吡咯里嗪衍生物的合成研究
Synthesis Studies of Pyrrolizidine Derivatives
DOI: 10.12677/jocr.2024.122015, PDF, HTML, XML, 下载: 78  浏览: 118 
作者: 李治乔, 张 怡, 丹智才让:兰州交通大学化学化工学院,甘肃 兰州
关键词: 吡咯里嗪杂环化合物含氮化合物Pyrrolizine Heterocyclic Compound Nitrogen Compounds
摘要: 吡咯里嗪类化合物是一种重要的双环融合的杂环化合物,其核心骨架中含有桥头氮,通常存在于具有生物活性的化合物中,在植物、昆虫、动物、海洋生物和微生物的次级代谢产物中被广泛分离得到,具有消炎、止痛和抗肿瘤、抗病毒等活性。因此,在过去几年中,开发高效且稳健的官能化吡咯里嗪类化合物的合成方法引起了人们的极大兴趣。鉴于此,本文对近些年吡咯里嗪类化合物的合成方法进行了综述,希望能进一步为吡咯里嗪类化合物的合成研究提供参考。
Abstract: Pyrrolizines compounds are important bicyclic fused heterocyclic compounds, whose core skeleton contains bridgehead nitrogen, which is usually found in biologically active compounds and widely isolated from secondary metabolites of plants, insects, animals, Marine organisms and microorganisms, with anti-inflammatory, analgesic, anti-tumor, anti-viral activities. Thus, during the past several years, there has been a lot of interest in the development of reliable and efficient synthetic methods for the production of functionalized pyrrolizine analogues. Because of this, this study covers the synthetic procedures for pyrrolizines that have been developed recently in an effort to further the synthetic investigations of pyrrolizines.
文章引用:李治乔, 张怡, 丹智才让. 吡咯里嗪衍生物的合成研究[J]. 有机化学研究, 2024, 12(2): 182-194. https://doi.org/10.12677/jocr.2024.122015

1. 引言

含氮杂环化合物广泛分布于生物活性物质和天然产物中,由于其独特的结构赋予了它们特殊的化学性质和生物活性。在药物、农药、染料等领域中,这些化合物具有重要的应用价值,被广泛应用于疾病治疗、植物保护和材料合成等领域 [1] 。其多样性和活性使其成为科学研究和工业应用中备受关注的研究对象 [2] 。通过对含氮杂环化合物的深入研究,可以更好地理解其在生物体内的作用机制,发现新的药物候选化合物,推动医药领域的发展 [3] 。

在众多含氮杂环化合物中,吡咯里嗪类化合物有着不可取代的地位 [4] 。吡咯里嗪类化合物的结构由两个稠和的五元环构成,作为重要的氮杂芳环化合物,在药物化学和材料化学起着重要的作用 [5] [6] [7] 。许多天然产物和药物分子中都含有吡咯里嗪衍生物或其氢化产物(如图1),这些化合物通常表现出抗肿瘤、消炎、镇痛和抗病毒等活性 [8] [9] 。此外,还有许多吡咯里嗪衍生物经过再修饰后,可以开发出更多有效的合成药物 [10] ,这对推动医药领域的快速发展有着重要的意义。因此,近年来,人们对发展高效且可靠的合成吡咯里嗪类化合物的方法表现出极大的兴趣。

Figure 1. Natural products and drug molecules with a pyrrolizine backbone

图1. 具有吡咯里嗪骨架的天然产物和药物分子

迄今为止,合成吡咯里嗪类化合物的方法丰富多样,其中分子内环化反应和分子间环加成反应被证实为合成该类化合物最为高效的途径。在本文中,我们将对吡咯里嗪类化合物的分离和应用进行阐述,并从分子内环化反应和分子间环加成反应这两个重要方面,对吡咯里嗪衍生物的合成方法进行简要综述,以期为读者提供一个清晰全面的了解。

2. 吡咯里嗪类化合物的分离及应用

吡咯里嗪是一种由两个融合的五元环组成的杂环系统,其中在环连接处含有一个氮原子。这类化合物主要由其母体1H-吡咯里嗪、3H-吡咯里嗪以及多种氢化结构组成(如图2),已有许多衍生物从植物 [11] 和动物 [12] 中分离得到。吡咯里西啶作为吡咯里嗪结构中最主要的组成部分,构成了全世界鉴定的660多种生物碱中的主要骨架 [13] ,这些生物碱由植物生物合成,作为对抗食草动物的次级代谢产物 [14] 。此外,这些生物碱还被证明具有消炎、止痛、抗肿瘤、抗病毒活性,还可以形成可与DNA结合的反应性吡咯代谢物,形成DNA和DNA与蛋白质的交联产物 [15] [16] 。

Figure 2. Introduction to the pyrrolizine skeleton

图2. 吡咯里嗪类化合物骨架介绍

Figure 3. Pyrrolizidine alkaloid (+)-Pochonicine and (−)-Pochonicine

图3. 吡咯里西啶生物碱(+)-Pochonicine and (−)-Pochonicine

(+)-Pochonicine是从真菌菌株Pochonia suhlasporia中分离得到的多羟基吡咯里嗪类天然产物的新成员。Popchonicine的分离、结构和生物活性具有几个独特特征,它是第一个从真菌来源分离出来的吡咯里西啶生物碱,也是第一个在侧链上具有乙酰胺基的天然双环亚氨基糖。此外通过研究发现,Popchonicine是多种生物体(包括昆虫、真菌、哺乳动物和植物)中GlcNAcases (Ki = 0.162 nM)的极其强效抑制剂,同时对其他糖苷酶如杏仁β-糖苷酶、酵母α-糖苷酶和芽孢杆菌几丁质酶均无抑制作用 [17] 。作为GLcNAcase抑制剂,Popchonicine有望作为杀虫剂或杀菌剂应用,同时也可能成为生物化学研究中用于病原菌防治的工具。基于其重要的研究价值,Takahashi及其同事在2013年,通过合成(−)-pochonicine及其三种立体异构体,成功确定了天然(+)-pochonicine中各种立体中心的绝对构型 [18] (图3)。

丝裂霉素C (图4),它是一种早期从Streptomyces caespitosus或Streptomyces lavendulae中分离出来的抗肿瘤药物之一,具有强烈的抗肿瘤活性。被用于治疗上段食管癌、肛门癌、乳腺癌和浅表性膀胱癌 [19] [20] 。丝裂霉素C还是一种高效、高特异性的DNA交联剂 [21] ,可以在双链DNA的50-d (CG)序列上交联脱氧鸟苷的外环氨基 [22] 。

Figure 4. Drug molecules with a pyrrolizidine backbone: Mitomycin C

图4. 具有吡咯里嗪骨架的药物分子:丝裂霉素C

抗肿瘤抗生素ClazamycinA 和Clazamycin B也是是从微生物中分离出来的含有吡咯里嗪骨架的天然产物,它们是唯一已知的含有氯取代基的吡咯里西啶天然产物 [23] 。CJ-16,264和CJ-16,367作为具有吡咯里嗪骨架的抗生素的案例也被广泛报道 [24] (图5)。

Figure 5. Natural products and drug molecules with a pyrrolizine backbone

图5. 具有吡咯里嗪骨架的天然产物和药物分子

酮咯酸(Ketorolac)作为消炎镇痛剂的情况被Joseph M. Muchowski等人报道。这类化合物因其高效的镇痛作用和较低的胃肠道副作用而被选用进行临床实验 [25] 。于此同时,Jett课题组对(R,S)、(S)和(R)-酮咯酸在大鼠和人源性重组COX-1和COX-2中的抑制作用进行了研究。研究结果表明,外消旋体和(S)-对映体之间没有显著差异 [26] (图6)。

Figure 6. Drug molecules with a pyrrolizidine backbone: Ketorolac

图6. 具有吡咯里嗪骨架的药物分子:酮咯酸

Licofelone (LM-3000)是双COXs/5-LOX抑制剂最典型的代表,具有多种药理活性,包括抗炎、镇痛、解热、抗哮喘和抗血小板聚集活性。与其他具有良好胃肠道耐受性的COX/5-LOX抑制剂相比,licofelone是唯一一种在临床应用中显示出可接受安全性的COX/5-LOX双重抑制剂 [27] 。与其他引起胃溃疡的非甾体抗炎药不同,ML300虽然抑制了胃前列腺素的合成,但对胃粘膜的损害很少 [28] 。此外,licofelone对中枢神经系统或自主神经系统没有毒性影响 [29] 。在体内或体外也均未观察到与licofelone相关的潜在遗传毒性 [30] (图7)。

Figure 7. Drug molecules with a pyrrolizidine backbone: Licofelone

图7. 具有吡咯里嗪骨架的药物分子:Licofelone

此外,2014年Luca Cucullo课题组报道了具有独特[6,5,5]-三环系统的吡咯里西啶生物碱261C (图8) [31] 。该化合物是环嗪家族的典型代表,具有独特的结构特性 [32] ,并且在生物学上具有重要意义 [33] [34] [35] 。这种三环骨架在文献中的例子非常罕见。

Figure 8. Pyrrolizidine alkaloids: Alkaloid 261C

图8. 吡咯里西啶生物碱:Alkaloid 261C

自从发现丝裂霉素C以来,化学家们一直致力于开发基于吡咯嗪支架的生物活性药物。这些努力推动了吡咯里嗪类化合物的飞速发展,清晰地展示了吡咯里嗪支架在合成抗肿瘤药物中的关键地位。这些吡咯里嗪类化合物之间的结构相似性并非偶然,而是凸显了吡咯里嗪支架作为合成抗肿瘤药物核心的重要性。这一独特的支架结构稳定而强大,为抗肿瘤药物的构建提供了坚实的基础。通过深入研究这些化合物的结构特征,我们发现吡咯里嗪支架在药物分子中扮演关键角色,不仅具有药理活性,还通过独特的生物活性作为生物酶抑制剂作用于病灶细胞,达到治疗目的。因此,吡咯里嗪支架作为合成药物的关键核心地位不言而喻。未来,随着对吡咯里嗪支架研究的深入,我们有望开发出更多高效、低毒的抗肿瘤、消炎、止痛、抗病毒药物,为人类的健康事业做出更大的贡献。基于此,本文综述了近年来药物化学家在寻找具有潜在抗肿瘤活性的吡咯里嗪衍生物方面所做的工作,重点介绍了吡咯里嗪类化合物的结构活性关系和一般合成方法。

3. 吡咯里嗪类化合物的合成

3.1. 分子间环化反应合成吡咯里嗪类化合物

Dieckmann缩合反应是早期合成吡咯里嗪类化合物的方法之一。1969年,Takeo Sato研究小组 [36] 提出了通过Dieckmann缩合以及缩环反应合成吡咯里嗪类化合物的方法(图9)。该方法以苯甲基亚胺二丁酸二乙酯为起始原料,通过钯碳催化氢化、氢化铝锂的还原等过程成功实现了吡咯里嗪衍生物的合成。

Figure 9. Intramolecular multistep reaction for the synthesis of pyrrolizines

图9. 分子内多步反应合成吡咯里嗪类化合物

1982,Michael E. Garst课题组 [37] 报道了以N,N-双烯丙基胺为起始原料,通过硼氢化反应、CO的插入以及最后缩环反应等过程(图10),成功实现了六氢吡咯里嗪类化合物的合成。

Figure 10. Intramolecular cyclization of N,N-diallylamine

图10. N,N-双烯丙基胺的分子内环化反应

2009年,Raghavachary Raghunathan课题组 [38] 报道了一种新颖的合成方法(图11),利用甲亚胺叶立德与Baylis-Hillman加成物衍生物进行1,3-偶极环加成反应,成功合成了多种吡咯里嗪类化合物。该方法条件温和、底物适应性广泛,可以以中等到良好的产率得到目标产物。值得一提的是,在微波条件下,该反应能更高效地进行,从而在更短的时间内获得高产率的产物。

Figure 11. Synthesis of polycyclic pyrrolizines by intramolecular cyclization reactions

图11. 分子内环化反应合成多环吡咯里嗪类化合物

在2012年,Suzanne A. Blum研究团队 [39] 揭示了一种通过乙烯基氮丙啶在烷基金、钯和路易斯酸的催化重排反应中合成吡咯里嗪衍生物的方法(图12)。该方法在一个合成步骤中实现了新的C-C键和C-N键的同时构建。此外,在烷基金和钯的金属转移反应过程中,该方法还实现了立体化学的保留。这也是手性有机金(I)配合物与钯的金属转移反应中保留立体化学的首次研究。

Figure 12. Intramolecular cyclization reaction catalyzed by metal and Lewis synergy

图12. 金属和Lewis协同催化的分子内环化反应

Figure 13. Correspondence-selective synthesis of pyrrolizines

图13. 吡咯里嗪类化合物的对应选择性合成

2016年,Levi M. Stanley团队 [40] 报道了一项便捷的合成方法,用于制备吡咯里嗪类化合物(图13)。这一策略巧妙地将烯烃加氢酰化和对映选择性α-芳基化反应结合在一起,采用N-杂环卡宾(NHC)作为催化剂,成功实现了具有四元立体中心的吡咯里嗪骨架的构建。这种连续的烯烃加氢酰化/α-芳基化方案也可以在一锅法中实现,并且具有良好的产率和对映选择性,是获得具有复杂季碳立体中心化合物的一种有效合成策略。

2021年,Jhillu Singh Yadav研究团队 [41] 报道了一种有效合成吡咯里嗪衍生物的方法(图14)。该方法通过Ru-卡宾催化的闭环烯–炔复分解反应(RCEM)进行,成功实现了吡咯里西啶生物碱骨架的构建,并且将其应用于茎藤碱的全合成。此外,该方法还系统地研究了不同种类和用量的钌卡宾催化剂、溶剂和温度对反应的影响。

Figure 14. Synthesis of pyrrolizide compounds through intramolecular olefin alkyne metathesis reaction

图14. 分子内烯–炔复分解反应合成吡咯里嗪类化合物

3.2. 分子间环加成反应合成吡咯里嗪类化合物

2007年Canan Unaleroglu课题组 [42] 开发了一种吡咯与取代2-氧代-4-苯基丁-3-烯酸甲酯的催化加成反应,用于合成新型烷基吡咯衍生物(图15)。该方法以三氟甲磺酸铜为催化剂,通过在吡咯的C (2)位区域选择性加成以及加成产物的加热自环化,实现了吡咯里嗪衍生物的合成。这一方法操作简单,原料易得,可以在温和的反应条件下实现吡咯里嗪骨架的有效构建。

Figure 15. Intermolecular cycloaddition reaction catalyzed by Cu(OTf)3

图15. Cu(OTf)3催化的分子间环加成反应

2014年Ding-Yah Yang课题组 [43] 报道了在微波辐射以及无金属和无催化剂的条件下,通过脯氨酸、芳香醛和1,3-二酮在1,4-二氧六环中的伪四组分偶联,成功合成了多功能化的六氢吡咯里嗪衍生物(图16)。并且通过调节反应中醛的浓度,实现了对产物的精确控制,为该方法在一些具有生物活性的天然产物和潜在功能材料的合成提供了新的途径。

Figure 16. Intermolecular cycloaddition reactions without metal catalysis

图16. 无金属催化的分子间环加成反应

2015年,Masanari Kimura的研究团队 [44] 开发了一种吡咯里嗪类化合物直接便捷的合成方法(图17)。该方法通过Pd(OAc)2和三乙基硼烷的双重催化,促使腈与2-亚甲基丙烷-1,3-二醇发生连续的双亲烯丙基化反应。在这一方法中,钯催化剂与三乙基硼烷的协同作用促进了2-亚甲基丙烷-1,3-二醇生成1,3-偶极等价物。随后,该1,3-偶极等价物与市售的腈发生分子间[3 + 2]环加成反应,形成吡咯里嗪类衍生物。这些吡咯里嗪类衍生物可用于合成吡咯里西啶生物碱的有效前体。

Figure 17. Synthesis of pyrrolizines by 1,3-dipole cycloaddition reactions

图17. 1,3-偶极环加成反应合成吡咯里嗪类化合物

Figure 18. Synthesis of pyrrolizines by intermolecular cycloaddition reactions

图18. 分子间环加成反应合成吡咯里嗪类化合物

2016年,Till Opatz教授课题组 [45] 报道了一种高效合成吡咯里嗪类化合物的方法(图18)。该方法以3,4-二氢-2H-吡咯-2-腈为起始原料,通过一锅法合成了多种含吡咯结构的杂环化合物。这些前体化合物可通过烷基化/环化反应合成2,3-二氢-1H-吡咯嗪和六氢吡咯里嗪衍生物。此外,经过乙酸铜(II)催化处理起始原料3,4-二氢-2H-吡咯-2-腈,可以实现双(氰基吡咯啉) 的制备,通过随后的双脱氢氰化反应还可以实现2,2'-联吡咯的合成。

2018年Chhanda Mukhopadhyay课题组 [46] 介绍了一种通过原位生成甲亚胺叶立德和两性离子中间体,然后进行1,3-偶极环加成反应来构建吡咯里嗪骨架的有效方法(图19)。这种新型的一锅反应为水杨醛、二烷基乙酰二羧酸酯和L-脯氨酸或噻唑烷-4-羧酸在碱性催化剂存在下的成功组装铺平了道路。此外,该反应具有操作简单、催化剂廉价、产物易于分离、底物范围广等特点,通过该串联过程可以实现多环吡咯里嗪衍生物的高效合成。

Figure 19. Synthesis of pyrrolizines by intermolecular tandem reactions

图19. 分子间串联反应合成吡咯里嗪类化合物

2023年Xiaofeng Zhang课题组 [47] 报道了一种通过简单的级联五组份反应,合成具双螺环结构的吲哚-吡咯里嗪骨架的方法(图20)。该方法将甘氨酸的脱羧、1,3-偶极环加成反应以及吡咯烷的α-C-H功能化整合在了一起,在Brønsted酸催化下,合成了具有七个立体中心的六氢吡咯里嗪类化合物,为具有吡咯里嗪骨架的复杂天然产物和药物分子的合成提供了有效的参考。此外,该反应以CO2和H2O为副产物,具有良好的环境耐受性。

Figure 20. Synthesis of indole pyrrolizide compounds with double spiral ring structure by intermolecular cycloaddition reaction

图20. 分子间环加成反应合成具双螺环结构的吲哚–吡咯里嗪类化合物

4. 总结

在上文中,我们对吡咯里嗪及其衍生物的合成方法与应用进行了全面梳理与总结。吡咯里嗪类化合物,以其独特的杂环结构和广泛的生物活性,在医药、农药及材料科学等多个领域均彰显出不可或缺的应用价值。近年来,随着合成技术的日益精进和生物活性研究的不断深化,吡咯里嗪类化合物的研究取得了令人瞩目的进展。随着研究的深入与技术的革新,我们坚信这类化合物在医药、农药及材料科学等领域的应用前景将更加璀璨夺目。展望未来,我们期待更多关于吡咯里嗪类化合物的研究成果不断涌现,为人类社会的繁荣与进步贡献更多力量。

参考文献

[1] Ye, N., Chen, H., Wold, E.A., Shi, P.-Y. and Zhou, J. (2016) Therapeutic Potential of Spirooxindoles as Antiviral Agents. ACS Infectious Diseases, 2, 382-392.
https://doi.org/10.1021/acsinfecdis.6b00041
[2] Yu, B., Yu, D.-Q. and Liu, H.-M. (2015) Spirooxindoles: Promising Scaffolds for Anticancer Agents. European Journal of Medicinal Chemistry, 97, 673-698.
https://doi.org/10.1016/j.ejmech.2014.06.056
[3] Yu, B., Yu, Z., Qi, P.-P., Yu, D.-Q. and Liu, H.-M. (2015) Discovery of Orally Active Anticancer Candidate CFI-400945 Derived from Biologically Promising Spirooxindoles: Success and Challenges. European Journal of Medicinal Chemistry, 95, 35-40.
https://doi.org/10.1016/j.ejmech.2015.03.020
[4] Yildirim, M. and Suleiman, G. (2019) A Practical Access to New Pyrrolizine Carboxylates via KHMDS-Catalyzed Carbocyclizations. Synthetic Communications, 49, 463-481.
https://doi.org/10.1080/00397911.2018.1563796
[5] Attalah, K.M., Abdalla, A.N., Aslam, A., Ahmed, M., Abourehab, M.A.S., ElSawy, N.A. and Gouda, A.M. (2020) Ethyl Benzoate Bearing Pyrrolizine/Indolizine Moieties: Design, Synthesis and Biological Evaluation of Anti-Inflammatory and Cytotoxic Activities. Bioorganic Chemistry, 94, Article ID: 103371.
https://doi.org/10.1016/j.bioorg.2019.103371
[6] Gouda, A.M., Abdelazeem, A.H., Omar, H.A., Abdalla, A.N., Abourehab, M.A.S. and Ali, H.I. (2017) Pyrrolizines: Design, Synthesis, Anticancer Evaluation and Investigation of the Potential Mechanism of Action. Bioorganic & Medicinal Chemistry, 25, 5637-5651.
https://doi.org/10.1016/j.bmc.2017.08.039
[7] Abbas, S.E., Awadallah, F.M., Ibrahim, N.A., Gouda, A.M. and Shehata, B.A. (2010) Design, Synthesis and Preliminary Evaluation of Some Novel [1,4]Diazepino [5,6-B]Pyrrolizine and 6-(2-Oxopyrrolidino)-1H-Pyrrolizine Derivatives as Anticonvulsant Agents. Medicinal Chemistry Research, 20, 1015-1023.
https://doi.org/10.1007/s00044-010-9429-8
[8] Madrigal, D.A., Escalante, C.H., Gutiérrez-Rebolledo, G.A., Cristobal-Luna, J.M., Gómez-García, O., Hernández-Benitez, R.I., Esquivel-Campos, A.L., Pérez-Gutiérrez, S., Chamorro-Cevallos, G.A., Delgado, F. and Tamariz, J. (2019) Synthesis and Highly Potent Anti-Inflammatory Activity of Licofelone-and Ketorolac-Based 1-Arylpyrrolizin-3-Ones. Bioorganic & Medicinal Chemistry, 27, Article ID: 115053.
https://doi.org/10.1016/j.bmc.2019.115053
[9] Shawky, A.M., Abourehab, M.A.S., Abdalla, A.N. and Gouda, A.M. (2020) Optimization of Pyrrolizine-Based Schiff Bases with 4-Thiazolidinone Motif: Design, Synthesis and Investigation of Cytotoxicity and Anti-Inflammatory Potency. European Journal of Medicinal Chemistry, 185, Article ID: 111780.
https://doi.org/10.1016/j.ejmech.2019.111780
[10] Gouda, A.M. and Abdelazeem, A.H. (2016) An Integrated Overview on Pyrrolizines as Potential Anti-Inflammatory, Analgesic and Antipyretic Agents. European Journal of Medicinal Chemistry, 114, 257-292.
https://doi.org/10.1016/j.ejmech.2016.01.055
[11] Ramsdell, H.S., Kedzierski, B. and Buhler, D.R. (1987) Microsomal Metabolism of Pyrrolizidine Alkaloids from Senecio jacobaea. Isolation and Quantification of 6,7-Dihydro-7-Hydroxy-1-Hydroxymethyl-5H-Pyrrolizine and N-Oxides by High Performance Liquid Chromatography. Drug Metabolism & Disposition, 15, 32-36.
https://doi.org/10.1016/0009-2797(86)90039-6
[12] Segall, H.J., Dallas, J.L. and Haddon, W.F. (1984) Two Dihydropyrrolizine Alkaloid Metabolites Isolated from Mouse Hepatic Microsomes in Vitro. Drug Metabolism & Disposition, 12, 68-71.
[13] Smith, L.W. and Culvenor, C.C. (1981) Plant Sources of Hepatotoxic Pyrrolizidine Alkaloids. Journal of Natural Products, 44, 129-152.
https://doi.org/10.1021/np50014a001
[14] Hartmann, T. and Ober, D. (2000) Biosynthesis and Metabolism of Pyrrolizidine Alkaloids in Plants and Specialized Insect Herbivores. In: Leeper, F.J. and Vederas, J.C., Eds., Biosynthesis: Aromatic Polyketides, Isoprenoids, Alkaloids, Vol. 209, Springer, Berlin, 207-243.
https://doi.org/10.1007/3-540-48146-X_5
[15] Fu, P.P., Xia, Q., Lin, G. and Chou, M.W. (2002) Genotoxic Pyrrolizidine Alkaloids—Mechanisms Leading to DNA Adduct Formation and Tumorigenicity. International Journal of Molecular Sciences, 3, 948-964.
https://doi.org/10.3390/i3090948
[16] Li, N., Xia, Q., Ruan, J., Fu, P.P. and Lin, G. (2011) Hepatotoxicity and Tumorigenicity Induced by Metabolic Activation of Pyrrolizidine Alkaloids in Herbs. Current Drug Metabolism, 12, 823-834.
https://doi.org/10.2174/138920011797470119
[17] Usuki, H., Nitoda, T., Ichikawa, M., Yamaji, N., Iwashita, T., Komura, H. and Kanzaki, H. (2008) TMG-Chitotriomycin, an Enzyme Inhibitor Specific for Insect and Fungal β-N-Acetylglucosaminidases, Produced by Actinomycete Streptomyces anulatus NBRC 13369. Journal of the American Chemical Society, 130, 4146-4152.
https://doi.org/10.1021/ja077641f
[18] Kitamura, Y., Koshino, H., Nakamura, T., Tsuchida, A., Nitoda, T., Kanzaki, H., Matsuoka, K. and Takahashi, S. (2013) Total Synthesis of the Proposed Structure for Pochonicine and Determination of Its Absolute Configuration. Tetrahedron Letters, 54, 1456-1459.
https://doi.org/10.1016/j.tetlet.2013.01.015
[19] Lammers, R.J., Witjes, J.A. and Inman, B.A. (2011) The Role of a Combined Regimen with Intravesical Chemotherapy and Hyperthermia in the Management of Non-Muscle-Invasive Bladder Cancer: Asystematic Review. European Urology, 60, 81-93.
https://doi.org/10.1016/j.eururo.2011.04.023
[20] Bradner, W.T. (2001) Mitomycin C: A Clinical Update. Cancer Treatment Reviews, 27, 35-50.
https://doi.org/10.1053/ctrv.2000.0202
[21] Woo, J., Sigurdsson, S.T. and Hopkins, P.B. (1993) DNA Interstrand Cross-Linking Reactions of Pyrrole-Derived, Bifunctional Electrophiles: Evidence for a Common Target Site in DNA. Journal of the American Chemical Society, 115, 3407-3415.
https://doi.org/10.1021/ja00062a002
[22] Tomasz, M. (1995) Mitomycin C: Small, Fast and Deadly (but Very Selective). Chemistry & Biology, 2, 575-579.
https://doi.org/10.1016/1074-5521(95)90120-5
[23] Buechter, D.D. and Thurston, D.E. (1987) Studies on the Pyrrolizidine Antitumor Agent, Clazamycin: Interconversion of Clazamycins A and B. Journal of Natural Products, 50, 360-367.
https://doi.org/10.1021/np50051a004
[24] Sugie, Y., Hirai, H., Kachi-Tonai, H., Kim, Y.J., Kojima, Y., Shiomi, Y., Sugiura, A., Suzuki, Y., Yoshikawa, N., Brennan, L., Duignan, J., Huang, L.H., Sutcliffe, J. and Kojima, N. (2001) New Pyrrolizidinone Anti-Biotics CJ-16, 264 and CJ-16, 367. The Journal of Antibiotics, 54, 917-925.
https://doi.org/10.7164/antibiotics.54.917
[25] Muchowski, J.M., Unger, S.H., Ackrell, J., Cheung, P., Cooper, G.F., Cook, J., Gallegra, P., Halpern, O., Koehler, R., Kluge, A.F., et al. (1985) Synthesis and Antiinflammatory and Analgesic Activity of 5-Aroyl-1,2-Dihydro-3H-Pyrrolo[1,2-A] Pyrrole-1-Carboxylic Acids and Related Compounds. Journal of Medicinal Chemistry, 28, 1037-1049.
https://doi.org/10.1021/jm00146a011
[26] Jett, M.F., Ramesha, C.S., Brown, C.D., Chiu, S., Emmett, C., Voronin, T., Sun, T., O’Yang, C., Hunter, J.C., Eglen, R.M. and Johnson, R.M. (1999) Characterization of the Analgesic and Anti-Inflammatory Activities of Ketorolac and Its Enantiomers in the Rat. Journal of Pharmacology and Experimental Therapeutics, 288, 1288-1297.
[27] Tries, S. and Laufer, S. (2001) The Pharmacological Profile of ML3000: A New Pyrrolizine Derivative Inhibiting the Enzymes Cyclooxygenase and 5-Lipoxygenase. Inflammopharmacology, 9, 113-124.
https://doi.org/10.1163/156856001300248380
[28] Fischer, L., Hornig, M., Pergola, C., Meindl, N., Franke, L., Tanrikulu, Y., Dodt, G., Schneider, G., Steinhilber, D. and Werz, O. (2009) The Molecular Mechanism of the Inhibition by Licofelone of the Biosynthesis of 5‐Lipoxygenase Products. British Journal of Pharmacology, 152, 471-480.
https://doi.org/10.1038/sj.bjp.0707416
[29] Algate, D.R., Augustin, J., Atterson, P.R., Beard, D.J., Jobling, C.M., Laufer, S., Munt, P.L. and Tries, S. (1995) General Pharmacology of [2,2-Dimethyl-6-(4-Chlorophenyl)-7-Phenyl-2,3-Dihydro-1H-Pyrroliz-Ine-5-Yl]-Acetic Acid in Experimental Animals. Arzneimittelforschung, 45, 159-165.
[30] Heidemann, A., Tries, S., Laufer, S. and Augustin, J. (1995) Studies on the in Vitro and in Vivo Genotoxicity of [2,2-Dimethyl-6-(4-Chlorophenyl)-7-Phenyl-2,3-Dihydro-1H Pyrrolizine-5-Yl]-Acetic Acid. Arzneimittelforschung, 45, 486-490.
[31] Prasad, S., Sajja, R.K., Naik, P. and Cucullo, L. (2014). Diabetes Mellitus and Blood-Brain Barrier Dysfunction: An Overview. Journal of Pharmacovigilance, 2, Article 1000125.
https://doi.org/10.4172/2329-6887.1000125
[32] Schröder, F., Franke, S., Francke, W., Baumann, H., Kaib, M., Pasteels, J.M. and Daloze, D. (1996) A New Family of Tricyclic Alkaloids from Myrmicaria Ants. Tetrahedron, 52, 13539-13546.
https://doi.org/10.1016/0040-4020(96)00834-4
[33] Jørgensen, A.S., Jacobsen, P., Christiansen, L.B., Bury, P.S., Kanstrup, A., Thorpe, S.M., Naerum, L. and Bioorg, K.W. (2000) Synthesis and Estrogen Receptor Binding Affinities of Novel Pyrrolo[2,1,5-cd]Indolizine Derivatives. Bioorganic & Medicinal Chemistry Letters, 10, 2383-2386.
https://doi.org/10.1016/S0960-894X(00)00474-1
[34] Jørgensen, A., Jacobsen, P., Christiansen, L., Bury, P., Kanstrup, A., Thorpe, S., Bain, S., Naerum, L. and Bioorg, K.W. (2000) Synthesis and Pharmacology of a Novel Pyrrolo[2,1,5-cd]Indolizine (NNC 45-0095), a High Affinity Non-Steroidal Agonist for the Estrogen Receptor. Bioorganic & Medicinal Chemistry Letters, 10, 399-402.
https://doi.org/10.1016/S0960-894X(00)00015-9
[35] Daly, J.W. (2003) Ernest Guenther Award in Chemistry of Natural Products. Amphibian Skin:  A Remarkable Source of Biologically Active Arthropod Alkaloids. Journal of Medicinal Chemistry, 46, 445-452.
https://doi.org/10.1021/jm0204845
[36] Nelson, J.L. and Takeo, S. (1969) Transannular Route for Stereospecific Synthesis. (±)-Isoretronecanol. The Journal of Organic Chemistry, 34, 1066-1070.
https://doi.org/10.1021/jo01256a064
[37] Michael, E.G., John, N.B. and Jeffrey, M. (1982) Hydroboration-Carbon Monoxide Insertion of Bis-Olefinic Amine Derivatives. Synthesis of .Delta.-Coniceine, Pyrrolizidine, (.±.)-Heliotridane, and (.±.)-Pseudoheliotridane. The Journal of Organic Chemistry, 47, 1494-1500.
https://doi.org/10.1021/jo00347a024
[38] Kathiravan, S., Ramesh, E. and Raghunathan, R. (2009) Synthesis of Pyrrolo[2,3-A]Pyrrolizine and Pyrrolizine[2,3-A]Pyrrolizine Derived from Allyl Derivatives of Baylis-Hillman Adducts through Intramolecular 1,3-Dipolar Cycloaddition. Tetrahedron Letters, 50, 2389-2391.
https://doi.org/10.1016/j.tetlet.2009.02.222
[39] Hirner, J.J., Roth, K.E., Shi, Y. and Blum, S.A. (2012) Mechanistic Studies of Azaphilic versus Carbophilic Activation by Gold(I) in the Gold/Palladium Dual-Catalyzed Rearrangement of Alkenyl Vinyl Aziridines. Organometallics, 31, 6843-6850.
https://doi.org/10.1021/om300671j
[40] Ghosh, A., Walker, J.A., Ellern, A. and Stanley, L.M. (2016) Coupling Catalytic Alkene Hydroacylation and α-Arylation: Enantioselective Synthesis of Heterocyclic Ketones with α-Chiral Quaternary Stereocenters. ACS Catalysis, 6, 2673-2680.
https://doi.org/10.1021/acscatal.6b00365
[41] Kumar, P., Rahman, M.A., Haque, A. and Singh Yadav, J. (2021) A Transition Metal-Catalyzed Enyne Metathesis for the Preparation of Pyrrolizidine Alkaloid Core: Application Towards the Total Synthesis of Stemaphylline. Tetrahedron Letters, 68, Article ID: 152906.
https://doi.org/10.1016/j.tetlet.2021.152906
[42] Unaleroglu, C., Aytac, S. and Temelli, B. (2007) Copper Triflate Catalyzed Regioselective Alkylation of Pyrrole: Conversion of 2-Alkylated Pyrroles to Novel Pyrrolizine Derivatives by Self-Cyclization. Heterocycles, 71, 2427-2440.
https://doi.org/10.3987/COM-07-11137
[43] Manjappa, K.B., Jhang, W.-F., Huang, S.-Y. and Yang, D.-Y. (2014) Microwave-Promoted, Metal-and Catalyst-Free Decarboxylative α,β-Difunctionlization of Secondary α-Amino Acids via Pseudo-Four-Component Reactions. Organic Letters, 16, 5690-5693.
https://doi.org/10.1021/ol5027574
[44] Yamada, N., Hirata, G., Onodera, G. and Kimura, M. (2015) Efficient Synthesis of Pyrrolizidine by Pd-Catalyzed Consecutive Double Amphiphilic Allylation of Nitrile. Tetrahedron, 71, 6541-6546.
https://doi.org/10.1016/j.tet.2015.04.110
[45] Nebe, M.M., Kucukdisli, M. and Opatz, T. (2016) 3,4-Dihydro-2H-Pyrrole-2-Carbonitriles: Useful Intermediates in the Synthesis of Fused Pyrroles and 2,2’-Bipyrroles. The Journal of Organic Chemistry, 81, 4112-4121.
https://doi.org/10.1021/acs.joc.6b00393
[46] Karmakar, R., Mukhopadhyay, C. (2018) Regio‐ and Stereoselective Multicomponent Synthesis of Novel Chromeno‐Annulated Pyrrolizine and Thiazolizine Scaffolds via 1,3‐Dipolar Cycloaddition Reactions. ChemistrySelect, 3, 8581-8586.
https://doi.org/10.1002/slct.201801533
[47] Zhan, D., Yao, B., Huan, C., Lu, J., Ji, Y. and Zhang, X. (2023) A Step-Economical and Diastereoselective Synthesis of Dispirooxindole-Pyrrolizines Bearing Seven Stereocenters. Tetrahedron Letters, 126, Article ID: 154638.
https://doi.org/10.1016/j.tetlet.2023.154638