miR-485-3p在消化系统肿瘤中的研究进展
Research Progress of miR-485-3p in Digestive System Tumors
DOI: 10.12677/acm.2024.143968, PDF, HTML, XML, 下载: 24  浏览: 54 
作者: 孙家浩, 李 杰:山东大学齐鲁医学院,山东 济南;孙文胜:临沂市中心医院普外科,山东 临沂
关键词: miR-485-3p肿瘤细胞增殖miR-485-3p Tumor Cell Proliferation
摘要: microRNAs (miRNAs)是一类在动物、植物、病毒进化上保守的非编码RNA,并已被证明通过转录后调节发挥作用,参与多种生物学过程。最近的研究表明,miRNAs可调节基因组不稳定性,尤其在许多癌症中,miRNA的表达失调会导致肿瘤异质性和耐药性的基因改变。因此,近几年来miRNA在肿瘤中的作用是研究热点之一,miR-485-3P便是其中之一。现有研究表明,miR-485-3P可通过调控PD-L1、JAK2、STAT3、MAT1A等明星分子来改变细胞凋亡、增殖、迁移等生物学功能,从而调控结直肠癌、肝细胞癌、胃癌、胰腺癌等恶性肿瘤进展,同时也参与了其他肿瘤的调控。在本篇综述中,我们主要概述了目前关于miR-485-3p在消化系统肿瘤中的调控机制的相关研究进展。期望我们的工作可以为上述肿瘤的进一步研究带来益处。
Abstract: microRNAs (miRNAs) are a class of non-coding RNAs that are conserved in the evolution of animals, plants, and viruses, and have been shown to play a role through post-transcriptional regulation and participate in a variety of biological processes. Recent studies have shown that miRNAs can regulate genomic instability, especially in many cancers, and dysregulation of miRNA expression can lead to genetic changes in tumor heterogeneity and drug resistance. Therefore, in recent years, the role of miRNAs in tumors has been one of the research hotspots, and miR-485-3P is one of them. Previous studies have shown that miR-485-3P can change the biological functions of apoptosis, proliferation and migration by regulating PD-L1, JAK2, STAT3, MAT1A and other star molecules, so as to regulate the progression of malignant tumors such as colorectal cancer, hepatocellular carcinoma, gastric cancer, pancreatic cancer, etc., and also participate in the regulation of other tumors. In this review, we mainly summarize the current research progress on the regulatory mechanism of miR-485-3p in digestive system tumors. It is expected that our work can bring benefits to the further study of the above tumors.
文章引用:孙家浩, 孙文胜, 李杰. miR-485-3p在消化系统肿瘤中的研究进展[J]. 临床医学进展, 2024, 14(3): 2240-2246. https://doi.org/10.12677/acm.2024.143968

1. 引言

microRNAs (miRNAs)是一类在动物、植物、病毒进化上保守的非编码RNA,作为基因表达的转录后调节因子,参与细胞增殖、凋亡等多种生物学过程 [1] 。过去的研究普遍认为,miRNA的作用机制是作为负调控因子在胞质中与靶mRNA结合导致靶mRNA的翻译抑制或引起靶mRNA的降解 [2] 。miRNAs主要通过靶向细胞质中mRNA转录物的3'非翻译区(3'UTR)来发挥作用。最近的一些研究表明,miRNAs也通过靶向启动子元件,一种称为RNA激活的现象来正向调节基因的转录。最新的研究证实,miRNA同样存在于细胞核中。核内miRNA可通过结合增强子,改变增强子的染色质状态,从而激活基因的转录表达 [3] 。诺贝尔奖得主菲利普·夏普(Phillip Allen Sharp)最新的研究也证实miRNA激活理论 [4] ,说明miRNA具有双重功能,在胞质中作为负向调控因子抑制基因表达,在细胞核内作为正向调控因子激活基因的转录。最近的研究表明,miRNAs在调节基因组不稳定性方面起着关键作用。重要的是,在许多癌症中,miRNA的表达是失调的,这将导致肿瘤异质性和耐药性的基因改变 [5] 。因此,近几年来陆续发现的miRNA在癌症发生中所起的作用被广泛研究,miR-485-3p便是其中之一。miR-485-3p位于染色体14q32.31,现有研究表明miR-485-3p在消化系统多种恶性肿瘤中发挥调控作用。

2. miR-485-3p在结直肠癌中的研究进展

直肠癌(CRC)是癌症死亡的第三大原因,2023年估计有52,000人死亡。尽管近年来在结直肠癌的诊断和治疗方面取得了重大进展,但结直肠癌的基因异质性,作为结直肠癌可能复发和耐药的罪魁祸首,仍然是一个难以克服的挑战。因此,在新的结直肠癌治疗策略中开发更有效的治疗方法来克服这一挑战是当务之急 [6] 。

2.1. circ-KRT6C/miR-485-3p/PD-L1轴抑制结直肠癌细胞凋亡

miR-485-3p在结直肠癌中的作用主要为抑制其进展。PD-L1可通过抑制结直肠癌细胞凋亡、促进结直肠癌细胞迁移能力为结直肠癌患者带来不良预后 [7] [8] 。K-ras通过ROS介导的FGFR1信号通路促进PD-L1的表达以抑制结直肠癌细胞凋亡 [9] ,也可通过调节肠道菌群促进结直肠癌细胞转移 [7] 。有研究表明,PD-L1是miR-485-3p的一个作用靶点,通过负向调控PD-L1,miR-485-3p过表达可以抑制结直肠癌的恶性进展和免疫逃避。但是,在结直肠癌细胞中,miR-485-3p表达与癌旁组织相比显著降低,部分原因是miR-485-3p受circ-KRT6C基因的调控。circRNAs通常可靶向调控miRNA肿瘤发生中发挥重要作用,circ-KRT6C在结直肠癌组织和细胞中过表达,其水平与结直肠癌患者的总生存时间有关。抑制circ-KRT6C可抑制结直肠癌细胞的生长、迁移、侵袭和免疫逃逸,同时刺激细胞凋亡,而miR-485-3p的缺乏可消除这种抑制作用。

在SW620和HCT-116这两种结直肠癌细胞系中,通过双荧光素酶报告分析验证了circ-KRT6C与miR-485-3p存在作用位点,结直肠癌细胞中circ-KRT6C基因显著高表达,可降低miR-485-3p的表达,从而提高了PD-L1的表达水平,进而促进结直肠癌细胞的增殖,迁移、侵袭和免疫逃避能力,并且抑制了细胞凋亡,这也在动物实验中得到了验证。circ-KRT6C/miR-485-3p/PD-L1轴也为结直肠癌患者提供了新的诊断靶点 [10] 。

2.2. circ_SPARC/miR-485-3p/JAK2/STAT3轴促进结直肠癌细胞迁移

JAK2/STAT3信号通路作为细胞内重要的信号转导途径之一,通过影响下游效应分子的激活状态,对细胞的增殖和分化起着至关重要的作用。JAK2/STAT3信号通路的激活参与了肿瘤的发生发展。它有助于肿瘤炎性微环境的形成,与人类多种肿瘤的发生发展密切相关 [11] 。JAK2/STAT3信号通路在结直肠癌中处于举足轻重的地位,主要参与调节EMT程序,通过分泌IL6增强结直肠癌细胞的迁移和侵袭 [12] [13] ,也可诱导结直肠癌巨噬细胞M2极化 [14] 。circ_SPARC通过调控miR-485-3p上调JAK2的表达,最终促进STAT3向磷酸化STAT3转化,从而促进结直肠癌细胞在体内外的迁移和增殖。为了探讨circ_SPARC在结直肠癌中的作用机制,对慢病毒转染的HCT116细胞进行了RNA-SEQ分析。在所有受circ_SPARC调控的基因中,有多个基因富含在JAK/STAT信号通路中。为了进一步证实circ_SPARC在JAK-STAT通路中有调控作用,进行qPCR和Western blotting。在mRNA和蛋白水平上,circ_SPARC的表达变化对JAK2、p-JAK2和p-STAT3有正向影响,而STAT3在mRNA和蛋白水平上都没有变化,表明circ_SPARC通过调节JAK2而不是STAT3来促进p-STAT3的激活。为了进一步探讨circ_SPARC是否可以与一个或多个miRNAs相互作用来调节JAK2 mRNA。使用circInteractom数据库来预测能够与circ_SPARC相互作用的miRNA,并使用TargetScan数据库来探索能够与JAK2结合的miRNA,成功预测了三个潜在的靶miRNAs (miR-485-3p、miR-646和miR-663b)与circ_SPARC和JAK2相互作用。在HCT116和DLD1细胞中只有miR-485-3p在circ_SPARC敲低的情况下表达上调,并随着circ_SPARC的过表达而降低表达水平。为了确定miR-485-3p与JAK2的关系,采用qRT-qPCR、Western blotting和荧光素酶报告基因分析,miR-485-3p过表达显著降低了CRC细胞中JAK2的mRNA和蛋白水平。相反,下调miR-485-3p显示出相反的结果。综上所述,circ_SPARC可以通过miR-485-3p来正向调控JAK2的表达,从而通过其作为ceRNA的功能来增加p-STAT3的水平,从而促进结直肠癌的迁移和增殖 [15] 。

2.3. circ_0000338负向调控miR-485-3p增强结直肠癌对5-氟尿嘧啶的耐药性

另有研究显示,外泌体介导的circ_0000338可以与miR-485-3p直接结合,负向调控miR-485-3p的表达,促进了细胞的增殖,减少细胞凋亡,增强了结直肠癌对5-氟尿嘧啶的耐药性,并且这种机制在体内实验中得到了验证,这种机制可以为解决结直肠癌的临床治疗中出现的耐药性难题提供新的思路 [16] 。

2.4. circ_0007031/miR-485-3p/MELK通路介导结直肠癌细胞周期停滞

与正常结直肠组织或细胞相比,结直肠癌组织和细胞中circ_0007031和Melk的表达明显增加,通过流式细胞仪分析,circ_0007031过表达促进细胞增殖,降低细胞的凋亡率,并诱导细胞停滞于S期,随后,通过生物信息学分析结合双荧光素酶报告实验预测并验证了circ_0007031可与miR-485-3p直接结合,miR-485-3p可与MELK直接结合。通过q-PCR、Western-blot、流式细胞仪分析、裸鼠体内实验等得出结论:circ_0007031负向调控miR-485-3p促进miR-485-3p依赖的MELK通路介导的细胞增殖和细胞周期停滞,从而促进结直肠癌的发生 [17] 。

2.5. circ_000738/miR-485-3p/MEMO1轴促进结直肠癌细胞增殖、转移

circ_0007385可以促进结肠癌细胞的增殖、转移并抑制其凋亡,从而促进结肠癌的发生发展,研究表明,miR-485-3p低表达可为结肠癌患者带来不良预后,而miR-485-3p可与circ_0007385直接结合,通过RIP实验及双荧光素酶报告实验验证MEMO1是miR-485-3p的直接调控靶点,抑制miR-485-3p表达后,沉默circ_0007385抑制结肠癌细胞增殖、迁移及促进凋亡的作用也被逆转,该研究揭示了circ_0007385通过调控miR-485-3p/MEMO1轴促进了结直肠癌的进展发展 [18] 。

3. miR-485-3p在肝癌中的研究进展

肝细胞癌是最常见的恶性肿瘤之一,其发病机制错综复杂,给医学界带来了巨大的挑战。尽管目前的预防、监测、早期发现、诊断和治疗在预防肝癌和控制总体疾病死亡率方面取得了一些成功,但探索新的肝癌治疗模式的迫切性仍然越来越迫切 [19] 。肝脏是癌症转移的常见部位,蛋氨酸腺苷转移酶1A (MAT1A)在肝脏中高表达。它的缺失导致了原发性肝癌,并为肝细胞癌患者带来不良预后 [20] 。使用3个不同的miRNA靶点预测数据库(TargetScan、MirDB、miRSVR),鉴别到miR-485-3p在肝细胞癌中显著上调,并在敲低miR-485-3p表达后,检测到MAT1A蛋白质表达水平提高,肝细胞癌细胞增殖减少,同时通过双荧光素酶报告实验鉴定出MAT1A上存在miR-485-3p的特异性结合位点,以此表明miR-485-3p负向调控MAT1A的表达。此外,在体外实验中,miR-485-3p高表达可以显著导致肿瘤生长速度加快、生长体积更大。通过异位成瘤实验在45天的实验周期结束后,过表达miR-485-3p的小鼠有50%出现了肺转移,而miR-485-3p低表达组则没有出现肺转移,这也在动物水平证实了miR-485-3p可以促进肝细胞癌的侵袭和转移 [21] 。在肝细胞癌中,LinC00052在SMMC7721、SK-Hep1、Hu7、HepG2和AD38等5种肝癌细胞系中表达下调,miR-485-3p能与LinC00052形成互补碱基对,降低神经营养酪氨酸激酶受体(NTRK3)对肝癌细胞增殖和转移的抑制作用,从而促进肝癌细胞增殖和转移,在体内实验中,LinC00052低表达组的裸鼠形成的瘤体更大更重,LINC00052可能在未来对肝细胞癌有潜在的诊断和治疗价值 [22] 。

4. miR-485-3p在胰、胃肿瘤中的研究进展

胰腺癌是致死率最高的恶性肿瘤之一,死亡率接近发病率 [23] 。往往会导致早期转移和患者较差的生存 [24] 。在胰腺癌中,异常表达的miRNAs在促进肿瘤生长和转移、协调肿瘤微环境和诱导化疗耐药等方面发挥着重要作用 [25] 。有研究报道miR-485-3p与胰腺癌转移相关,通过体外实验验证了miR-485-3p在胰腺癌细胞中表达水平低于胰腺导管上皮细胞,可以通过正常胰管细胞分泌的外切体进入细胞,从而抑制胰腺癌细胞的迁移和侵袭,而miR-485-3p通过负向调控PAK1对胰腺癌细胞产生抑制作用,为了进一步验证miR-485-3p在体内胰腺癌转移中的作用,通过裸鼠异位成瘤实验,运用体内成像技术及IHC分析,验证miR-485-3p过表达可有效降低PAK1水平并抑制胰腺癌转移,而miR-485-3p沉默可提高PAK1水平并促进胰腺癌转移。综上所述,这些数据表明miR-485-3p可以通过靶向PAK1来抑制体内的胰腺癌转移 [26] 。

胃癌是世界范围内最常见的恶性肿瘤之一,侵袭性是胃癌转移的最重要特征,导致患者病死率低 [27] 。研究显示miR-485-3p可作为促癌因子在胃癌中发挥作用,circ_0009172过表达可通过靶向调控miR-485-3p抑制NTRK3的表达,从而抑制胃癌细胞的增殖、侵袭和迁移能力。miR-485-3p过表达可以逆转circ_0009172对胃癌的抑制作用,从而促进胃癌进展。动物实验证实,下调miR-485-3p导致裸鼠异种移植肿瘤生长的抑制 [28] 。贲门腺癌(GCA)是一种高度异质性的肿瘤,对其分类和恶性进展的认识有限 [29] 。目前,对GCA发生的分子途径知之甚少,GCA可能分别通过胃肠化生和巴雷特食管肠化生发生于正常的贲门细胞 [30] 。在一项包含186名受试者的关于贲门腺癌的临床研究中(包括102名贲门腺癌患者和84名正常人),通过qRT-PCR检测受试者血清,经过统计学分析,发现miR-485-3p在贲门腺癌患者血清中表达水平显著高于正常人群,并有较高的诊断价值(AUC = 0.692),或许可作为贲门腺癌潜在的非侵入性分子诊断标志物 [31] 。另外,miR-485-3p可能是胃肠道间质瘤的关键调控因子,可作为胃肠道间质瘤的分子标志物和潜在的治疗靶点 [32] 。

5. 总结与展望

最新研究结果表明,miR-485-3p影响了许多系统疾病的发生、发展,且目前主要的研究领域主要集中在恶性肿瘤。miR-485-3p在不同的肿瘤中的作用和机制并不相同。在大多数的恶性肿瘤中,miR-485-3p都起到了抑制肿瘤进展的作用,但是在胃癌、肝癌中,miR-485-3p作为促癌因子存在。miR-485-3p在肿瘤中的调控作用尚未得到完全阐释,绝大部分研究仅仅证实其在体外实验和动物实验中通过某些作用靶点起到了调控作用,并没有在实际的临床治疗中得到证据支持,也没有相应的方法将其运用到医疗实践中。

当前的医学研究已经深入到分子水平,对疾病发生机制的深入探究,有望为疾病的治疗提供更加多样、有效的选择。证实miR-485-3p的临床诊断及预后价值,针对miR-485-3p作用靶点开发新的个体化治疗方案和诊断标志,将有利于恶性肿瘤的早期诊断并改善病人预后,这将是未来对miR-485-3p的研究方向。相信对miR-485-3p更进一步的研究,会为恶性肿瘤的治疗提供更好的方案和思路。

参考文献

参考文献

[1] Yates, L.A., Norbury, C.J. and Gilbert, R.J. (2013) The Long and Short of microRNA. Cell, 153, 516-519.
https://doi.org/10.1016/j.cell.2013.04.003
[2] Towler, B.P., Jones, C.I. and Newbury, S.F. (2015) Mechanisms of Regulation of Mature miRNAs. Biochemical Society Transactions, 43, 1208-1214.
https://doi.org/10.1042/BST20150157
[3] Xiao, M., Li, J., Li, W., et al. (2017) microRNAs Activate Gene Transcription Epigenetically as an Enhancer Trigger. RNA Biology, 14, 1326-1334.
https://doi.org/10.1080/15476286.2015.1112487
[4] Suzuki, H.I., Young, R.A. and Sharp, P.A. (2017) Super-Enhancer-Mediated RNA Processing Revealed by Integrative microRNA Network Analysis. Cell, 168, 1000-1014.E15.
https://doi.org/10.1016/j.cell.2017.02.015
[5] Ferragut Cardoso, A.P., Banerjee, M., Nail, A.N., et al. (2021) miRNA Dysregulation Is an Emerging Modulator of Genomic Instability. Seminars in Cancer Biology, 76, 120-131.
https://doi.org/10.1016/j.semcancer.2021.05.004
[6] Alipourgivi, F., Motolani, A., Qiu, A.Y., et al. (2023) Genetic Alterations of NF-κB and Its Regulators: A Rich Platform to Advance Colorectal Cancer Diagnosis and Treatment. International Journal of Molecular Sciences, 25, Article No. 154.
https://doi.org/10.3390/ijms25010154
[7] Wang, S., Xu, B., Zhang, Y., et al. (2023) The Role of Intestinal Flora on Tumorigenesis, Progression, and the Efficacy of PD-1/PD-L1 Antibodies in Colorectal Cancer. Cancer Biology & Medicine, 2023, Article ID: 20230376.
https://doi.org/10.20892/j.issn.2095-3941.2023.0376
[8] Han, J.H., Lee, E.J., Park, W., et al. (2023) Cosmosiin Induces Apoptosis in Colorectal Cancer by Inhibiting PD-L1 Expression and Inducing ROS. Antioxidants (Basel, Switzerland), 12, Article No. 2131.
https://doi.org/10.3390/antiox12122131
[9] Glorieux, C., Xia, X., He, Y.Q., et al. (2021) Regulation of PD-L1 Expression in K-Ras-Driven Cancers through ROS-Mediated FGFR1 Signaling. Redox Biology, 38, Article ID: 101780.
https://doi.org/10.1016/j.redox.2020.101780
[10] Jiang, Z., Hou, Z., Liu, W., et al. (2021) circ-Keratin 6c Promotes Malignant Progression and Immune Evasion of Colorectal Cancer through microRNA-485-3p/Programmed Cell Death Receptor Ligand 1 Axis. The Journal of Pharmacology and Experimental Therapeutics, 377, 358-367.
https://doi.org/10.1124/jpet.121.000518
[11] Huang, B., Lang, X. and Li, X. (2022) The Role of IL-6/JAK2/STAT3 Signaling Pathway in Cancers. Frontiers in Oncology, 12, Article ID: 1023177.
https://doi.org/10.3389/fonc.2022.1023177
[12] Schulz-Heddergott, R., Stark, N., Edmunds, S.J., et al. (2018) Therapeutic Ablation of Gain-of-Function Mutant P53 in Colorectal Cancer Inhibits Stat3-Mediated Tumor Growth and Invasion. Cancer Cell, 34, 298-314.E7.
https://doi.org/10.1016/j.ccell.2018.07.004
[13] Wei, C., Yang, C., Wang, S., et al. (2019) Crosstalk between Cancer Cells and Tumor Associated Macrophages Is Required for Mesenchymal circulating Tumor Cell-Mediated Colorectal Cancer Metastasis. Molecular Cancer, 18, Article No. 64.
https://doi.org/10.1186/s12943-019-0976-4
[14] Li, Y., Shi, Y., Zhang, X., et al. (2023) FGFR2 Upregulates PAI-1 via JAK2/STAT3 Signaling to Induce M2 Polarization of Macrophages in Colorectal Cancer. Biochimica et Biophysica Acta Molecular Basis of Disease, 1869, Article ID: 166665.
https://doi.org/10.1016/j.bbadis.2023.166665
[15] Wang, J., Zhang, Y., Song, H., et al. (2021) The circular RNA circSPARC Enhances the Migration and Proliferation of Colorectal Cancer by Regulating the JAK/STAT Pathway. Molecular Cancer, 20, Article No. 81.
https://doi.org/10.1186/s12943-021-01375-x
[16] Zhao, K., Cheng, X., Ye, Z., et al. (2023) Exosome-Mediated Transfer of circ_0000338 Enhances 5-Fluorouracil Resistance in Colorectal Cancer through Regulating microRNA 217 (miR-217) and miR-485-3p. Molecular and Cellular Biology, 41, e00517-20.
https://doi.org/10.1128/MCB.00517-20
[17] Su, S., Lu, W., Liu, J., et al. (2021) circ_0007031 Silencing Inhibits Cell Proliferation and Induces Cell Apoptosis via Downregulating MELK at a miR-485-3p-Dependent Way in Colorectal Cancer. Biochemical Genetics, 60, 576-597.
https://doi.org/10.1007/s10528-021-10111-5
[18] Ying, J., Liu, G. and Zhu, X. (2023) miR-485-3p/miR-543/miR-337-3p Is Required for the Oncogenic Potential of the Hsa_circ_0007385-MEMO1 Axis in Colorectal Cancer. Biochemical Genetics.
https://doi.org/10.1007/s10528-023-10472-z
[19] Li, Y.J., Qiu, Y.L., Li, M.R., et al. (2024) New Horizons for the Role of RNA N6-Methyladenosine Modification in Hepatocellular Carcinoma. Acta Pharmacologica Sinica.
https://doi.org/10.1038/s41401-023-01214-3
[20] Fan, W., Cao, D., Yang, B., et al. (2023) Hepatic Prohibitin 1 and Methionine Adenosyltransferase α1 Defend against Primary and Secondary Liver Cancer Metastasis. Journal of Hepatology, 80, 443-453.
https://doi.org/10.1016/j.jhep.2023.11.022
[21] Vázquez-Chantada, M., Fernández-Ramos, D., Embade, N., et al. (2010) HuR/Methyl-HuR and AUF1 Regulate the MAT Expressed during Liver Proliferation, Differentiation, and Carcinogenesis. Gastroenterology, 138, 1943-1953.
https://doi.org/10.1053/j.gastro.2010.01.032
[22] Xiong, D., Sheng, Y., Ding, S., et al. (2016) LINC00052 Regulates the Expression of NTRK3 by miR-128 and miR-485-3p to Strengthen HCC Cells Invasion and Migration. Oncotarget, 7, 47593-47608.
https://doi.org/10.18632/oncotarget.10250
[23] Stosic, K., Senar, O.A., Tarfouss, J., et al. (2023) A Comprehensive Review of the Potential Role of Liquid Biopsy as a Diagnostic, Prognostic, and Predictive Biomarker in Pancreatic Ductal Adenocarcinoma. Cells, 13, Article No. 3.
https://doi.org/10.3390/cells13010003
[24] Gautam, S.K., Batra, S.K. and Jain, M. (2023) Molecular and Metabolic Regulation of Immunosuppression in Metastatic Pancreatic Ductal Adenocarcinoma. Molecular Cancer, 22, Article No. 118.
https://doi.org/10.1186/s12943-023-01813-y
[25] Pal, A., Ojha, A. and Ju, J. (2023) Functional and Potential Therapeutic Implication of microRNAs in Pancreatic Cancer. International Journal of Molecular Sciences, 24, Article No. 17523.
https://doi.org/10.3390/ijms242417523
[26] Li, M., Zhou, J., Zhang, Z., et al. (2022) Exosomal miR-485-3p Derived from Pancreatic Ductal Epithelial Cells Inhibits Pancreatic Cancer Metastasis through Targeting PAK1. Chinese Medical Journal, 135, 2326-2337.
https://doi.org/10.1097/CM9.0000000000002154
[27] Matsuoka, T. and Yashiro, M. (2023) Molecular Insight into Gastric Cancer Invasion—Current Status and Future Directions. Cancers, 16, Article No. 54.
https://doi.org/10.3390/cancers16010054
[28] Wang, H., Wang, N., Zheng, X., et al. (2021) circular RNA hsa_circ_0009172 Suppresses Gastric Cancer by Regulation of microRNA-485-3p-Mediated NTRK3. Cancer Gene Therapy, 28, 1312-1324.
https://doi.org/10.1038/s41417-020-00280-7
[29] Wang, Z., Wang, Q., Chen, C., et al. (2023) NNMT Enriches for AQP5( ) Cancer Stem Cells to Drive Malignant Progression in Early Gastric Cardia Adenocarcinoma. Gut, 73, 63-77.
https://doi.org/10.1136/gutjnl-2022-328408
[30] Tan, P. and Chu, Y. (2023) Single-Cell Profiling of Gastric Cardia Adenocarcinoma Reveals Drivers of Cancer Stemness and Therapeutic Targets. Gut, 73, 1-2.
https://doi.org/10.1136/gutjnl-2023-329887
[31] Wang, J., Zhang, H., Zhou, X., et al. (2018) Five Serum-Based miRNAs Were Identified as Potential Diagnostic Biomarkers in Gastric Cardia Adenocarcinoma. Cancer Biomarkers, 23, 193-203.
https://doi.org/10.3233/CBM-181258
[32] Jia, N., Tong, H., Zhang, Y., et al. (2019) CeRNA Expression Profiling Identifies KIT-Related circRNA-miRNA-mRNA Networks in Gastrointestinal Stromal Tumour. Frontiers in Genetics, 10, Article No. 825.
https://doi.org/10.3389/fgene.2019.00825