儿童肺黏液表皮样癌的治疗进展
Progress in Treatment of Pulmonary Mucoepidermoid Carcinoma in Children
DOI: 10.12677/acm.2024.1441364, PDF, HTML, XML, 下载: 28  浏览: 42 
作者: 胡雨润:重庆医科大学附属儿童医院呼吸科,重庆;李渠北:国家儿童健康与疾病临床医学研究中心,重庆
关键词: 肺黏液表皮样癌治疗Pulmonary Mucoepidermoid Carcinoma Treatment
摘要: 肺黏液表皮样癌(Pulmonary Mucoepidermoid Carcinoma, PMEC)是一种发起源于呼吸道黏膜下层导管上皮细胞的恶性肿瘤,因病例罕见,难以开展大规模的临床研究,目前对于PEMC的治疗还没有统一标准。完全切除所有肿瘤负荷是目前治疗的主要手段,但对于切除方式的选择还存在争议,并且对于不能手术切除的PMEC尚缺乏有效的治疗手段。本文就近年在儿童PMEC治疗方面的研究进展进行综述。
Abstract: Pulmonary mucoepidermoid carcinoma (PMEC) is a malignant tumor originating from the ductal epithelium of the respiratory tract submucosa. Due to the rare cases, large-scale clinical studies are difficult to be carried out. At present, there is no unified standard for the treatment of PEMC. At present, complete resection of all tumor burden is the main means of treatment, but the choice of resection method is still controversial, and there is still a lack of effective treatment for unresectable PMEC. This article reviews the recent research progress in the treatment of PMEC in children.
文章引用:胡雨润, 李渠北. 儿童肺黏液表皮样癌的治疗进展[J]. 临床医学进展, 2024, 14(4): 2851-2856. https://doi.org/10.12677/acm.2024.1441364

1. 前言

粘液表皮样癌(Mucoepidermoid Carcinoma, MEC)是一种由粘液细胞、鳞状细胞和中间型细胞组成的恶性肿瘤 [1] ,好发于涎腺、尤其是腮腺,肺黏液表皮样癌(Pulmonary Mucoepidermoid Carcinoma, PMEC)十分罕见,占所有原发性肺癌的0.1%~0.2% [2] ,却是儿童原发性肺部恶性肿瘤的主要类型,国外报道PMEC是第二常见的儿童原发性肺部恶性肿瘤 [3] 。其多为中央型生长,主要位于段及段以上支气管,表现为气管支气管腔内软组织结节及肿块。儿童PMEC的临床表现主要与肿瘤对气道的侵犯、阻塞程度等因素相关,主要表现为咳嗽、发热、咯血、反复呼吸道感染 [4] 。PEMC起源于呼吸道黏膜下层导管上皮细胞,根据组织学表现、细胞异型性、有丝分裂频率、是否存在坏死将PMEC分为低、中、高级别 [5] 。由于其病例数少,难以开展大规模的临床研究,目前对于PEMC的治疗还没有统一标准。MEC的一线治疗是手术切除。目前认为不建议对低级别PMEC患者进行术后化疗,对于不完全切除或中高级别PMEC患者,可以考虑辅助化疗或放疗,但尚无有力的证据表明其有效 [6] 。因此对于这些患者仍需探索新的治疗方法。本文拟对近年报道的关于儿童PMEC治疗研究进展进行综述,以期为临床提供新思路。

2. 外科手术治疗

常见的外科手术包括全肺叶切除术、肺叶切除、支气管袖状切除术。手术切除的目标包括切除整个肿瘤,同时尽可能多地保留肺实质 [7] 。既往研究显示,儿童PMEC相比成人PMEC,低级别比率更低、淋巴结转移率更低、预后更好。大多数儿童PMEC为低级别,若能完全切除,预后良好。张谦等 [8] 报道了21例儿童PMEC,均行外科手术完整切除肿瘤并获得了阴性切缘,其中低级别19例、高级版2例,随访均未见复发和转移。Michael Abele等 [9] 统计了2000年至2021年间EXPeRT (欧洲儿科罕见肿瘤合作研究小组)数据库收集的数据,共纳入20例儿童PMEC,只有10% (2/20)有淋巴结受累,所有均为局限性肿瘤,其中19例通过手术切除获得了完全缓解(CR)。因儿童MEC的生长缓慢且转移潜力低,在大多数PMEC病例中进行非根治性、保留组织的手术似乎是合理的。并且对于根治性淋巴结清扫术的必要性可能值得怀疑。

3. 支气管镜介入治疗

由于PMEC起源于黏膜下层、多为气管内型生长,而气管镜治疗可以达到基层,对于肿瘤局限于气道内、未侵犯周围组织的PEMC采用支气管镜介入治疗成为可能。Zhang Jieli等 [10] 、Abele等 [9] 研究发现,与成人PEMC相比,儿童PEMC绝大多数为气管内型生长、低级别比例更高、淋巴结转移率更低、预后更好,因此有更高比例的儿童PEMC可以考虑通过支气管镜介入实现肿瘤切除。相比于既往将支气管镜介入用作外科术前进行肿瘤定位、活检,近年越来越多报道使用支气管镜介入替代外科手术进行局部肿瘤切除。Hongwu Wang等 [11] 报道了对5例腔内型生长的儿童PMEC行支气管镜介入治疗切除肿瘤,平均每位患者进行了6次介入手术,随访16~72月均无复发。但Yongfeng Yu等 [12] 研究中,30% (3/7)的患儿在随访期间出现了复发。相比于传统外科手术切除,通过支气管镜切除肿瘤有创伤小、并发症少,并且可以保留肺组织的优势。但支气管镜行肿瘤切除不能进行淋巴结活检,从而影响肿瘤分期判断和治疗。并且因可能不能达到根治性切除,有增加复发和转移的风险。因此,对于单纯支气管镜肿瘤切除,还需要更长时间的随访以评估其有效性及风险。

4. 分子靶向治疗

目前越来越多的靶向药物已成为肺癌的治疗选择。就PMEC这样的罕见肺癌而言,在没有标准治疗的情况下,管理通常遵循常见非小细胞肺癌的指南,但临床反应不理想。蓬勃发展的基因测序和免疫组织化学技术促进了PMEC基因组图谱的探索,进一步加深了对其致癌机制的理解、并发现潜在靶点。这为实现精准的分子分类和探索新的治疗策略奠定了基础。

4.1. 表皮生长因子受体(Epidermal Growth Factor Receptor, EGFR)抑制剂

EGFR是一种酪氨酸激酶I亚族的跨膜蛋白受体,主要存在于基质、表皮与部分平滑肌细胞内,可通过磷酸化调节癌细胞的增殖与生长相关信号传导,其表达与不良预后相关。EGRF突变在PMEC中常见,国外报道在50%的儿童PMEC病例中发现了EGFR突变 [13] 。靶向EGFR的治疗可以阻断其信号转导通路的活化,从而达到治疗肿瘤的目的 [14] 。1) 西妥昔单抗:Yubin Wu等 [15] 报道了一例EGFR阳性的复发性高级别MEC患者,接受西妥昔单抗单药治疗8周后肿瘤体积明显缩小,肿瘤标志物水平降低,西妥昔单抗单药治疗的疗效评估为接近完全缓解。也有报道称,西妥昔单抗联合再放疗成功治疗了一例不适合手术的复发性高级别MEC [16] 。Shunpei Yamanaka [17] 等在体外实验中证实西妥昔单可以抗阻断EGFR信号转导,抑制EGFR磷酸化和EGFR下游蛋白STAT1磷酸化,从而抑制MEC细胞增殖。2) 吉非替尼:Shaomei Li等报道了1例10岁的低级别PEMC患儿,肿瘤分期为IIIa期,被评估为不适合手术治疗,在使用吉非替尼18天后肿瘤被完全抑制,随访22月无复发,疗效评估为完全缓解。实际上该患儿缺乏EGFR突变,这表明吉非替尼对于治疗PMEC有效,但存在其他的作用机制。MEC中的CRTC1-MAML2融合基因,所产生的CRTC1-MAML2融合蛋白被普遍认为是MEC启动和维持的主要致癌驱动因素。体外数据显示,CRTC1-MAML2阳性的PMEC细胞系对吉非替尼敏感,其机制可能是由CRTC1-MAML2通过上调EGFR的配体双调蛋白作用介导的 [18] 。

4.2. 组蛋白去乙酰化酶(Histone Deacetylases, HDAC)抑制剂

组蛋白乙酰化和去乙酰化过程是表观遗传调控的基本机制。组蛋白乙酰转移酶(HAT/KAT)催化乙酰基团添加到组蛋白的赖氨酸残基中,从而促进染色质结构的松弛并增强DNA对转录因子的可及性。相反,HDAC通过对赖氨酸残基赋予正电荷,诱导紧密的染色质复合物,并阻断RNA聚合酶启动DNA转录,从而抑制基因转录。组蛋白去乙酰化酶(HDAC)抑制剂可以干扰HDAC的功能,通过提高细胞内组蛋白乙酰化程度来调控基因转录,从而成为恶性肿瘤的分子靶向治疗药物 [19] 。1) 伏立诺他是具有肟氧结构的I/II型HDAC抑制剂,研究发现伏立诺他能够破坏MEC中的癌症干细胞,并降低MEC对顺铂的耐药性。并且联合NF-κB抑制剂依米丁可以有效杀灭MEC细胞及其癌症干细胞,该方法在霍奇金淋巴瘤、卵巢癌和头颈部鳞状细胞癌治疗上已经证明有效 [20] [21] ,但对于其在PMEC患者中的疗效还需要更多临床实验来验证。2) CUDC-101是一种由EGFR和HDAC联合抑制剂组成的分子,研究表现可以减弱MEC中的癌干细胞致瘤性,对MEC细胞表现出不可逆转且强大的细胞毒性 [22] 。目前需要进一步的研究来评估联合EGFR-HDAC抑制剂在MEC临床治疗中的适用性和有效性。

4.3. 血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)抑制剂

VEGF是一种血管内皮细胞特异性的生长因子,肿瘤细胞和周围基质分泌的VEGF能刺激内皮细胞的增殖和存活,导致新血管的形成 [23] 。研究发现VEGF mRNA在大多数人类肿瘤中过度表达,并与肿瘤侵袭性、血管密度、转移、复发和预后相关 [24] 。因此可以通过阻断VEGF/VEGFR通路直接抑制肿瘤细胞的增殖和转移。有研究发现,托珠单抗(Tocilizumab, TCZ)在MEC中表现出了显著的抗肿瘤作用,并与STAT3信号及肿瘤血管生成抑制有关 [25] 。通过抗肿瘤血管生成能抑制肿瘤的侵袭和转移,因此靶向VEGF治疗可能为PMEC提供新的治疗方向。

4.4. Notch抑制剂

有研究发现,Notch信号转导在维持MEC干细胞样细胞和肿瘤生长中具有关键作用,通过抑制Notch信号可以在体外减少癌球的形成,并在体内阻断MEC的生长。若同时靶向MEC中的两个独立信号通路,即对MEC干细胞至关重要的Notch信号转导和由主要CRTC1-MAML2致癌融合驱动的EGFR信号转导,可能在阻断MEC方面取得更大的效果。在动物实验中证明,与单独治疗相比,Notch抑制剂DBZ和EGFR抑制剂厄洛替尼的组合增强了对MEC的抑制效果 [26] 。对于共同靶向Notch和EGFR信号转导的方法是一种潜在的有效抗MEC治疗方法。

5. 免疫治疗

程序性死亡1 (PD-1)受体在活化的T细胞上表达,并在其配体PD-L1和PD-L2结合时能抑制效应T细胞功能。PD-1通路的上调参与了外周免疫耐受的诱导和维持,导致许多肿瘤的免疫反应受到抑制 [27] 。目前PD-1/PD-L1抑制剂治疗非小细胞肺癌已经在临床研究中取得了突出疗效 [28] [29] [30] 。但这些研究中并未纳入PMEC。研究发现,部分PMEC中也存在PD-L1阳性表达。Marton Gyulai等 [31] 的研究中发现有34.6% (9/26) PMEC具有PD-L1阳性表达。PD-1/PD-L1抑制剂治疗PMEC可能是潜在的研究方向。不过,PD-L1高表达并不总是反映PD-1或PD-L1抑制剂的良好疗效。PD-L1表达的相关阈值因肿瘤类型而异。例如,尽管PD-L1阳性在肾细胞癌中的表达率相对较低(24%, 181/756),但与化疗相比,PD-1/PD-L1抑制剂仍显示出显著的生存获益。因此,PD-L1在PMEC中存在表达,但阈值划定与疗效还需更多临床实验来进一步探索。

6. 嵌合抗原受体T细胞(CAR-T)疗法

CAR-T疗法是一种针对肿瘤细胞的新方法。针对实体瘤的CAR-T疗法正在蓬勃发展,例如针对肺癌的EGFR、ERBB2、c-MET、PD-L1和B7H3的CAR-T。多个I期临床试验均证明EGFR-CAR-T细胞疗法治疗EGFR阳性晚期复发/难治性NSCLC患者是可行且安全的 [32] [33] 。最近的一项研究表明,PD-L1-CAR-T细胞对PD-L1高阳性表达的NSCLC肿瘤具有强大的疗效 [34] 。但这些都尚未纳入PMEC病例,仍有待在临床试验中进行进一步验证。

7. 小结

儿童肺黏液表皮样癌是一种罕见的肺部原发恶性肿瘤,目前以个案报道为主,治疗缺乏统一的标准,多参考成人的肺癌治疗方案。手术切除是主要的治疗方法,传统放化疗疗效欠佳,各种靶向治疗是潜在的探索方向,但要应用在儿童中还需进行更多的临床研究。

参考文献

[1] Travis, W.D., Brambilla, E., Burke, A.P., et al. (2015) Introduction to the 2015 World Health Organization Classification of Tumors of the Lung, Pleura, Thymus, and Heart. Journal of Thoracic Oncology, 10, 1240-1242.
https://doi.org/10.1097/JTO.0000000000000663
[2] Gatta, G., Capocaccia, R., Botta, L., et al. (2017) Burden and Centralised Treatment in Europe of Rare Tumours: Results of RARECAREnet—A Population-Based Study. The Lancet Oncology, 18, 1022-1039.
https://doi.org/10.1016/S1470-2045(17)30445-X
[3] Qin, B., Jiao, X., Liu, K., et al. (2018) Clinical, Pathological and Treatment Factors Associated with the Survival of Patients with Primary Pulmonary Salivary Gland-Type Tumors. Lung Cancer, 126, 174-181.
https://doi.org/10.1016/j.lungcan.2018.11.010
[4] Jaramillo, S., Rojas, Y., Slater, B.J., et al. (2016) Childhood and Adolescent Tracheobronchial Mucoepidermoid Carcinoma (MEC): A Case-Series and Review of the Literature. Pediatric Surgery International, 32, 417-424.
https://doi.org/10.1007/s00383-015-3849-y
[5] Roden, A.C., García, J.J., Wehrs, R.N., et al. (2014) Histopathologic, Immunophenotypic and Cytogenetic Features of Pulmonary Mucoepidermoid Carcinoma. Modern Pathology, 27, 1479-1488.
https://doi.org/10.1038/modpathol.2014.72
[6] Song, Z., Liu, Z., Wang, J., et al. (2013) Primary Tracheobronchial Mucoepidermoid Carcinoma—A Retrospective Study of 32 Patients. World Journal of Surgical Oncology, 11, Article 62.
https://doi.org/10.1186/1477-7819-11-62
[7] Techavichit, P., Hicks, M.J., López-Terrada, D.H., et al. (2016) Mucoepidermoid Carcinoma in Children: A Single institutional Experience. Pediatric Blood & Cancer, 63, 27-31.
https://doi.org/10.1002/pbc.25681
[8] 张谦, 曾骐, 陈诚豪, 等. 儿童气管黏液表皮样癌的外科治疗[J]. 中华小儿外科杂志. 2023, 44(5): 385-389.
[9] Abele, M., Bajčiová, V., Wright, F., et al. (2022) Primary Lung Carcinoma in Children and Adolescents: An Analysis of the European Cooperative Study Group on Paediatric Rare Tumours (EXPeRT). European Journal of Cancer, 175, 19-30.
https://doi.org/10.1016/j.ejca.2022.08.007
[10] Jieli, Z., Yunzhi, Z., Nan, Z., et al. (2021) Different Effects of Bronchoscopic Interventions on Children and Adults with Tracheobronchial Mucoepidermoid Carcinoma. Tumori Journal, 108, 134-140.
https://doi.org/10.1177/0300891621995898
[11] Wang, H., Zhang, J., Li, D., et al. (2015) Efficacy of Bronchoscopic Therapies for Bronchial Mucoepidermoid Carcinoma in Children: Results from Six Patients. Tumori Journal, 101, 52-56.
https://doi.org/10.5301/tj.5000213
[12] Yu, Y., Song, Z., Chen, Z., et al. (2011) Chinese Pediatric and Adolescent Primary Tracheobronchial Tumors: A Hospital-Based Study. Pediatric Surgery International, 27, 721-726.
https://doi.org/10.1007/s00383-011-2858-8
[13] Han, S.W., Kim, H.P., Jeon, Y.K., et al. (2008) Mucoepidermoid Carcinoma of Lung: Potential Target of EGFR-Directed Treatment. Lung Cancer, 61, 30-34.
https://doi.org/10.1016/j.lungcan.2007.11.014
[14] Griffin, R. and Ramirez, R.A. (2017) Molecular Targets in Non-Small Cell Lung Cancer. Ochsner Journal, 17, 388-392.
[15] Wu, Y., Han, L., Sheng, Y., et al. (2020) Cetuximab Monotherapy for Relapsing High-Grade Mucoepidermoid Carcinoma: A Case Report and Review of the Literature. Oral Oncology, 107, Article 104824.
https://doi.org/10.1016/j.oraloncology.2020.104824
[16] Milanovic, D., Jeremic, B., Kayser, G., et al. (2012) Relapsing High Grade Mucoepidermoid Carcinoma. Strahlentherapie und Onkologie, 188, 518-522.
https://doi.org/10.1007/s00066-012-0096-1
[17] Yamanaka, S., Suzuki, S., Ito, H., et al. (2023) Establishment of Mucoepidermoid Carcinoma Cell Lines from Surgical and Recurrence Biopsy Specimens. International Journal of Molecular Sciences, 24, Article 1722.
https://doi.org/10.3390/ijms24021722
[18] Shinomiya, H., Ito, Y., Kubo, M., et al. (2016) Expression of Amphiregulin in Mucoepidermoid Carcinoma of the Major Salivary Glands: A Molecular and Clinicopathological Study. Human Pathology, 57, 37-44.
https://doi.org/10.1016/j.humpath.2016.06.016
[19] Seto, E. and Yoshida, M. (2014) Erasers of Histone Acetylation: The Histone Deacetylase Enzymes. Cold Spring Harbor Perspectives in Biology, 6, a18713.
https://doi.org/10.1101/cshperspect.a018713
[20] Ong, P.S., Wang, X.Q., Lin, H.S., et al. (2012) Synergistic Effects of Suberoylanilide Hydroxamic Acid Combined with Cisplatin Causing Cell Cycle Arrest Independent Apoptosis in Platinum-Resistant Ovarian Cancer Cells. International Journal of Oncology, 40, 1705-1713.
[21] Almeida, L.O., Abrahao, A.C., Rosselli-Murai, L.K., et al. (2014) NFκB Mediates Cisplatin Resistance through Histone Modifications in Head and Neck Squamous Cell Carcinoma (HNSCC). FEBS Open Bio, 4, 96-104.
https://doi.org/10.1016/j.fob.2013.12.003
[22] Parag-Sharma, K., Tasoulas, J., Musicant, A.M., et al. (2021) Synergistic Efficacy of Combined EGFR and HDAC Inhibitors Overcomes Tolerance to EGFR Monotherapy in Salivary Mucoepidermoid Carcinoma. Oral Oncology, 115, Article 105166.
https://doi.org/10.1016/j.oraloncology.2020.105166
[23] Ferrara, N. (2002) VEGF and the Quest for Tumour Angiogenesis Factors. Nature Reviews Cancer, 2, 795-803.
https://doi.org/10.1038/nrc909
[24] Kerbel, R.S. (2008) Tumor Angiogenesis. The New England Journal of Medicine, 358, 2039-2049.
https://doi.org/10.1056/NEJMra0706596
[25] Mochizuki, D., Adams, A., Warner, K.A., et al. (2015) Anti-Tumor Effect of Inhibition of IL-6 Signaling in Mucoepidermoid Carcinoma. Oncotarget, 6, 22822-22835.
https://doi.org/10.18632/oncotarget.4477
[26] Ni, W., Chen, Z., Zhou, X., et al. (2021) Targeting Notch and EGFR Signaling in Human Mucoepidermoid Carcinoma. Signal Transduction and Targeted Therapy, 6, Article No. 27.
https://doi.org/10.1038/s41392-020-00388-0
[27] Keir, M.E., Butte, M.J., Freeman, G.J., et al. (2008) PD-1 and Its Ligands in Tolerance and Immunity. Annual Review of Immunology, 26, 677-704.
https://doi.org/10.1146/annurev.immunol.26.021607.090331
[28] Aguilar, E.J., Ricciuti, B., Gainor, J.F., et al. (2019) Outcomes to First-Line Pembrolizumab in Patients with Non-Small-Cell Lung Cancer and Very High PD-L1 Expression. Annals of Oncology, 30, 1653-1659.
https://doi.org/10.1093/annonc/mdz288
[29] Incorvaia, L., Fanale, D., Badalamenti, G., et al. (2019) Programmed Death Ligand 1 (PD-L1) as a Predictive Biomarker for Pembrolizumab Therapy in Patients with Advanced Non-Small-Cell Lung Cancer (NSCLC). Advances in Therapy, 36, 2600-2617.
https://doi.org/10.1007/s12325-019-01057-7
[30] Li, H., Shyam, S.S., Jatwani, K., et al. (2024) Tumor Characteristics and Treatment Responsiveness in Pembrolizumab-Treated Non-Small Cell Lung Carcinoma. Cancers, 16, Article 744.
https://doi.org/10.3390/cancers16040744
[31] Gyulai, M., Megyesfalvi, Z., Reiniger, L., et al. (2023) PD-1 and PD-L1 Expression in Rare Lung Tumors. Pathology and Oncology Research, 29, Article 1611164.
https://doi.org/10.3389/pore.2023.1611164
[32] Zhang, Y., Zhang, Z., Ding, Y., et al. (2021) Phase I Clinical Trial of EGFR-Specific CAR-T Cells Generated by the PiggyBac Transposon System in Advanced Relapsed/Refractory Non-Small Cell Lung Cancer Patients. Journal of Cancer Research and Clinical Oncology, 147, 3725-3734.
https://doi.org/10.1007/s00432-021-03613-7
[33] Feng, K., Guo, Y., Dai, H., et al. (2016) Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of Patients with EGFR-Expressing Advanced Relapsed/Refractory Non-Small Cell Lung Cancer. Science China Life Sciences, 59, 468-479.
https://doi.org/10.1007/s11427-016-5023-8
[34] Liu, M., Wang, X., Li, W., et al. (2020) Targeting PD-L1 in Non-Small Cell Lung Cancer Using CAR T Cells. Oncogenesis, 9, Article No. 72.
https://doi.org/10.1038/s41389-020-00257-z