研究得出了类似结论,gilteritinib组CR/CRh率为48.5%显著高于化疗组的13.3% [47] 。奎扎替尼(Quizatinib)是另一种第二代FLT3抑制剂,对FLT3-ITD具有高度的选择性和较强的抑制活性,可在R/R FLT3突变型AML中实现显著骨髓缓解 [48] [49] [50] ,最近报告的一项研究结果显示Quizatinib + IC组与IC单药组相比OS改善(中位OS 31.9 vs 15.1个月,p = 0.0324) [51] 。

4.1.4. IDH突变抑制剂

IDH1或IDH2突变可以在大约20%的AML病例中得到鉴定,IDH1和IDH2突变的报告频率分别为7%~14%和8%~19%。由突变IDH同种型(IDH1 R132、IDH2 R140和IDH2 R172)产生的癌代谢物2-羟基戊二酸(2-HG)抑制TET2,导致高甲基化表观遗传状态和分化阻滞 [52] 。IDH1/IDH2突变的预后意义尚不完全清楚,一些报告表明IDH2突变与更好的结果相关,而IDH1突变则导致更差的结果 [53] [54] 。

靶向突变型IDHl抑制剂艾伏尼布(ivosidenib)和IDH2抑制剂恩西地平(enasidenib)最初被批准在不适合IC的老年患者中,作为R/R IDH突变型AML或新诊断IDH突变型AML的单药治疗。当作为单一药物使用时,IDH抑制剂导致血液学参数随时间的推移得到渐进性的改善,导致复合CR (CR + CRi + CRp或CR + CRh)率范围为21%至42.4%,中位OS范围为8.8至12.6个月 [55] [56] [57] [58] 。对于过度虚弱甚至不能耐受基于HAMs治疗的患者,ivosidenib临床疗效显著,近年来该药在靶向药物的治疗中受到越来越多的重视 [59] 。对于IDH1突变的AML,在1b期试验中研究加ivosidenib,该组合耐受性良好,12个月时的CR + CRh率为69.6%,OS为82% (未达到中位OS) [60] 。该方案的益处最近在随机III期试验AGILE中得到证实,该研究入组了146例不适合IC的新诊断IDH1突变AML患者,与AZA加安慰剂组相比,AZA加ivosidenib的EFS (风险比0.33,p = 0.002)、CR + CRh率(53% vs 18%,p < 0.001)和OS (中位OS 24 vs 7.9个月,p = 0.001)均有所改善 [61] 。在IDH2突变的AML中,在Ib期剂量递增/随机化II期研究中评估了AZA加enasidenib的组合,并且显示组合组中的CR + CRi + CRp比率相对于AZA单独治疗改善(63%对30%,p = 0.0019) [62] 。一项3期非盲随机试验显示,enasidenib改善了CR率和输血独立率,尽管OS的改善效果并不显著 [63] ,事后亚组分析表明,enasidenib在IDH2-R172变异患者中具有特殊疗效 [64] 。

4.1.5. TP53突变抑制剂

TP53基因突变制造出突变的P53蛋白,P53基因是人类肿瘤抑制基因,可分为野生型和突变型。较高的TP53突变体等位基因频率(>40%)复发和死亡的风险有所增加 [65] 。最近的研究数据表明,无论是新发疾病、sAML或原始细胞计数,TP53突变的存在导致类似的不良结局 [66] 。然而,TP53突变型AML在突变类型、涉及的结构域和变异等位基因(VAF)方面存在异质性,最近的一份报告发现,在TP53突变型AML谱中,无异常p53蛋白表达、完整拷贝数和低VAF的患者预后更好 [67] 。尽管如此,即使在接受异体造血干细胞移植(alloHSCT)的患者中,复发率也非常高,中位OS通常报告为移植后不到6个月 [68] ,但根据最近的回顾性研究,这可能更长 [69] 。Eprenetapopt (APR-246)是一种新型的小分子药物,可选择性诱导TP53突变的癌细胞凋亡,在AML患者的治疗中存在潜在应用价值 [70] 。在1项II期临床研究中,使用Eprenetapopt + AZA治疗TP53突变的AML患者,共入组18例患者,结果显示Eprenetapopt联合AZA治疗具有较高的CR率 [71] 。另一项研究表明,在allo-HSCT治疗后开展Eprenetapopt联合AZA的巩固疗法,可使TP53突变阳性AML或MDS患者的生存期延长 [72] 。

4.1.6. Hedgehog通路抑制剂

格拉吉布(glasdegib)是一种口服的Hedgehog通路抑制剂,也是唯一获批用于AML治疗的SMO拮抗剂,2018年被FDA批准用于治疗新确诊的75岁及以上或由于合并症而无法使用高强度诱导化疗的AML患者 [73] ,在使用过程中需要联合低剂量的阿糖胞苷。在一项2期、随机、开放的多中心临床研究(NCT01546038)中,对于不适合强化化疗的AML或高风险骨髓增生异常综合征(HR-MDS)患者,与低剂量阿糖胞苷(LDAC)单用比较,glasdegib与LDAC联用的中位OS显著延长(8.8个月vs 4.9个月,HR = 0.51,p = 0.0004) [74] 。在最近的一项研究中,glasdegib与低甲基化药物AZA联合治疗初治的AML和HR-MDS患者,ORR分别为30.0%和33.3%,中位OS分别为9.2个月和15.8个月 [75] 。

4.2. 抗体偶联药物

4.2.1. 抗CD33抗体

CD33可在约90%的AML患者的细胞表面进行表达,因此其成为理想的CD33单克隆抗体的靶点 [76] 。吉妥珠单抗(Gemtuzumab Ozogamicin, GO)是一种偶联卡奇霉素的人源化抗CD33的IgG4单克隆抗体,于2017年再次获批,可单独或与常规化疗联合用于表达CD33的AML患者。ALFA-0701研究证实GO联合“3 + 7”方案可以改善低危组和中危组AML患者的临床预后 [77] 。数据的进一步分析显示,GO的EFS和OS获益仅限于具有活化信号传导突变的患者,如FLT3-TKD、FLT3-ITD、KRAS、NRAS、JAK2和PTPN 11,这些突变也与GO靶点CD33的表达增加相关 [78] 。因此,在ELN 2017非不良风险AML中,在IC中添加GO是一个考虑因素。此外,Hills及其同事随后的荟萃分析证实,具有有利风险核心结合因子的白血病患者(即t [8;21]或inv [16] )证明了添加GO的显著存活益处:在加入GO的情况下,观察到5年OS从55%提高到78%,提高了20%以上 [79] 。

4.2.2. 抗CD47抗体

CD47是一种跨膜糖蛋白,通过与巨噬细胞上的配体SIRPα相互作用抑制吞噬作用,起到“不要吃我”信号的作用 [80] 。它在健康细胞中提供抗吞噬信号,CD47在AML细胞中上调作为逃避先天免疫系统的机制 [81] ,但被发现是AML中的不良预后因素。莫洛利单抗(Magrolimab) (5F9)是一种阻断CD47信号的单克隆抗体,Magrolimab通过破坏CD47/SIRPα轴与AZA在体内和体外产生协同抗白血病作用,可能通过AZA诱导的前吞噬细胞钙网蛋白上调相关。一项研究表明,Magrolimab联合AZA在不适合强化疗且初诊的AML中具有良好的耐受性,且缓解率更高 [82] 。在一项1b期研究中评估了Magrolimab与AZA的联合治疗,该研究招募了不适合IC的新诊断AML患者(n = 52),该群组富集TP53突变的AML (65%的患者),在TP53突变患者中,CR + CRi率为67%,中位OS为12.9个月,符合历史预期 [83] 。

4.2.3. 抗CD123抗体

CD123是一种细胞因子受体,在多种血液肿瘤细胞中广泛过表达,尤其是在白血病干细胞(LSCs)中。与FLT3-ITD或NPM1突变的AML细胞相比,具有FLT3-ITD或NPM1突变的AML细胞CD123水平显著升高 [84] 。CD123过表达与成人和儿童AML的高危疾病特征相关,CD123作为一种重要的生物标志物,在R/R AML中具有潜在的靶向作用 [85] 。许多临床前试验研究了各种CD123抗体,如CD123拮抗肽 [86] [87] 以及蛋白-CD123融合抗体 [88] ,伏妥珠单抗(Flotetuzumab)是靶向CD123和CD3的双重亲和力重靶向抗体。一项I/II期研究报告了Flotetuzumab在R/R AML患者中的CR/CRh/CRi率为30%,12个月OS为75% [89] 。

4.3. 嵌合抗原受体T细胞(CAR-T)治疗

嵌合抗原受体修饰T细胞(Chimeric Antigen Receptor T cell, CAR-T)治疗是一种个体化的免疫疗法,旨在改造患者自身免疫细胞,使其具备主动攻击癌细胞的能力,在其他血液学肿瘤免疫疗法治疗成功案例的推动下,CAR-T免疫疗法已在部分R/R AML患者的治疗中得到了应用。CAR-T细胞治疗对于AML患者可能是一种潜在的治疗和预防复发的方法,CD123是一种在AML细胞和化疗耐药白血病干细胞上发现的不良预后抗原标记物,在实验中,抗CD123 CAR-T治疗能够根除AML细胞 [90] ,靶向CD123的基因编辑CAR-T细胞主要针对AML细胞,对正常细胞具有可耐受的毒性 [91] 。尽管CART细胞治疗在某些疾病中有显著疗效,但这项技术仍在不同亚型的治疗差异和副作用与安全性方面存在挑战,CART细胞治疗的适用性和疗效在不同类型的癌症中存在差异,需要进一步研究确定最佳治疗策略,尤其在B细胞恶性肿瘤中,CAR-T细胞取得较好的疗效,但CAR-T对AML的治疗价值仍未确定,此外,CAR-T细胞联合靶向/化疗药物等药物对AML患者具有协同作用 [92] [93] ,但是CART细胞治疗可能引起免疫反应和副作用,如细胞因子释放综合征(CRS)和神经系统副作用(NEC),科学家们正在开发新的方法来降低这些不良反应的风险。

4.4. 造血干细胞移植(HSCT)

经历了半个多世纪的发展,随着对造血干细胞(HSC)的研究不断深入,以及科学技术发展进步等多方面因素影响,造血干细胞移植(HSCT)技术日益成熟,已逐步发展成一个较为完整的治疗体系。异基因造血干细胞移植(alloHSCT)在白血病的治疗中起着重要作用,这一点已被反复证实 [94] ,虽然多年来强化化疗已经改善了AML患者的生存率,但这种获益主要局限于年轻患者和没有不良风险细胞遗传学的患者,此外,对于那些患有中等或不良风险疾病的患者,唯一潜在的治疗策略是(alloHSCT)。提高无复发生存期的增强方法包括同种异体HSCT和维持治疗,一般来说,alloHSCT推荐用于估计复发风险超过35%的患者,包括不良风险疾病患者,特别是在持续性微小残留病灶(MRD)的情况下,由于已知移植前持续MRD的存在与较差的预后相关,MRD过渡到HSCT的患者应尽可能考虑清髓调节方案,免疫抑制的早期逐渐减少,以及HSCT后的临床维护试用 [95] [96] [97] 。根据移植前MRD阳性估计的死亡风险取决于AML亚型(FLT3-ITD突变型AML的4年总生存率 < 30% [97] [98] ,但核心结合因子AML的4年总生存率 > 60%) [99] ,患者是否处于首次或第二次CR [100] ,以及潜在的残留MRD程度。

5. 微小残留病灶(MRD)检测在成人AML中的应用

在过去的十年中,人们对AML的潜在生物学的科学认识不断提高,从而增强了预测工具和完善了风险评估,特别是将可测量残留疾病(MRD)纳入纵向风险评估。MRD评估是指一组高度敏感的实验室技术,允许检测治疗后残留的少量白血病细胞,灵敏度通常在0.1%至0.01%的范围内。许多研究表明,治疗后可检测到的MRD与复发风险增加和OS较差相关 [101] ,MRD检测可考虑用于诱导治疗后和/或alloHSCT前的动态风险分层 [102] [103] 。在两个周期的标准强化化疗后,通过流式细胞术测量,近三分之二的CR患者MRD为阴性 [104] [105] ,复发或死亡风险显著降低 [106] 。然而,MRD阴性并不表明AML细胞的根除,MRD结果应在特定测定和样本限制的背景下进行解释,考虑到MRD评价的重要性,目前将MRD评估纳入缓解评价中,目前的欧洲白血病网络分类特别描述了CR、CRi和CRh无残留MRD (CRMRD、CRiMRD-和CRhMRD)类别,作为CR质量的新指标。在强化化疗和低强度治疗后,通过标准化检测在形态学缓解的情况下确定了MRD阴性的预后价值 [106] [107] 。MRD状态作为预后标志物的价值已得到充分确立,毫无疑问,AML的CR患者的MRD阳性需要改变治疗,以潜在地改善结局。然而,这一概念仍有待于在临床试验中得到证实。

6. 结语与展望

AML的治疗领域正在迅速发展,许多有效的靶向药物已被批准,并且更多的药物正在迅速出现,同时,每个病例的分子特征可预测对特定药物的敏感性,并指导靶向药物的添加。在老年患者中,低强度化疗结合分子靶向药物已在很大程度上取代了以强化化疗为基础的方法,越来越多的证据支持强化化疗没有分子靶向联合低强度化疗方案更具有优势 [107] [108] [109] 。展望未来,三联疗法,包括低甲基化剂与VEN以及第三种药物,对于不适合强化化疗的新诊断AML患者以及R/R但VEN初治患者人群,是越来越常见的临床试验设计。几种新的治疗类别也正在评估中,尤其是在NPM1突变或KMT2A重排患者中使用menin抑制剂的早期结果很有说服力 [110] [111] 。

参考文献

[1] Sasaki, K., Ravandi, F., Kadia, T.M., et al. (2021) De Novo Acute Myeloid Leukemia: A Population-Based Study of Outcome in the United States Based on the Surveillance, Epidemiology, and End Results (SEER) Database, 1980 to 2017. Cancer, 127, 2049-2061.
https://doi.org/10.1002/cncr.33458
[2] Shallis, R.M., Wang, R., Davidoff, A., et al. (2019) Epidemiology of Acute Myeloid Leukemia: Recent Progress and Enduring Challenges. Blood Reviews, 36, 70-87.
https://doi.org/10.1016/j.blre.2019.04.005
[3] Kantarjian, H., Kadia, T., Dinardo, C., et al. (2021) Acute Myeloid Leukemia: Current Progress and Future Directions. Blood Cancer Journal, 11, Article No. 41.
https://doi.org/10.1038/s41408-021-00425-3
[4] Krug, U., Röllig, C., Koschmieder, A., et al. (2010) Complete Remission and Early Death after Intensive Chemotherapy in Patients Aged 60 Years or Older with Acute Myeloid Leukaemia: A Web-Based Application for Prediction of Outcomes. The Lancet, 376, 2000-2008.
https://doi.org/10.1016/S0140-6736(10)62105-8
[5] Sasaki, K., Kadia, T., Begna, K., et al. (2022) Prediction of Early (4-Week) Mortality in Acute Myeloid Leukemia with Intensive Chemotherapy. American Journal of Hematology, 97, 68-78.
https://doi.org/10.1002/ajh.26395
[6] Creutzig, U., Zimmermann, M., Reinhardt, D., et al. (2016) Changes in Cytogenetics and Molecular Genetics in Acute Myeloid Leukemia from Childhood to Adult Age Groups. Cancer, 122, 3821-3830.
https://doi.org/10.1002/cncr.30220
[7] Mrózek, K., Heinonen, K. and Bloomfield, C.D. (2001) Clinical Importance of Cytogenetics in Acute Myeloid Leukaemia. Best Practice & Research Clinical Haematology, 14, 19-47.
https://doi.org/10.1053/beha.2000.0114
[8] Saultz, J.N. and Garzon, R. (2016) Acute Myeloid Leukemia: A Concise Review. Journal of Clinical Medicine, 5, Article 33.
https://doi.org/10.3390/jcm5030033
[9] Craig, C.M. and Schiller, G.J. (2008) Acute Myeloid Leukemia in the Elderly: Conventional and Novel Treatment Approaches. Blood Reviews, 22, 221-234.
https://doi.org/10.1016/j.blre.2008.03.002
[10] Ley, T.J., Miller, C., Ding, L., et al. (2013) Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. New England Journal of Medicine, 368, 2059-2074.
https://doi.org/10.1056/NEJMoa1301689
[11] Grimwade, D., Hills, R.K., Moorman, A.V., et al. (2010) Refinement of Cytogenetic Classification in Acute Myeloid Leukemia: Determination of Prognostic Significance of Rare Recurring Chromosomal Abnormalities among 5876 Younger Adult Patients Treated in the United Kingdom Medical Research Council Trials. Blood, 116, 354-365.
https://doi.org/10.1182/blood-2009-11-254441
[12] Arber, D.A., Orazi, A., Hasserjian, R.P., et al. (2022) International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating Morphologic, Clinical, and Genomic Data. Blood, 140, 1200-1228.
[13] Khoury, J.D., Solary, E., Abla, O., et al. (2022) The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia, 36, 1703-1719.
https://doi.org/10.1038/s41375-022-01613-1
[14] Döhner, H., Wei, A.H., Appelbaum, F.R., et al. (2022) Diagnosis and Management of AML in Adults: 2022 Recommendations from an International Expert Panel on Behalf of the ELN. Blood, 140, 1345-1377.
https://doi.org/10.1182/blood.2022016867
[15] Döhner, H., Weisdorf, D.J. and Bloomfield, C.D. (2015) Acute Myeloid Leukemia. New England Journal of Medicine, 373, 1136-1152.
https://doi.org/10.1056/NEJMra1406184
[16] Awada, H., Durmaz, A., Gurnari, C., et al. (2021) Machine Learning Integrates Genomic Signatures for Subclassification Beyond Primary and Secondary Acute Myeloid Leukemia. Blood, 138, 1885-1895.
https://doi.org/10.1182/blood.2020010603
[17] Lugthart, S., Gröschel, S., Beverloo, H.B., et al. (2010) Clinical, Molecular, and Prognostic Significance of WHO Type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and Various Other 3q Abnormalities in Acute Myeloid Leukemia. Journal of Clinical Oncology, 28, 3890-3898.
https://doi.org/10.1200/JCO.2010.29.2771
[18] Ottema, S., Mulet-Lazaro, R., Beverloo, H.B., et al. (2020) Atypical 3q26/MECOM Rearrangements Genocopy inv(3)/t(3;3) in Acute Myeloid Leukemia. Blood, 136, 224-234.
https://doi.org/10.1182/blood.2019003701
[19] Kayser, S., Hills, R.K., Langova, R., et al. (2021) Characteristics and Outcome of Patients with Acute Myeloid Leukaemia and t(8;16)(p11;p13): Results from an International Collaborative Study. British Journal of Haematology, 192, 832-842.
https://doi.org/10.1111/bjh.17336
[20] Lo, M.C., Peterson, L.F., Yan, M., et al. (2013) JAK Inhibitors Suppress t(8;21) Fusion Protein-Induced Leukemia. Leukemia, 27, 2272-2279.
https://doi.org/10.1038/leu.2013.197
[21] Kadia, T.M., Ravandi, F., Cortes, J., et al. (2016) New Drugs in Acute Myeloid Leukemia. Annals of Oncology, 27, 770-778.
https://doi.org/10.1093/annonc/mdw015
[22] Othus, M., Garcia-Manero, G., Godwin, J.E., et al. (2023) Improved Outcomes with “7 3” Induction Chemotherapy for Acute Myeloid Leukemia over the Past Four Decades: Analysis of SWOG Trial Data. Haematologica, 108, 42-47.
https://doi.org/10.3324/haematol.2022.280765
[23] Stahl, M., Deveaux, M., Montesinos, P., et al. (2018) Hypomethylating Agents in Relapsed and Refractory AML: Outcomes and Their Predictors in a Large International Patient Cohort. Blood Advances, 2, 923-932.
https://doi.org/10.1182/bloodadvances.2018016121
[24] 郑冬丽. CAG方案联合参麦注射液治疗老年急性髓系白血病患者的临床效果[J]. 中国老年学杂志, 2010, 30(16): 2378-2379.
[25] 吴德沛, 吴小津, 石培民, 等. 含G-CSF的预激方案用于难治性或复发性急性髓系白血病治疗的临床研究[J]. 中华血液学杂志, 2004, 25(1): 51-52.
[26] 徐晓梅. 地西他滨联合CAG方案治疗急性髓系白血病患者的临床观察[J]. 现代诊断与治疗, 2020, 31(4): 564-566.
[27] Pollyea, D.A., Pratz, K., Letai, A., et al. (2021) Venetoclax with Azacitidine or Decitabine in Patients with Newly Diagnosed Acute Myeloid Leukemia: Long Term Follow-Up from a Phase 1b Study. American Journal of Hematology, 96, 208-217.
https://doi.org/10.1002/ajh.26039
[28] Becker, H., Suciu, S., Rüter, B.H., et al. (2015) Decitabine versus Best Supportive Care in Older Patients with Refractory Anemia with Excess Blasts in Transformation (RAEBt)-Results of a Subgroup Analysis of the Randomized Phase III Study 06011 of the EORTC Leukemia Cooperative Group and German MDS Study Group (GMDSSG). Annals of Hematology, 94, 2003-2013.
https://doi.org/10.1007/s00277-015-2489-6
[29] Dombret, H., Seymour, J.F., Butrym, A., et al. (2015) International Phase 3 Study of Azacitidine Vs Conventional Care Regimens in Older Patients with Newly Diagnosed AML with >30% Blasts. Blood, 126, 291-299.
https://doi.org/10.1182/blood-2015-01-621664
[30] Kantarjian, H.M., Thomas, X.G., Dmoszynska, A., et al. (2012) Multicenter, Randomized, Open-Label, Phase III Trial of Decitabine versus Patient Choice, with Physician Advice, of Either Supportive Care or Low-Dose Cytarabine for the Treatment of Older Patients with Newly Diagnosed Acute Myeloid Leukemia. Journal of Clinical Oncology, 30, 2670-2677.
https://doi.org/10.1200/JCO.2011.38.9429
[31] Dinardo, C.D., Maiti, A., Rausch, C.R., et al. (2020) 10-Day Decitabine with Venetoclax for Newly Diagnosed Intensive Chemotherapy Ineligible, and Relapsed or Refractory Acute Myeloid Leukaemia: A Single-Centre, Phase 2 Trial. The Lancet Haematology, 7, E724-E736.
https://doi.org/10.1016/S2352-3026(20)30210-6
[32] Dinardo, C.D., Jonas, B.A., Pullarkat, V., et al. (2020) Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. New England Journal of Medicine, 383, 617-629.
https://doi.org/10.1056/NEJMoa2012971
[33] Konopleva, M. and Letai, A. (2018) BCL-2 Inhibition in AML: An Unexpected Bonus? Blood, 132, 1007-1012.
https://doi.org/10.1182/blood-2018-03-828269
[34] Park, S., Cho, B.S. and Kim, H.J. (2020) New Agents in Acute Myeloid Leukemia (AML). Blood Research, 55, S14-S18.
https://doi.org/10.5045/br.2020.S003
[35] Lagadinou, E.D., Sach, A., Callahan, K., et al. (2013) BCL-2 Inhibition Targets Oxidative Phosphorylation and Selectively Eradicates Quiescent Human Leukemia Stem Cells. Cell Stem Cell, 12, 329-341.
https://doi.org/10.1016/j.stem.2012.12.013
[36] Lachowiez, C.A., Reville, P.K., Kantarjian, H., et al. (2022) Venetoclax Combined with Induction Chemotherapy in Patients with Newly Diagnosed Acute Myeloid Leukaemia: A Post-Hoc, Propensity Score-Matched, Cohort Study. The Lancet Haematology, 9, E350-E360.
https://doi.org/10.1016/S2352-3026(22)00076-X
[37] Wang, H., Mao, L., Yang, M., et al. (2022) Venetoclax Plus 3   7 Daunorubicin and Cytarabine Chemotherapy as First-Line Treatment for Adults with Acute Myeloid Leukaemia: A Multicentre, Single-Arm, Phase 2 Trial. The Lancet Haematology, 9, E415-E424.
https://doi.org/10.1016/S2352-3026(22)00106-5
[38] Chua, C.C., Roberts, A.W., Reynolds, J., et al. (2020) Chemotherapy and Venetoclax in Elderly Acute Myeloid Leukemia Trial (CAVEAT): A Phase Ib Dose-Escalation Study of Venetoclax Combined with Modified Intensive Chemotherapy. Journal of Clinical Oncology, 38, 3506-3517.
https://doi.org/10.1200/JCO.20.00572
[39] Dinardo, C.D., Lachowiez, C.A., Takahashi, K., et al. (2021) Venetoclax Combined with FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. Journal of Clinical Oncology, 39, 2768-2778.
https://doi.org/10.1200/JCO.20.03736
[40] Döhner, H., Wei, A.H. and Löwenberg, B. (2021) Towards Precision Medicine for AML. Nature Reviews Clinical Oncology, 18, 577-590.
https://doi.org/10.1038/s41571-021-00509-w
[41] Daver, N., Schlenk, R.F., Russell, N.H., et al. (2019) Targeting FLT3 Mutations in AML: Review of Current Knowledge and Evidence. Leukemia, 33, 299-312.
https://doi.org/10.1038/s41375-018-0357-9
[42] Döhner, K., Thiede, C., Jahn, N., et al. (2020) Impact of NPM1/FLT3-ITD Genotypes Defined by the 2017 European LeukemiaNet in Patients with Acute Myeloid Leukemia. Blood, 135, 371-380.
[43] Patnaik, M.M. (2018) The Importance of FLT3 Mutational Analysis in Acute Myeloid Leukemia. Leukemia & Lymphoma, 59, 2273-2286.
https://doi.org/10.1080/10428194.2017.1399312
[44] Döhner, H., Estey, E., Grimwade, D., et al. (2017) Diagnosis and Management of AML in Adults: 2017 ELN Recommendations from an International Expert Panel. Blood, 129, 424-447.
https://doi.org/10.1182/blood-2016-08-733196
[45] Wang, E.S. (2019) Incorporating FLT3 Inhibitors in the Frontline Treatment of FLT3 Mutant Acute Myeloid Leukemia. Best Practice & Research Clinical Haematology, 32, 154-162.
https://doi.org/10.1016/j.beha.2019.05.006
[46] Perl, A.E., Martinelli, G., Cortes, J.E., et al. (2019) Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. New England Journal of Medicine, 381, 1728-1740.
https://doi.org/10.1056/NEJMoa1902688
[47] Hosono, N., Yokoyama, H., Aotsuka, N., et al. (2021) Gilteritinib versus Chemotherapy in Japanese Patients with FLT3-Mutated Relapsed/Refractory Acute Myeloid Leukemia. International Journal of Clinical Oncology, 26, 2131-2141.
https://doi.org/10.1007/s10147-021-02006-7
[48] Cortes, J.E., Tallman, M.S., Schiller, G.J., et al. (2018) Phase 2b Study of 2 Dosing Regimens of Quizartinib Monotherapy in FLT3-ITD-Mutated, Relapsed or Refractory AML. Blood, 132, 598-607.
https://doi.org/10.1182/blood-2018-01-821629
[49] Cortes, J.E., Khaled, S., Martinelli, G., et al. (2019) Quizartinib versus Salvage Chemotherapy in Relapsed or Refractory FLT3-ITD Acute Myeloid Leukaemia (QuANTUM-R): A Multicentre, Randomised, Controlled, Open-Label, Phase 3 Trial. The Lancet Oncology, 20, 984-997.
https://doi.org/10.1016/S1470-2045(19)30150-0
[50] Cortes, J., Perl, A.E., Döhner, H., et al. (2018) Quizartinib, an FLT3 Inhibitor, as Monotherapy in Patients with Relapsed or Refractory Acute Myeloid Leukaemia: An Open-Label, Multicentre, Single-Arm, Phase 2 Trial. The Lancet Oncology, 19, 889-903.
https://doi.org/10.1016/S1470-2045(18)30240-7
[51] Erba, H., Montesinos, P., Vrhovac, R., et al. (2022) Quizartinib Prolonged Overall Survival (OS) vs Placebo plus Intensive Induction and Consolidation Therapy Followed by Single-Agent Continuation in Patients Aged 18-75 LYears with Newly Diagnosed FLT3-Internal Tandem Duplication Positive (FLT3-ITD ) Acute Myeloid Leukemia (AML). Clinical Lymphoma Myeloma & Leukemia, 22, S208-S209.
https://doi.org/10.1016/S2152-2650(22)01212-5
[52] Lachowiez, C., Dinardo, C.D. and Stein, E. (2022) Combining Isocitrate Dehydrogenase Inhibitors with Existing Regimens in Acute Myeloid Leukemia: An Evolving Treatment Landscape. The Cancer Journal, 28, 21-28.
https://doi.org/10.1097/PPO.0000000000000570
[53] Chou, W.C., Lei, W.C., Ko, B.S., et al. (2011) The Prognostic Impact and Stability of Isocitrate Dehydrogenase 2 Mutation in Adult Patients with Acute Myeloid Leukemia. Leukemia, 25, 246-253.
https://doi.org/10.1038/leu.2010.267
[54] Paschka, P., Schlenk, R.F., Gaidzik, V.I., et al. (2010) IDH1 and IDH2 Mutations Are Frequent Genetic Alterations in Acute Myeloid Leukemia and Confer Adverse Prognosis in Cytogenetically Normal Acute Myeloid Leukemia with NPM1 Mutation without FLT3 Internal Tandem Duplication. Journal of Clinical Oncology, 28, 3636-3643.
https://doi.org/10.1200/JCO.2010.28.3762
[55] Stein, E.M., Dinardo, C.D., Pollyea, D.A., et al. (2017) Enasidenib in Mutant IDH2 Relapsed or Refractory Acute Myeloid Leukemia. Blood, 130, 722-731.
https://doi.org/10.1182/blood-2017-04-779405
[56] Pollyea, D.A., Tallman, M.S., De Botton, S., et al. (2019) Enasidenib, an Inhibitor of Mutant IDH2 Proteins, Induces Durable Remissions in Older Patients with Newly Diagnosed Acute Myeloid Leukemia. Leukemia, 33, 2575-2584.
https://doi.org/10.1038/s41375-019-0472-2
[57] Dinardo, C.D., Stein, E.M., De Botton, S., et al. (2018) Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. New England Journal of Medicine, 378, 2386-2398.
[58] Roboz, G.J., Dinardo, C.D., Stein, E.M, et al. (2020) Ivosidenib Induces Deep Durable Remissions in Patients with Newly Diagnosed IDH1-Mutant Acute Myeloid Leukemia. Blood, 135, 463-471.
https://doi.org/10.1182/blood.2019002140
[59] Martelli, M.P., Martino, G., Cardinali, V., et al. (2020) Enasidenib and Ivosidenib in AML. Minerva Medica, 111, 411-426.
https://doi.org/10.23736/S0026-4806.20.07024-X
[60] Dinardo, C.D., Stein, A.S., Stein, E.M., et al. (2021) Mutant Isocitrate Dehydrogenase 1 Inhibitor Ivosidenib in Combination with Azacitidine for Newly Diagnosed Acute Myeloid Leukemia. Journal of Clinical Oncology, 39, 57-65.
https://doi.org/10.1200/JCO.20.01632
[61] Montesinos, P., Recher, C., Vives, S., et al. (2022) Ivosidenib and Azacitidine in IDH1-Mutated Acute Myeloid Leukemia. New England Journal of Medicine, 386, 1519-1531.
https://doi.org/10.1056/NEJMoa2117344
[62] Dinardo, C.D., Schuh, A.C., Stein, E.M., et al. (2021) Enasidenib plus Azacitidine versus Azacitidine Alone in Patients with Newly Diagnosed, Mutant-IDH2 Acute Myeloid Leukaemia (AG221-AML-005): A Single-Arm, Phase 1b and Randomised, Phase 2 Trial. The Lancet Oncology, 22, 1597-1608.
https://doi.org/10.1016/S1470-2045(21)00494-0
[63] De Botton, S., Montesinos, P., Schuh, A.C., et al. (2023) Enasidenib vs Conventional Care in Older Patients with Late-Stage Mutant-IDH2 Relapsed/Refractory AML: A Randomized Phase 3 Trial. Blood, 141, 156-167.
https://doi.org/10.1182/blood.2021014901
[64] De Botton, S., Risueno, A., Schuh, A.C., et al. (2022) Overall Survival by IDH2 Mutant Allele (R140 or R172) in Patients with Late-Stage Mutant-IDH2 Relapsed or Refractory Acute Myeloid Leukemia Treated with Enasidenib or Conventional Care Regimens in the Phase 3 IDHENTIFY Trial. Journal of Clinical Oncology, 40, 7005-7005.
https://doi.org/10.1200/JCO.2022.40.16_suppl.7005
[65] Short, N.J., Montalban-Bravo, G., Hwang, H., et al. (2020) Prognostic and Therapeutic Impacts of Mutant TP53 Variant Allelic Frequency in Newly Diagnosed Acute Myeloid Leukemia. Blood Advances, 4, 5681-5689.
https://doi.org/10.1182/bloodadvances.2020003120
[66] Weinberg, O.K., Siddon, A., Madanat, Y.F., et al. (2022) TP53 Mutation Defines a Unique Subgroup within Complex Karyotype De Novo and Therapy-Related MDS/AML. Blood Advances, 6, 2847-2853.
https://doi.org/10.1182/bloodadvances.2021006239
[67] Tashakori, M., Kadia, T., Loghavi, S., et al. (2022) TP53 Copy Number and Protein Expression Inform Mutation Status Across Risk Categories in Acute Myeloid Leukemia. Blood, 140, 58-72.
https://doi.org/10.1182/blood.2021013983
[68] Bejar, R., Stevenson, K.E., Caughey, B., et al. (2014) Somatic Mutations Predict Poor Outcome in Patients with Myelodysplastic Syndrome after Hematopoietic Stem-Cell Transplantation. Journal of Clinical Oncology, 32, 2691-2698.
https://doi.org/10.1200/JCO.2013.52.3381
[69] Badar, T., Atallah, E., Shallis, R., et al. (2023) Survival of TP53-Mutated Acute Myeloid Leukemia Patients Receiving Allogeneic Stem Cell Transplantation after First Induction or Salvage Therapy: Results from the Consortium on Myeloid Malignancies and Neoplastic Diseases (COMMAND). Leukemia, 37, 799-806.
https://doi.org/10.1038/s41375-023-01847-7
[70] Sallman, D.A. (2020) To Target the Untargetable: Elucidation of Synergy of APR-246 and Azacitidine in TP53 Mutant Myelodysplastic Syndromes and Acute Myeloid Leukemia. Haematologica, 105, 1470-1472.
https://doi.org/10.3324/haematol.2020.249060
[71] Cluzeau, T., Sebert, M., Rahme, R., et al. (2021) Eprenetapopt plus Azacitidine in TP53-Mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia: A Phase II Study by the Groupe Francophone Des Myélodysplasies (GFM). Journal of Clinical Oncology, 39, 1575-1583.
https://doi.org/10.1200/JCO.20.02342
[72] Mishra, A., Tamari, R., Dezern, A.E., et al. (2022) Eprenetapopt plus Azacitidine after Allogeneic Hematopoietic Stem-Cell Transplantation for TP53-Mutant Acute Myeloid Leukemia and Myelodysplastic Syndromes. Journal of Clinical Oncology, 40, 3985-3993.
https://doi.org/10.1200/JCO.22.00181
[73] Feld, J., Silverman, L.R. and Navada, S.C. (2021) Forsaken Pharmaceutical: Glasdegib in Acute Myeloid Leukemia and Myeloid Diseases. Clinical Lymphoma, Myeloma and Leukemia, 21, E415-E22.
https://doi.org/10.1016/j.clml.2020.12.007
[74] Cortes, J.E., Heidel, F.H., Hellmann, A., et al. (2019) Randomized Comparison of Low Dose Cytarabine with or without Glasdegib in Patients with Newly Diagnosed Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome. Leukemia, 33, 379-389.
https://doi.org/10.1038/s41375-018-0312-9
[75] Sekeres, M.A., Schuster, M., Joris, M., et al. (2022) A Phase 1b Study of Glasdegib   Azacitidine in Patients with Untreated Acute Myeloid Leukemia and Higher-Risk Myelodysplastic Syndromes. Annals of Hematology, 101, 1689-1701.
https://doi.org/10.1007/s00277-022-04853-4
[76] Goldenson, B.H., Goodman, A.M. and Ball, E.D. (2021) Gemtuzumab Ozogamicin for the Treatment of Acute Myeloid Leukemia in Adults. Expert Opinion on Biological Therapy, 21, 849-862.
https://doi.org/10.1080/14712598.2021.1825678
[77] Lambert, J., Pautas, C., Terre, C., et al. (2019) Gemtuzumab Ozogamicin for De Novo Acute Myeloid Leukemia: Final Efficacy and Safety Updates from the Open-Label, Phase III ALFA-0701 Trial. Haematologica, 104, 113-119.
https://doi.org/10.3324/haematol.2018.188888
[78] Fournier, E., Duployez, N., Ducourneau, B., et al. (2020) Mutational Profile and Benefit of Gemtuzumab Ozogamicin in Acute Myeloid Leukemia. Blood, 135, 542-546.
https://doi.org/10.1182/blood.2019003471
[79] Hills, R.K., Castaigne, S., Appelbaum, F.R, et al. (2014) Addition of Gemtuzumab Ozogamicin to Induction Chemotherapy in Adult Patients with Acute Myeloid Leukaemia: A Meta-Analysis of Individual Patient Data from Randomised Controlled Trials. The Lancet Oncology, 15, 986-996.
https://doi.org/10.1016/S1470-2045(14)70281-5
[80] Qu, T., Li, B. and Wang, Y. (2022) Targeting CD47/SIRPα as a Therapeutic Strategy, Where We Are and Where We Are Headed. Biomarker Research, 10, Article No. 20.
https://doi.org/10.1186/s40364-022-00373-5
[81] Jaiswal, S., Jamieson, C.H., Pang, W.W., et al. (2009) CD47 Is Upregulated on Circulating Hematopoietic Stem Cells and Leukemia Cells to Avoid Phagocytosis. Cell, 138, 271-285.
https://doi.org/10.1016/j.cell.2009.05.046
[82] Daver, N. (2021) Immune Checkpoint Inhibitors in Acute Myeloid Leukemia. Best Practice & Research Clinical Haematology, 34, Article 101247.
https://doi.org/10.1016/j.beha.2021.101247
[83] Sallman, D., Asch, A., Kambhampati, S., et al. (2021) The First-in-Class Anti-CD47 Antibody Magrolimab in Combination with Azacitidine Is Well Tolerated and Effective in AML Patients: Phase 1b Results. Clinical Lymphoma Myeloma & Leukemia, 21, S290.
https://doi.org/10.1016/S2152-2650(21)01694-3
[84] Cruz, N.M., Sugita, M., Ewing-Crystal, N., et al. (2018) Selection and Characterization of Antibody Clones Are Critical for Accurate Flow Cytometry-Based Monitoring of CD123 in Acute Myeloid Leukemia. Leukemia & Lymphoma, 59, 978-982.
https://doi.org/10.1080/10428194.2017.1361023
[85] Lamble, A.J., Eidenschink Brodersen, L., Alonzo, T.A., et al. (2022) CD123 Expression Is Associated with High-Risk Disease Characteristics in Childhood Acute Myeloid Leukemia: A Report from the Children’s Oncology Group. Journal of Clinical Oncology, 40, 252-261.
https://doi.org/10.1200/JCO.21.01595
[86] Xu, S., Zhang, M., Fang, X., et al. (2021) A Novel CD123-Targeted Therapeutic Peptide Loaded by Micellar Delivery System Combats Refractory Acute Myeloid Leukemia. Journal of Hematology & Oncology, 14, Article No. 193.
https://doi.org/10.1186/s13045-021-01206-y
[87] Xu, S., Zhang, M., Fang, X., et al. (2022) CD123 Antagonistic Peptides Assembled with Nanomicelles Act as Monotherapeutics to Combat Refractory Acute Myeloid Leukemia. ACS Applied Materials & Interfaces, 14, 38584-38593.
https://doi.org/10.1021/acsami.2c11538
[88] Tahk, S., Vick, B., Hiller, B., et al. (2021) SIRPα-αCD123 Fusion Antibodies Targeting CD123 in Conjunction with CD47 Blockade Enhance the Clearance of AML-Initiating Cells. Journal of Hematology & Oncology, 14, Article No. 155.
https://doi.org/10.1186/s13045-021-01163-6
[89] Uy, G.L., Aldoss, I., Foster, M.C., et al. (2021) Flotetuzumab as Salvage Immunotherapy for Refractory Acute Myeloid Leukemia. Blood, 137, 751-762.
https://doi.org/10.1182/blood.2020007732
[90] Arcangeli, S., Rotiroti, M.C., Bardelli, M., et al. (2017) Balance of Anti-CD123 Chimeric Antigen Receptor Binding Affinity and Density for the Targeting of Acute Myeloid Leukemia. Molecular Therapy, 25, 1933-1945.
https://doi.org/10.1016/j.ymthe.2017.04.017
[91] Sugita, M., Galetto, R., Zong, H., et al. (2022) Allogeneic TCRαβ Deficient CAR T-Cells Targeting CD123 in Acute Myeloid Leukemia. Nature Communications, 3, Article No. 2227.
https://doi.org/10.1038/s41467-022-29668-9
[92] El Khawanky, N., Hughes, A., Yu, W., et al. (2021) Demethylating Therapy Increases Anti-CD123 CAR T Cell Cytotoxicity against Acute Myeloid Leukemia. Nature Communications, 12, Article No. 6436.
https://doi.org/10.1038/s41467-021-26683-0
[93] Li, K.X., Wu, H.Y., Pan, W.Y., et al. (2022) A Novel Approach for Relapsed/Refractory FLT3Mut Acute Myeloid Leukaemia: Synergistic Effect of the Combination of Bispecific FLT3scFv/NKG2D-CAR T Cells and Gilteritinib. Molecular Cancer, 21, Article No. 134.
https://doi.org/10.1186/s12943-022-01566-0
[94] Greiner, J., Götz, M., Bunjes, D., et al. (2019) Immunological and Clinical Impact of Manipulated and Unmanipulated DLI after Allogeneic Stem Cell Transplantation of AML Patients. Journal of Clinical Medicine, 9, Article 39.
https://doi.org/10.3390/jcm9010039
[95] Walter, R.B., Gyurkocza, B., Storer, B.E., et al. (2015) Comparison of Minimal Residual Disease as Outcome Predictor for AML Patients in First Complete Remission Undergoing Myeloablative or Nonmyeloablative Allogeneic Hematopoietic Cell Transplantation. Leukemia, 29, 137-144.
https://doi.org/10.1038/leu.2014.173
[96] Othus, M., Gale, R.P., Hourigan, C.S., et al. (2020) Statistics and Measurable Residual Disease (MRD) Testing: Uses and Abuses in Hematopoietic Cell Transplantation. Bone Marrow Transplantation, 55, 843-850.
https://doi.org/10.1038/s41409-019-0729-4
[97] Hourigan, C.S., Dillon, L.W., Gui, G., et al. (2020) Impact of Conditioning Intensity of Allogeneic Transplantation for Acute Myeloid Leukemia with Genomic Evidence of Residual Disease. Journal of Clinical Oncology, 38, 1273-1283.
https://doi.org/10.1200/JCO.19.03011
[98] Dillon, R., Hills, R., Freeman, S., et al. (2020) Molecular MRD Status and Outcome after Transplantation in NPM1-Mutated AML. Blood, 135, 680-688.
https://doi.org/10.1182/blood.2019002959
[99] Konuma, T., Kondo, T., Masuko, M., et al. (2021) Prognostic Value of Measurable Residual Disease at Allogeneic Transplantation for Adults with Core Binding Factor Acute Myeloid Leukemia in Complete Remission. Bone Marrow Transplantation, 56, 2779-2787.
https://doi.org/10.1038/s41409-021-01409-4
[100] Jentzsch, M., Bischof, L., Backhaus, D., et al. (2022) Impact of MRD Status in Patients with AML Undergoing Allogeneic Stem Cell Transplantation in the First vs the Second Remission. Blood Advances, 6, 4570-4580.
https://doi.org/10.1182/bloodadvances.2022007168
[101] Schuurhuis, G.J., Heuser, M., Freeman, S., et al. (2018) Minimal/Measurable Residual Disease in AML: A Consensus Document from the European LeukemiaNet MRD Working Party. Blood, 131, 1275-1291.
https://doi.org/10.1182/blood-2017-09-801498
[102] Grob, T., Sanders, M.A., Vonk, C.M., et al. (2023) Prognostic Value of FLT3-Internal Tandem Duplication Residual Disease in Acute Myeloid Leukemia. Journal of Clinical Oncology, 41, 756-765.
https://doi.org/10.1200/JCO.22.00715
[103] Loo, S., Dillon, R., Ivey, A., et al. (2022) Pretransplant FLT3-ITD MRD Assessed by High-Sensitivity PCR-NGS Determines Posttransplant Clinical Outcome. Blood, 140, 2407-2411.
https://doi.org/10.1182/blood.2022016567
[104] Yu, S., Fan, Z., Ma, L., et al. (2021) Association between Measurable Residual Disease in Patients with Intermediate-Risk Acute Myeloid Leukemia and First Remission, Treatment, and Outcomes. JAMA Network Open, 4, e2115991.
https://doi.org/10.1001/jamanetworkopen.2021.15991
[105] Freeman, S.D., Hills, R.K., Virgo, P., et al. (2018) Measurable Residual Disease at Induction Redefines Partial Response in Acute Myeloid Leukemia and Stratifies Outcomes in Patients at Standard Risk without NPM1 Mutations. Journal of Clinical Oncology, 36, 1486-1497.
https://doi.org/10.1200/JCO.2017.76.3425
[106] Short, N.J., Zhou, S., Fu, C., et al. (2020) Association of Measurable Residual Disease with Survival Outcomes in Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. JAMA Oncology, 6, 1890-1899.
https://doi.org/10.1001/jamaoncol.2020.4600
[107] Pratz, K.W., Jonas, B.A., Pullarkat, V., et al. (2022) Measurable Residual Disease Response and Prognosis in Treatment-Naïve Acute Myeloid Leukemia with Venetoclax and Azacitidine. Journal of Clinical Oncology, 40, 855-865.
https://doi.org/10.1200/JCO.21.01546
[108] Cherry, E.M., Abbott, D., Amaya, M., et al. (2021) Venetoclax and Azacitidine Compared with Induction Chemotherapy for Newly Diagnosed Patients with Acute Myeloid Leukemia. Blood Advances, 5, 5565-5573.
https://doi.org/10.1182/bloodadvances.2021005538
[109] Sahasrabudhe, K., Huang, Y., Rebechi, M, et al. (2022) Survival, Response Rates, and Post-Transplant Outcomes in Patients with Acute Myeloid Leukemia Aged 60-75 Treated with High Intensity Chemotherapy vs. Lower Intensity Targeted Therapy. Frontiers in Oncology, 12, Article 1017194.
https://doi.org/10.3389/fonc.2022.1017194
[110] Wang, E.S., Altman, J.K., Pettit, K., et al. (2020) Preliminary Data on a Phase 1/2A First in Human Study of the Menin-KMT2A (MLL) Inhibitor KO-539 in Patients with Relapsed or Refractory Acute Myeloid Leukemia. Blood, 136, 7-8.
https://doi.org/10.1182/blood-2020-134942
[111] Stein, E.M., Aldoss, I., Dipersio, J.F., et al. (2021) Safety and Efficacy of Menin Inhibition in Patients (Pts) with MLL-Rearranged and NPM1 Mutant Acute Leukemia: A Phase (Ph)1, First-in-Human Study of SNDX-5613 (AUGMENT 101). Blood, 138, 699.
https://doi.org/10.1182/blood-2021-146944