PI3K/AKT信号通路调控DDH脱位后软骨细胞自噬的相关研究
Research on the Regulation of Chondrocyte Autophagy after DDH Dislocation by the PI3K/AKT Signaling Pathway
DOI: 10.12677/acm.2024.1441305, PDF, HTML, XML, 下载: 42  浏览: 57 
作者: 郭 宇, 祁 凯, 陈云鹏, 黄志明, 王伟豪, 韦宜山*:内蒙古医科大学第二附属医院,内蒙古 呼和浩特
关键词: PI3K/AKT发育性髋关节脱位自噬软骨细胞PI3K/AKT Developmental Hip Dislocation Autophagy Chondrocytes
摘要: 发育性髋关节脱位(development dislocation of the hip, DDH),是在髋关节发育不良的基础上,伴有或不伴有股骨头脱位或半脱位于髋臼之外的下肢畸形。其病理改变不同可能会导致严重程度不一的早期骨关节炎(osteoarthritis, OA)。DDH的一个重要病理变化是关节软骨的退化及退变,但目前关于DDH软骨退变的机制尚未明确。一些研究发现软骨细胞的自噬与骨关节炎密切相关,其中PI3K/AKT信号通路可以促进软骨细胞增殖,并且抑制软骨细胞自噬。本文旨在探讨PI3K/AKT信号通路对软骨细胞自噬的调控作用,为DDH后期的诊疗提供新的思路。
Abstract: Developmental dislocation of the hip (DDH) is a lower limb deformity located outside the acetabulum, with or without dislocation or subluxation of the femoral head, on the basis of hip dysplasia. Different pathological changes may lead to early osteoarthritis (OA) with varying degrees of severity. One important pathological change of DDH is the degradation and degeneration of articular cartilage, but the mechanism of DDH cartilage degeneration is currently unclear. Some studies have found that autophagy of chondrocytes is closely related to osteoarthritis, among which the PI3K/AKT signaling pathway can promote chondrocyte proliferation and inhibit chondrocyte autophagy. This article aims to explore the regulatory role of the PI3K/AKT signaling pathway on chondrocyte autophagy, providing new ideas for the diagnosis and treatment of DDH in the later stage.
文章引用:郭宇, 祁凯, 陈云鹏, 黄志明, 王伟豪, 韦宜山. PI3K/AKT信号通路调控DDH脱位后软骨细胞自噬的相关研究[J]. 临床医学进展, 2024, 14(4): 2385-2389. https://doi.org/10.12677/acm.2024.1441305

1. 前言

发育性髋关节脱位(development dislocation of the hip, DDH),是一种伴随患者出生前后及生长发育过程中而逐渐形成的疾病,包括广泛的髋关节改变:新生儿不稳定髋、髋臼发育不良、髋关节半脱位和真正的髋关节脱位 [1] ,并且根据病情不同可导致情况不一的早期骨关节炎(osteoarthritis, OA) [2] 。OA是一种与软骨退行性变密切相关的慢性炎症性疾病,其主要特征是进行性关节代谢失衡和随之出现的关节软骨退化。OA的发病与职业、饮食习惯、激素水平、遗传因素等多种因素有关。作为一种慢性疾病,它给个体的生活质量带来影响的同时也给社会经济造成巨大负担 [3] [4] 。目前,随着婴幼儿髋关节筛查的普及和诊疗水平的提高,大部分DDH患儿得到了早期诊断和常规有效的治疗,但仍有一部分病人在青少年期或成年早期出现了髋关节疼痛、跛行等典型的OA症状 [5] 。这可能是因为早期治疗并不能完全纠正髋关节异常,或者是因为长期异常生理负荷和运动不正常导致关节结构被破坏。研究表明,DDH引起的OA已成为年轻人行全髋关节置换术的主要原因 [6] [7] ,而OA的发展与软骨细胞的损伤紧密相关,软骨细胞的自噬失调被认为是OA发展的一个关键因素 [8] 。其中PI3K/AKT信号通路在软骨细胞生理过程中扮演着重要角色 [9] 。PI3K/AKT信号通路通过激活下游的mTOR信号,进而抑制软骨细胞自噬,这在OA的发展过程中起着重要作用 [10] 。本文对PI3K/AKT信号通路调控DDH相关软骨细胞自噬的最新研究进行综述,为进一步探究DDH导致的OA的病理机制和开发新的治疗方法提供科学依据。

2. 发育性髋脱位与骨关节炎的关系

在解剖学上,DDH被定义为股骨头和髋臼的不匹配。与正常髋臼相比,DDH患者的髋臼体积显著减少 [11] 。髋臼体积的减少增加了关节表面的局部应力和髋关节的不稳定性,导致髋关节疼痛和残疾,最终导致OA。目前控制髋臼发育的分子机制尚不清楚,这可能与软骨细胞的自噬被抑制有关 [12] 。据报道,轻度髋关节脱位是导致成年后OA发病的主要原因之一,其中大多数患者在50岁之前需要接受全髋关节置换术 [6] [7] 。这种手术不仅对患者的生活质量造成影响,还给患者本人、家庭和社会带来了心理和经济负担。OA是DDH最常见远期并发症之一,也是成人最常见的慢性退行性关节病变之一,主要表现为关节疼痛、僵硬和功能受限等症状 [13] 。虽然目前已经进行了很多关于骨关节炎病因学的研究,但仍没有明确的机制能清晰的解释骨关节炎的病因。其中一些研究表明,OA最初的表现为关节软骨退化和丢失,进而出现骨肥大并形成骨赘,软骨下骨重塑等病理改变 [9] 。软骨细胞在关节软骨的维持、重建和自我更新过程中起着关键作用。正常情况下,软骨细胞通过合成和分泌细胞外基质来维持软骨的力学性能和功能特征。然而,在OA中,软骨细胞的功能受到损害,导致软骨组织退化。此外,由于炎症因子、氧化应激和力学刺激等因素的影响,软骨细胞的功能和代谢也会出现异常,导致细胞外基质的合成减少,降解增加 [14] [15] [16] 。细胞外基质的降解会导致软骨组织结构的破坏和功能的减退 [17] 。由于关节软骨是一种特殊的、无血管的、非动脉性结缔组织,因此受损软骨组织的自我修复能力较弱 [18] 。上述过程会破坏关节软骨细胞结构并导致OA的发展,进而出现髋关节生物力学的改变,使关节软骨过载,股骨头与髋臼的不匹配甚至出现髋关节撞击。当然,这些因素也会使关节软骨的破坏进一步加重。

3. 骨关节炎中软骨细胞的自噬

在OA的发展过程中,软骨细胞受到各种因素的影响,其功能受到损害,导致软骨组织退化。研究表明,自噬在骨关节炎的发生和发展过程中扮演着重要的角色 [19] 。细胞自噬又被称为II型程序性细胞死亡,参与体内多种生理学过程和病理生理学过程。通过自噬,细胞能够降解和回收损坏的蛋白质和细胞器,以维持细胞内部稳态 [20] 。在生理条件下,适度的细胞自噬可以帮助软骨细胞去除受损的细胞器和蛋白质汇集体,有利于维持软骨的稳态和健康。而在骨关节炎的发展过程中,软骨细胞的自噬功能常常受到干扰或降低。研究指出,自噬的下调与骨关节炎软骨中的细胞应激、损伤累积和ECM (细胞外基质)的退化有关。这意味着自噬功能的减弱可能促进了OA进程。所以自噬对于软骨细胞的生存和功能维持起到了决定性的作用 [21] 。而且自噬可以通过调节细胞内炎症反应,减少炎症因子的释放和炎症细胞的活化,有助于控制炎症过程 [22] 。在OA中,软骨细胞的自噬功能显得尤其重要,它既是软骨退化进程中受影响的一环,也提供了治疗的潜在靶点。通过促进或恢复自噬功能,有可能为延缓或阻止骨关节炎的发展提供新的策略。

4. PI3K/AKT信号通路

PI3K/AKT是重要的细胞内信号转导途径,在许多细胞过程中发挥作用,包括细胞存活、炎症、代谢和凋亡等 [23] [24] [25] 。包括胰岛素、葡萄糖在内的许多生长因子和细胞因子都可以发挥启动PI3K/AKT信号传递的作用 [26] 。其中3-磷酸肌醇激酶(phosphoinositide 3 kinase, PI3K)是一类重要的信号转导酶,它是一种由一个催化亚基和一个调节亚基构成的异源二聚体蛋白,调控亚基和催化亚基之间的结合稳定了PI3K [27] 。PI3K包括三类分子(I, II, III),其中I型PI3K与关节软骨损伤的发生和进展之间的关系近期备受研究者关注 [26] 。PI3K的激活主要为以下两种途径,一种是通过生长因子受体信号通路被激活,这是PI3K激活的最常见途径,这种激活方式经常涉及到受体酪氨酸激酶的活化;另一种是通过p110亚基直接结合Ras而被激活,Ras是一类小GTP酶,参与调控细胞增殖和生长的信号通路。在某些情况下,Ras直接与PI3K的催化亚基p110相互作用激活PI3K [28] 。被激活的PI3K进一步向下游传导刺激。AKT (也称为蛋白激酶B,PKB)是PI3K下游的一个关键效应器,位于细胞中,共有3种亚型(AKT1, AKT2, AKT3),其中AKT1和AKT2在骨代谢中扮演着重要角色,它们参与调节骨细胞的合成和代谢,影响骨组织的健康和疾病状态 [26] 。激活的AKT通过磷酸化可以作用于下游多种靶分子如mTOR、NF-κB、Bad和Caspase-3等调节软骨细胞自噬和凋亡,维持软骨细胞的生存 [6] [29] 。

5. PI3K/AKT信号通路对软骨细胞自噬的调控

PI3K/AKT信号通路作为一条关键的细胞内信号转导通路,参与调节自噬。它能够整合来自细胞环境的信号和其他信号通路,最终调节自噬 [30] 。研究表明,当OA发生时,PI3K通过生长因子受体信号通路激活,PI3K/AKT的mTOR途径启动,作用并磷酸化AKT,AKT作用于TSC1/2复合物抑制其活性,使得mTORC1被激活,进而磷酸化下游的ULK1自噬起始复合物的自噬抑制位点,软骨细胞的自噬活动可出现明显抑制,软骨细胞自噬活动对软骨细胞的保护作用明显降低,此时OA患者关节内软骨细胞凋亡明显增加,加速了OA的发生发展 [31] [32] 。Beclin-1是自噬的另一个关键调节因子,AKT可以通过直接磷酸化Beclin 1,减弱Beclin 1在自噬过程中的功能,从而直接抑制自噬活动 [33] [34] 。Beclin 1还可以直接与BCL-2家族蛋白相互作用抑制自噬 [35] 。因此PI3K/AKT信号通路可以通过多种途径对软骨细胞起到抑制自噬的作用并引起细胞损伤,当该通路被抑制时,软骨细胞自噬增强,可适当减缓软骨细胞的损伤过程。

6. 未来展望

关于PI3K/AKT信号通路在软骨细胞损伤和自噬过程中作用的研究还比较初步。尽管已经明确了PI3K/AKT信号通路在促进软骨细胞增殖和抗凋亡方面的作用,但是它在自噬调控中的角色还需要更多的研究来揭示。根据PI3K/AKT信号通路在DDH后期OA发展中的作用,其抑制剂或许可以作为一种潜在的治疗手段。通过抑制这一信号通路,可以激活自噬过程,帮助去除受损的软骨细胞,减缓OA的进展。未来的研究需要更深入地探讨PI3K/AKT信号通路在软骨细胞自噬调控中的具体机制,包括但不限于信号通路的其他潜在靶点以及与其他信号通路的交互作用。

总之,PI3K/AKT信号通路为软骨细胞自噬调控及其在DDH后期OA治疗中的作用提供了新的研究方向和治疗潜力,未来的研究和临床应用有望为DDH患者带来更多的治疗机会。

参考文献

[1] Wei, Y.S., Li, D.H., Liu, W.L. and Jiang, D.M. (2016) Altered Chondrocyte Apoptosis Status in Developmental Hip Dysplasia in Rabbits. Balkan Medical Journal, 33, 639-644.
https://doi.org/10.5152/balkanmedj.2016.150557
[2] Vaquero-Picado, A., González-Morán, G., Garay, E.G. and Moraleda, L. (2019) Developmental Dysplasia of the Hip: Update of Management. EFORT Open Reviews, 4, 548-556.
https://doi.org/10.1302/2058-5241.4.180019
[3] Hawker, G.A. (2019) Osteoarthritis Is a Serious Disease. Clinical and Experimental Rheumatology, 37, 3-6.
[4] Lorenz, H. and Richter, W. (2006) Osteoarthritis: Cellular and Molecular Changes in Degenerating Cartilage. Progress in Histochemistry and Cytochemistry, 40, 135-163.
https://doi.org/10.1016/j.proghi.2006.02.003
[5] 宁波. β-catenin在发育性髋关节脱位动物模型早期软骨退行性变中机制的实验研究[D]: [博士学位论文]. 上海: 复旦大学, 2013.
[6] Zhang, Q., Lai, S., Hou, X., Cao, W., Zhang, Y. and Zhang, Z. (2018) Protective Effects of PI3K/Akt Signal Pathway Induced Cell Autophagy in Rat Knee Joint Cartilage Injury. American Journal of Translational Research, 10, 762-770.
[7] Carney, B.T. (2005) Acetabular Dysplasia Following Closed Reduction of Developmental Dislocation of the Hip. Journal of Surgical Orthopaedic Advances, 14, 122-124.
[8] Thomas, S.R., Wedge, J.H. and Salter, R.B. (2007) Outcome at Forty-Five Years after Open Reduction and Innominate Osteotomy for Late-Presenting Developmental Dislocation of the Hip. The Journal of Bone and Joint Surgery, 89, 2341-2350.
https://doi.org/10.2106/00004623-200711000-00003
[9] Martel-Pelletier, J., Boileau, C., Pelletier, J.P. and Roughley, P.J. (2008) Cartilage in Normal and Osteoarthritis Conditions. Best Practice & Research Clinical Rheumatology, 22, 351-384.
https://doi.org/10.1016/j.berh.2008.02.001
[10] Huang, J.G., Xia, C., Zheng, X.P., Yi, T.T., Wang, X.Y., Song, G. and Zhang, B. (2011) 17β-Estradiol Promotes Cell Proliferation in Rat Osteoarthritis Model Chondrocytes via PI3K/Akt Pathway. Cellular & Molecular Biology Letters, 16, 564-575.
https://doi.org/10.2478/s11658-011-0023-y
[11] Ozgur, A.F., Aksoy, M.C., Kandemir, U., Karcaaltncaba, M., Aydingoz, U., Yazici, M. and Surat, A. (2006) Does Dega Osteotomy Increase Acetabular Volume in Developmental Dysplasia of the Hip? Journal of Pediatric Orthopaedics B, 15, 83-86.
https://doi.org/10.1097/01.bpb.0000191870.15893.d1
[12] Yan, W., Zheng, L., Xu, X., et al. (2022) Heterozygous LRP1 Deficiency Causes Developmental Dysplasia of the Hip by Impairing Triradiate Chondrocytes Differentiation Due to Inhibition of Autophagy. Proceedings of the National Academy of Sciences of the United States of America, 119, e2203557119.
https://doi.org/10.1073/pnas.2203557119
[13] Hwang, H.S. and Kim, H.A. (2015) Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis. International Journal of Molecular Sciences, 16, 26035-26054.
https://doi.org/10.3390/ijms161125943
[14] Garvican, E.R., Vaughan-Thomas, A., Innes, J.F. and Clegg, P.D. (2010) Biomarkers of Cartilage Turnover. Part 1: Markers of Collagen Degradation and Synthesis. The Veterinary Journal, 185, 36-42.
https://doi.org/10.1016/j.tvjl.2010.04.011
[15] Garvican, E.R., Vaughan-Thomas, A., Clegg, P.D. and Innes, J.F. (2010) Biomarkers of Cartilage Turnover. Part 2: Non-Collagenous Markers. The Veterinary Journal, 185, 43-49.
https://doi.org/10.1016/j.tvjl.2010.04.012
[16] Brandt, K.D., Dieppe, P. and Radin, E.L. (2008) Etiopathogenesis of Osteoarthritis. Rheumatic Disease Clinics of North America, 34, 531-559.
https://doi.org/10.1016/j.rdc.2008.05.011
[17] Guilak, F., Nims, R.J., Dicks, A., Wu, C.L. and Meulenbelt, I. (2018) Osteoarthritis as a Disease of the Cartilage Pericellular Matrix. Matrix Biology, 71-72, 40-50.
https://doi.org/10.1016/j.matbio.2018.05.008
[18] Rim, Y.A. and Ju, J.H. (2020) The Role of Fibrosis in Osteoarthritis Progression. Life, 11, Article 3.
https://doi.org/10.3390/life11010003
[19] Withrow, J., Murphy, C., Liu, Y., Hunter, M., Fulzele, S. and Hamrick, M.W. (2016) Extracellular Vesicles in the Pathogenesis of Rheumatoid Arthritis and Osteoarthritis. Arthritis Research & Therapy, 18, Article No. 286.
https://doi.org/10.1186/s13075-016-1178-8
[20] Zhao, P., Dou, Y., Chen, L., Li, L., Wei, Z., Yu, J., Wu, X., Dai, Y. and Xia, Y. (2015) SC-III3, a Novel Scopoletin Derivative, Induces Autophagy of Human Hepatoma HepG2 Cells through AMPK/mTOR Signaling Pathway by Acting on Mitochondria. Fitoterapia, 104, 31-40.
https://doi.org/10.1016/j.fitote.2015.05.002
[21] Rubinsztein, D.C., Mariño, G. and Kroemer, G. (2011) Autophagy and Aging. Cell, 146, 682-695.
https://doi.org/10.1016/j.cell.2011.07.030
[22] Degenhardt, K., Mathew, R., Beaudoin, B., et al. (2006) Autophagy Promotes Tumor Cell Survival and Restricts Necrosis, Inflammation, and Tumorigenesis. Cancer Cell, 10, 51-64.
https://doi.org/10.1016/j.ccr.2006.06.001
[23] Tang, F., Wang, Y., Hemmings, B.A., Rüegg, C. and Xue, G. (2018) PKB/Akt-Dependent Regulation of Inflammation in Cancer. Seminars in Cancer Biology, 48, 62-69.
https://doi.org/10.1016/j.semcancer.2017.04.018
[24] Cravero, J.D., Carlson, C.S., Im, H.J., Yammani, R.R., Long, D. and Loeser, R.F. (2009) Increased Expression of the Akt/PKB Inhibitor TRB3 in Osteoarthritic Chondrocytes Inhibits Insulin-Like Growth Factor 1-Mediated Cell Survival and Proteoglycan Synthesis. Arthritis & Rheumatology, 60, 492-500.
https://doi.org/10.1002/art.24225
[25] 张风娥, 邵婉珍, 吴翠艳, 郭雄. PI3K/Akt信号通路在大骨节病发生发展中的研究进展[J]. 国外医学(医学地理分册), 2017, 38(1), 85-88.
[26] Sun, K., Luo, J., Guo, J., Yao, X., Jing, X. and Guo, F. (2020) The PI3K/AKT/mTOR Signaling Pathway in Osteoarthritis: A Narrative Review. Osteoarthritis and Cartilage, 28, 400-409.
https://doi.org/10.1016/j.joca.2020.02.027
[27] 邓欢, 吕艺蓁, 刘宣, 肖香, 乔利春, 郭紫薇, 赵妍, 刘家欣, 韩晶. PI3K/AKT信号通路调控骨关节疾病软骨细胞自噬及损伤的机制[J]. 西安交通大学学报(医学版), 2022, 43(2), 309-314.
[28] Nussinov, R., Tsai, C.J. and Jang, H. (2020) Ras Assemblies and Signaling at the Membrane. Current Opinion in Structural Biology, 62, 140-148.
https://doi.org/10.1016/j.sbi.2020.01.009
[29] Ning, Y., Wang, X., Lammi, M.J. and Guo, X. (2019) Changes in the NF-κB Signaling Pathway in Juvenile and Adult Patients with Kashin-Beck Disease. Experimental Cell Research, 379, 140-149.
https://doi.org/10.1016/j.yexcr.2019.04.001
[30] Kma, L. and Baruah, T.J. (2022) The Interplay of ROS and the PI3K/Akt Pathway in Autophagy Regulation. Biotechnology and Applied Biochemistry, 69, 248-264.
https://doi.org/10.1002/bab.2104
[31] Valenti, M.T., Dalle Carbonare, L., Zipeto, D. and Mottes, M. (2021) Control of the Autophagy Pathway in Osteoarthritis: Key Regulators, Therapeutic Targets and Therapeutic Strategies. International Journal of Molecular Sciences, 22, Article 2700.
https://doi.org/10.3390/ijms22052700
[32] Tian, Z., Zhang, X. and Sun, M. (2021) Phytochemicals Mediate Autophagy against Osteoarthritis by Maintaining Cartilage Homeostasis. Frontiers in Pharmacology, 12, Article 795058.
https://doi.org/10.3389/fphar.2021.795058
[33] Xue, J.F., Shi, Z.M., Zou, J. and Li, X.L. (2017) Inhibition of PI3K/AKT/mTOR Signaling Pathway Promotes Autophagy of Articular Chondrocytes and Attenuates Inflammatory Response in Rats with Osteoarthritis. Biomedicine & Pharmacotherapy, 89, 1252-1261.
https://doi.org/10.1016/j.biopha.2017.01.130
[34] Rosenthal, A.K., Gohr, C.M., Mitton-Fitzgerald, E., Grewal, R., Ninomiya, J., Coyne, C.B. and Jackson, W.T. (2015) Autophagy Modulates Articular Cartilage Vesicle Formation in Primary Articular Chondrocytes. Journal of Biological Chemistry, 290, 13028-13038.
https://doi.org/10.1074/jbc.M114.630558
[35] Lei, S., Zhang, Y., Zhang, K., Li, J. and Liu, L. (2015) Effects of Fluoride on the Expression of Beclin1 and mTOR in Ameloblasts. Cells Tissues Organs, 200, 405-412.
https://doi.org/10.1159/000441052