T细胞在白癜风中的致病机制及靶向治疗的研究进展
Pathogenic Mechanism of T Cells in Vitiligo and Research Progress of Targeted Therapy
DOI: 10.12677/acm.2024.1451401, PDF, HTML, XML, 下载: 63  浏览: 92 
作者: 王 蓉, 李遇梅*:内蒙古医科大学第一临床医学院,内蒙古 呼和浩特
关键词: 白癜风T淋巴细胞发病机制黑素细胞靶向免疫治疗Vitiligo T Lymphocytes Pathogenesis Melanocytes Targeted Immunotherapy
摘要: 白癜风是一种常见的慢性皮肤病,以局部或泛发性皮肤色素脱失为特征,病因和发病机制尚不清楚。目前普遍认为自身免疫、神经内分泌、氧化应激、遗传易感和环境因素等因素相互作用导致了白癜风的发生。随着研究的深入,人们发现T淋巴细胞在白癜风的致病机制中起着关键作用。特别是,CD8 T细胞被确认为主要罪魁祸首,协调对黑素细胞的有针对性攻击和凋亡。组织驻留记忆T细胞(TRM)导致白癜风的复发,调节性T细胞(Treg)水平下降和功能受损成为白癜风患者免疫失衡的主要因素等。本文全面回顾了T淋巴细胞在白癜风发病机制中的作用机制,并讨论了相关靶向治疗如JAK抑制剂的策略以及未来的研究方向,从而为白癜风的免疫发病机制和免疫治疗提供了新的见解。
Abstract: Vitiligo is a common chronic skin disease characterised by localised or generalised skin pigmentation loss, and the etiology and pathogenesis are still unclear. It is now generally accepted that the interaction of autoimmune, neuroendocrine, oxidative stress, genetic susceptibility and environmental factors leads to the development of vitiligo. With the deepening of research, it has been found that T lymphocytes play a key role in the pathogenesis of vitiligo. In particular, CD8 T cells were identified as the main culprits, coordinating targeted attacks on melanocytes and apoptosis. Tissue-resident memory (TRM) T cells contribute to the recurrence of vitiligo, and decreased levels and impaired function of regulatory T cells (Treg) have been identified as a major factor in the immune imbalance of vitiligo patients, among others. In this paper, we comprehensively review the mechanisms of T lymphocytes in the pathogenesis of vitiligo and discuss the strategies of relevant targeted therapies such as JAK inhibitors as well as future research directions, thus providing new insights into the immunopathogenesis and immunotherapy of vitiligo.
文章引用:王蓉, 李遇梅. T细胞在白癜风中的致病机制及靶向治疗的研究进展[J]. 临床医学进展, 2024, 14(5): 95-101. https://doi.org/10.12677/acm.2024.1451401

1. 引言

白癜风是一种常见的慢性自身免疫性皮肤病,其特征为皮肤和(或)黏膜上出现不规则的白斑,由于局部的色素丧失而引起。虽然白癜风的确切致病机制尚不完全清楚,但近年来的研究表明,T细胞在白癜风的发病过程中发挥着关键的角色。这些免疫细胞的异常活动可能导致色素细胞的破坏,从而引发皮肤脱色 [1] [2] [3] 。

随着对免疫学和分子生物学的深入研究,对白癜风发病机制的理解不断深化。本综述将探讨在白癜风发病中T细胞的致病机制,并重点关注相关的靶向治疗研究进展。深入了解T细胞在白癜风中的作用有望为开发更为有效和精准的治疗策略提供基础,为患者带来更好的临床效果。通过对这些最新的研究进展的综合分析,我们有望更全面地了解白癜风的病理生理学,为未来的治疗策略提供有力的支持。

2. 细胞毒性CD8+T细胞

虽然白癜风的发病机制仍不清楚,但已经确定的是,细胞毒性CD8+T细胞及其诱导的IFN-γ-趋化因子轴是白癜风患者黑素细胞破坏中扮演着关键角色 [4] [5] 。研究表明,在白癜风患者的外周血和皮损中,黑色素细胞特异性CD8+T细胞水平升高,并与疾病的严重程度相关 [3] [6] 。除通过释放穿孔素和颗粒酶B等细胞毒性分子直接攻击黑色素细胞外 [7] ,这些CD8+T细胞分泌的干扰素γ (IFN-γ)是黑素细胞破坏的关键因素。IFN-γ不仅可以直接诱导黑素细胞的凋亡 [8] ,还能激活角质形成细胞(KC)上的JAK-STAT信号通路,诱导KC产生趋化因子9 (CXCL9)和趋化因子10 (CXCL10),通过与趋化因子受体3 (CXCR3)相互作用,放大免疫效应,招募更多的细胞毒性CD8+T淋巴细胞渗入表皮基底层攻击黑素细胞,导致黑色素的缺失。基因分析结果表明 [9] [10] ,IFN-γ、CXCR3及其配体CXCL9和CXCL10在人类白癜风皮肤和白癜风小鼠模型中的表达明显上调,进一步证实了CXCL9和CXCL10与白癜风的发展密切相关,其中CXCL9可能负责促进黑色素细胞特异性CD8+T细胞大量募集到皮肤,CXCL10在皮肤内效应T细胞的定位和发挥功能过程中起到重要的作用,而黑色素细胞特异性CD8+T细胞需要CXCR3表达才能在皮肤组织中归巢。此外,IFN-γ还与TNF-α共同作用,破坏E-钙粘蛋白(E-cadherin),导致黑色素细胞从表皮基底层脱离 [11] 。

INF-γ信号通路在黑素细胞破坏中扮演着核心角色 [12] [13] [14] ,这为白癜风治疗提供了有力的靶点。阻断IFN-γ-CXCR3-CXCL9/10趋化因子轴的JAK抑制剂有望促进白癜风患者的色素再沉着。JAK1/2抑制剂芦可替尼(Ruxolitinib)是首个白癜风外用JAK抑制剂,在一项针对157名成年患者的随机、剂量范围较大的2期研究中,芦可替尼乳膏在24周后可使面部和全身白癜风皮损色素大量恢复,并在第52周后持续改善,表现出良好的耐受性 [15] 。此外,JAK1/3抑制剂托法替尼(Tofacitinib)于2015年首次用于难治性白癜风的治疗,成功治疗了一例全身性白癜风患者,该患者口服枸橼酸托法替尼2个月后,面部和上肢出现部分色素沉着,而在5个月后,前额和双手色素沉着基本完成,其他受累部位也出现了部分色素沉着,治疗期间患者未出现不良反应 [16] 。进一步的研究展示了JAK抑制剂联合光疗在促进黑色素沉着方面的潜在优势,Song [17] 及其团队进行了一项关于托法替尼联合NB-UVB光疗治疗非节段性白癜风的临床研究。研究结果表明,相较于接受外用药物和光疗的对照组,额外再接受口服托法替尼治疗,每次5毫克,每天两次的难治性非节段性白癜风患者在再色素沉着水平和反应率上有显著提高。此外,除一名患者外,接受托法替尼治疗的患者均未出现严重不良反应,这说明托法替尼联合NB-UVB光疗可能是一种有效、安全的替代治疗方法,适用于活动期/稳定期非节段性难治性白癜风患者。目前,JAK3/TEC家族激酶抑制剂利妥昔替尼(Ritlecitinib)在治疗白癜风的2期实验已经展开。对比安慰剂组,利特西替尼治疗组在第4周和第24周展现出显著的免疫生物标志物下调以及与黑色素细胞相关标志物的上调。该研究表明,利妥昔替尼能够显著抑制促炎生物标记物的表达,并增加非节段性白癜风(NSV)患者皮肤和血液中的黑色素细胞产物,暗示其具有潜在的治疗效果 [18] 。辛伐他汀作为STAT1信号抑制剂可以抑制黑素细胞的破坏,有助于白癜风的病情逆转。Engi Seif E等人 [19] 探究了辛伐他对NSV患者白癜风病变的影响以及白癜风疾病活动性(VIDA)评分与血脂状况之间的关联,这项研究通过对120名非节段型白癜风(NSV)患者进行了临床试验,其中79名患者伴有血脂异常,每天服用80毫克辛伐他汀治疗,结果显示每天80毫克的辛伐他汀可帮助治疗伴有血脂异常的NSV患者,有效控制白癜风的活动,并防止血脂异常对患者的不良影响。

这些最新研究成果提供了一个全面而前瞻性的治疗视角,为白癜风患者带来了更为有望的临床效果。

3. 组织驻留记忆T细胞(TRM)

部分患者在色素恢复停止治疗一段时间后,相同部位的色素会再次脱失,这表明存在导致疾病复发的免疫记忆。近来的研究指出,组织驻留记忆T细胞(TRM)可能是这种免疫记忆的驱动因素之一,它能长期驻留在外周组织中,而这种长期驻留的特性是通过CD103、CD6和CD49a等粘附分子的表达实现的 [20] 、而CCR3可促进TRM的发育和归巢 [21] 。Firdosh Shah等人 [2] 发现,泛发型白癜风(GV)患者皮肤中CD4+TRM和CD8+TRM细胞的频率和绝对数量均明显增加,免疫组化显示,与对照组相比,TRM刺激细胞因子白介素15 (IL-15)和IL-17A的表达增加,抑制因子TGF-β和IL-10的表达减少。有报道称 [22] ,白癜风患者皮肤CD69+CD103+CD8+TRM细胞的频率明显高于对照组,这些细胞在IL-15的介导下产生穿孔素、颗粒酶B和IFN-γ,在黑色素细胞的凋亡中起着关键作用。进一步研究发现 [21] ,白癜风皮损处的TRM表面表达IL-15的受体CD122,用抗CD122抗体靶向IL-15信号传导可有效逆转小鼠白癜风模型中的色素脱失。抗CD122治疗可以阻断IL-15信号,减少TRM诱导的IFN-γ产生,促进皮肤的重新着色。因此干扰IL-15信号传导的靶向疗法会为白癜风提供一种新颖且持久的治疗策略。

由于TRM的功能受到游离脂肪酸(FFA)氧化代谢的调控,因此通过使用阻止脂质代谢的药物,减少TRM的脂质摄取,可有效降低皮肤中TRM细胞的存活率,从而进一步阻断皮肤内线粒体β-氧化 [23] [24] ,防止TRM细胞介导的皮肤病变。为治疗白癜风提供了一种有前景的方法 [25] 。但具体的疗效和安全性仍需进一步的研究和验证。

4. 调节性T细胞(Treg)

调节性T细胞主要通过抑制自身反应性T细胞活化和增殖来维持免疫耐受和稳态 [26] 。白癜风的发生与Tregs水平下降和(或)功能的失调以及皮肤归巢能力降低密切相关。遗传学研究发现,叉头状转录因子P3 (FOXP3)、IL-10、TGF-β、细胞毒T淋巴细胞抗原4 (CTLA-4)等调控Treg细胞的关键基因的多态性显著增加白癜风发病风险。有课题组发现 [27] ,进展期白癜风患者外周血中Treg的数量显著减少以及CTLA-4、TGF-β、IL-10等多种免疫抑制分子的表达水平明显下降,共同导致Treg的免疫调节功能受损。另外,Prashant S Giri等人 [28] 发现,在活动期白癜风患者中,Treg介导的对NK细胞功能的抑制作用减弱,NK细胞功能增强,导致GV中黑色素细胞破坏增加。因此,一些研究者开始关注调节Tregs数量和功能以治疗白癜风,研究发现,雷帕霉素能够诱导白癜风小鼠Tregs的扩增,促进小鼠黑素细胞的再生 [29] 。此外,Chen [30] 等人发现白癜风患者正常的Tregs可转化为缺乏抑制能力的Th1样T-bet+IFN-γ+Tregs,这些Th1样Tregs细胞不仅对CD8+T细胞的抑制活性明显减弱,还能促进组织驻留记忆CD8+T细胞的持续存在,从而为白癜风的复发提供有利条件,这提示恢复Th1倾斜的炎症环境和靶向功能不全的Th1样Tregs可能是未来白癜风治疗的重要方向。此外,Tregs归巢能力的下降也促进了白癜风的发展,一些研究 [31] [32] [33] 发现白癜风皮肤中CCL22 (CCR7配体)、CCR4和CCR6的水平降低,这解释了循环中的Tregs无法定位到皮肤的原因。这些结果表明调节相关趋化因子的表达可能增加Tregs移植到白癜风病变部位的频率,从而重新建立适当的免疫调节和自身耐受。

近年来,研究人员利用工程技术在Tregs中表达嵌合抗原受体(CAR),使其具有抗原特异性。经CAR修饰的Tregs可保持其表型和功能,使其能够归巢到靶组织,并表现出更强的抑制作用。它们在治疗自身免疫性疾病方面显示出巨大的治疗潜力 [34] 。有两项研究 [35] [36] 提供了制备、利用和储存抗原特异性Tregs的可行方案,为长期控制白癜风的进行性色素脱失提供了一种很有前景的方法。

5. 辅助性T细胞(Th)

CD4+T辅助细胞对维持正常的免疫细胞平衡和宿主防御至关重要,但也是自身免疫性和炎症性疾病病理的主要促成因素。研究表明,Th1、Th2、Th17似乎与白癜风的发生发展有关 [37] 。Th1产生IL-2、INF-γ,TNF-β等细胞因子,其中IFN-γ是Th1亚群的标志性细胞因子,长期以来与多种自身免疫疾病的病理有关,在白癜风发病中,IFN-γ是导致黑素细胞破坏的重要原因。一项研究报告称 [10] ,人类白癜风和小鼠白癜风模型的皮肤都表现出IFN-γ特异性Th1免疫反应,其中涉及IFN-γ依赖性趋化因子CXCL9,10和11。CXCL9/CXCL10-CXCR3轴被认为是白癜风发病中促进T细胞迁移的最相关的趋化因子轴。

白介素-17 (IL-17)是由IL-17A至IL-17F组成的六种细胞因子家族,IL-17A (又称IL-17)由Th17亚群表达,在自身免疫性疾病中的促炎作用已被证实。研究发现,白癜风患者血清和皮损中IL-17水平升高 [38] ,提示Th17细胞因子在白癜风发病中发挥重要作用。Kotobuki等人 [39] 的研究表明IL-17诱导成纤维细胞和角质形成细胞中促炎细胞因子IL-1β、IL-6和TNF-α的表达,从而抑制黑色素的生成,导致白癜风局部脱色。另据报道 [40] ,IL-17还能促进活性氧(ROS)的生成,表明它参与了氧化应激介导的细胞损伤。目前临床上使用的NB-UVB疗法能够降低患者体内IL-17的水平,改善白癜风患者的皮肤症状。Speeckaert等 [41] 对10例癜风患者进行了司库奇尤单抗治疗,但均未达到控制疾病进展的目标,提示IL-17A可能不是进行期白癜风的治疗靶标,探究原因,有报道称产生IL-17的TRM为CD8+CD49a−,此细胞与银屑病相关,而聚集于白癜风皮损表皮及真皮的TRM细胞为CD8+CD49a+,它们主要表达穿孔素和颗粒酶B。因此,针对IL-17的靶向治疗对银屑病有效,但对于白癜风的疗效仍需进一步研究。研究发现 [42] ,Th17细胞的可塑性受到局部微环境的影响,在IL-12和IL-23的诱导下,Th17获得类似Th1的表型,转化为Th1样细胞如CD4+CD161+CCR6+CXCR3+IL17+IFN-γ+(Th17.1),这种致病的Th17细胞亚群能够抵抗Tregs的抑制作用并且对激素疗法同样具有抵抗力。研究表明 [41] ,白癜风患者体内的Th17.1水平升高,除导致IFN-γ上调外,Th17.1细胞还表达趋化因子受体CCR3和CXCR6,CXCR3和CXCR6相关趋化因子轴在T细胞招募到局部组织的过程中起着重要的作用,因此Th17转变为致病性的Th17.1可能是白癜风表现出复杂免疫环境的原因之一。

6. 讨论

白癜风困扰着无数的患者,对其发病机制和治疗的探索也从未停止过。大量研究阐明了T细胞网络在白癜风进展和复发中的作用,表明限制细胞毒性CD8+T细胞和TRM细胞活性,或增强Tregs抑制能力可能是白癜风患者的新型治疗选择。JAK抑制剂的成功上市有望为患者提供更有针对性、更安全的治疗方法。通过IL-15或其他方法来靶向自身反应性TRM细胞在皮肤中的维持可能是一种更持久的治疗策略。未来旨在促进皮肤调节的方法,如激活Tregs或恢复倾斜的炎症环境,可能会通过重置皮肤稳态而非简单抑制炎症来逆转疾病。此外,黑素干细胞移植或促进其增殖和分化的干预措施可能优于传统的治疗,与免疫疗法协同能产生更有效的治疗策略。关于白癜风的发生发展,还有许多方面尚未完全阐明,我们仍然面临着许多未解之谜和挑战,相信随着对T细胞相关领域研究的不断深入,会有更多的治疗策略涌现,为白癜风患者提供更有效、个体化的治疗选择。未来的研究将继续推动我们对白癜风疾病机制的认识,为新的治疗手段的开发奠定基础。

NOTES

*通讯作者。

参考文献

[1] Okamura, K., Kabasawa, T., Saito, T., et al. (2024) Resident Memory T Cell Contributes to the Phenotype of Inflammatory Vitiligo. Journal of Dermatological Science, 113, 74-76.
https://doi.org/10.1016/j.jdermsci.2024.01.002
[2] Shah, F., Giri, P.S., Bharti, A.H., et al. (2024) Compromised Melanocyte Survival Due to Decreased Suppression of CD4 & CD8 Resident Memory T Cells by Impaired TRM-Regulatory T Cells in Generalized Vitiligo Patients. Experimental Dermatology, 33, E14982.
https://doi.org/10.1111/exd.14982
[3] Shah, F., Patel, S., Begum, R., et al. (2021) Emerging Role of Tissue Resident Memory T Cells in Vitiligo: From Pathogenesis to Therapeutics. Autoimmunity Reviews, 20, Article ID: 102868.
https://doi.org/10.1016/j.autrev.2021.102868
[4] Frisoli, M.L., Essien, K. and Harris, J.E. (2020) Vitiligo: Mechanisms of Pathogenesis and Treatment. Annual Review of Immunology, 38, 621-648.
https://doi.org/10.1146/annurev-immunol-100919-023531
[5] Chen, J., Li, S. and Li, C. (2021) Mechanisms of Melanocyte Death in Vitiligo. Medicinal Research Reviews, 41, 1138-1166.
https://doi.org/10.1002/med.21754
[6] Wang, Y., Li, S. and Li, C. (2019) Perspectives of New Advances in the Pathogenesis of Vitiligo: From Oxidative Stress to Autoimmunity. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 1017-1023.
https://doi.org/10.12659/MSM.914898
[7] Van Den Boorn, J.G., Konijnenberg, D., Dellemijn, T.A.M., et al. (2009) Autoimmune Destruction of Skin Melanocytes by Perilesional T Cells from Vitiligo Patients. The Journal of Investigative Dermatology, 129, 2220-2232.
https://doi.org/10.1038/jid.2009.32
[8] Yang, L., Wei, Y., Sun, Y., et al. (2015) Interferon-Gamma Inhibits Melanogenesis and Induces Apoptosis in Melanocytes: A Pivotal Role of CD8 Cytotoxic T Lymphocytes in Vitiligo. Acta Dermato-Venereologica, 95, 664-670.
https://doi.org/10.2340/00015555-2080
[9] Grimes, P.E., Morris, R., Avaniss-Aghajani, E., et al. (2004) Topical Tacrolimus Therapy for Vitiligo: Therapeutic Responses and Skin Messenger RNA Expression of Proinflammatory Cytokines. Journal of the American Academy of Dermatology, 51, 52-61.
https://doi.org/10.1016/j.jaad.2003.12.031
[10] Rashighi, M., Agarwal, P., Richmond, J.M., et al. (2014) CXCL10 Is Critical for the Progression and Maintenance of Depigmentation in a Mouse Model of Vitiligo. Science Translational Medicine, 6, 223-223.
https://doi.org/10.1126/scitranslmed.3007811
[11] Boukhedouni, N., Martins, C., Darrigade, A.S., et al. (2020) Type-1 Cytokines Regulate MMP-9 Production and E-Cadherin Disruption to Promote Melanocyte Loss in Vitiligo. JCI Insight, 5, E133772.
https://doi.org/10.1172/jci.insight.133772
[12] Lee, E.J., Kim, J.Y., Yeo, J.H., et al. (2024) ISG15-USP18 Dysregulation by Oxidative Stress Promotes IFN-γ Secretion from CD8 T Cells in Vitiligo. The Journal of Investigative Dermatology, 144, 273-283.E11.
https://doi.org/10.1016/j.jid.2023.08.006
[13] Liu, H., et al. (2023) The IFN-γ-CXCL9/CXCL10-CXCR3 Axis in Vitiligo: Pathological Mechanism and Treatment. European Journal of Immunology, 54, e2250281.
https://pubmed.ncbi.nlm.nih.gov/37937817/
[14] Xie, B., Zhu, Y., Shen, Y., et al. (2023) Treatment Update for Vitiligo Based on Autoimmune Inhibition and Melanocyte Protection. Expert Opinion on Therapeutic Targets, 27, 189-206.
https://doi.org/10.1080/14728222.2023.2193329
[15] Hamzavi, I., Rosmarin, D., Harris, J.E., et al. (2022) Efficacy of Ruxolitinib Cream in Vitiligo by Patient Characteristics and Affected Body Areas: Descriptive Subgroup Analyses from a Phase 2, Randomized, Double-Blind Trial. Journal of the American Academy of Dermatology, 86, 1398-1401.
https://doi.org/10.1016/j.jaad.2021.05.047
[16] Craiglow, B.G. and King, B.A. (2015) Tofacitinib Citrate for the Treatment of Vitiligo: A Pathogenesis-Directed Therapy. JAMA Dermatology, 151, 1110-1112.
https://doi.org/10.1001/jamadermatol.2015.1520
[17] Song, H., Hu, Z., Zhang, S., et al. (2022) Effectiveness and Safety of Tofacitinib Combined with Narrowband Ultraviolet B Phototherapy for Patients with Refractory Vitiligo in Real-World Clinical Practice. Dermatologic Therapy, 35, E15821.
https://doi.org/10.1111/dth.15821
[18] Guttman-Yassky, E., Del Duca, E., Da Rosa, J.C., et al. (2024) Improvements in Immune/Melanocyte Biomarkers with JAK3/TEC Family Kinase Inhibitor Ritlecitinib in Vitiligo. The Journal of Allergy and Clinical Immunology, 153, 161-172.E8.
https://doi.org/10.1016/j.jaci.2023.09.021
[19] Agarwal, P., Rashighi, M., Essien, K.I., et al. (2015) Simvastatin Prevents and Reverses Depigmentation in a Mouse Model of Vitiligo. The Journal of Investigative Dermatology, 135, 1080-1088.
https://doi.org/10.1038/jid.2014.529
[20] Wu, H., Liao, W., Li, Q., et al. (2018) Pathogenic Role of Tissue-Resident Memory T Cells in Autoimmune Diseases. Autoimmunity Reviews, 17, 906-911.
https://doi.org/10.1016/j.autrev.2018.03.014
[21] Richmond, J.M., Strassner, J.P., Rashighi, M., et al. (2019) Resident Memory and Recirculating Memory T Cells Cooperate to Maintain Disease in a Mouse Model of Vitiligo. Journal of Investigative Dermatology, 139, 769-778.
https://doi.org/10.1016/j.jid.2018.10.032
[22] Boniface, K., Jacquemin, C., Darrigade, A.S., et al. (2018) Vitiligo Skin Is Imprinted with Resident Memory CD8 T Cells Expressing CXCR3. Journal of Investigative Dermatology, 138, 355-364.
https://doi.org/10.1016/j.jid.2017.08.038
[23] Pan, Y., Tian, T., Park, C.O., et al. (2017) Survival of Tissue-Resident Memory T Cells Requires Exogenous Lipid Uptake and Metabolism. Nature, 543, 252-256.
https://doi.org/10.1038/nature21379
[24] Lin, R., Zhang, H., Yuan, Y., et al. (2020) Fatty Acid Oxidation Controls CD8 Tissue-Resident Memory T-Cell Survival in Gastric Adenocarcinoma. Cancer Immunology Research, 8, 479-492.
https://doi.org/10.1158/2326-6066.CIR-19-0702
[25] Pan, Y. and Kupper, T.S. (2018) Metabolic Reprogramming and Longevity of Tissue-Resident Memory T Cells. Frontiers in Immunology, 9, Article No. 1347.
https://doi.org/10.3389/fimmu.2018.01347
[26] Dikiy, S. and Rudensky, A.Y. (2023) Principles of Regulatory T Cell Function. Immunity, 56, 240-255.
https://doi.org/10.1016/j.immuni.2023.01.004
[27] Zhang, Q., Cui, T., Chang, Y., et al. (2018) HO-1 Regulates the Function of Treg: Association with the Immune Intolerance in Vitiligo. Journal of Cellular and Molecular Medicine, 22, 4335-4343.
https://doi.org/10.1111/jcmm.13723
[28] Giri, P.S., Patel, S.S. and Dwivedi, M. (2023) Altered Regulatory T Cell-Mediated Natural Killer Cells Suppression May Lead to Generalized Vitiligo. Human Immunology, 85, Article ID: 110737.
https://doi.org/10.1016/j.humimm.2023.110737
[29] Zhang, X., Liu, D., He, M., et al. (2021) Polymeric Nanoparticles Containing Rapamycin and Autoantigen Induce Antigen-Specific Immunological Tolerance for Preventing Vitiligo in Mice. Human Vaccines & Immunotherapeutics, 17, 1923-1929.
https://doi.org/10.1080/21645515.2021.1872342
[30] Chen, J., Wang, X., Cui, T., et al. (2022) Th1-Like Treg in Vitiligo: An Incompetent Regulator in Immune Tolerance. Journal of Autoimmunity, 131, Article ID: 102859.
https://doi.org/10.1016/j.jaut.2022.102859
[31] Eby, J.M., Kang, H.K., Tully, S.T., et al. (2015) CCL22 to Activate Treg Migration and Suppress Depigmentation in Vitiligo. The Journal of Investigative Dermatology, 135, 1574-1580.
https://doi.org/10.1038/jid.2015.26
[32] Li, H., Wang, C., Li, X., et al. (2021) CCL17-CCR4 Axis Contributes to the Onset of Vitiligo in Mice. Immunity, Inflammation and Disease, 9, 702-709.
https://doi.org/10.1002/iid3.423
[33] Essien, K.I., Katz, E.L., Strassner, J.P., et al. (2022) Regulatory T Cells Require CCR6 for Skin Migration and Local Suppression of Vitiligo. Journal of Investigative Dermatology, 142, 3158-3166.E7.
https://doi.org/10.1016/j.jid.2022.05.1090
[34] Arjomandnejad, M., Kopec, A.L. and Keeler, A.M. (2022) CAR-T Regulatory (CAR-Treg) Cells: Engineering and Applications. Biomedicines, 10, Article No. 287.
https://doi.org/10.3390/biomedicines10020287
[35] Sun, Y., Yuan, Y., Zhang, B., et al. (2023) CARs: A New Approach for the Treatment of Autoimmune Diseases. Science China Life Sciences, 66, 711-728.
https://doi.org/10.1007/s11427-022-2212-5
[36] Mukhatayev, Z., Dellacecca, E.R., Cosgrove, C., et al. (2020) Antigen Specificity Enhances Disease Control by Tregs in Vitiligo. Frontiers in Immunology, 11, Article ID: 581433.
https://www.frontiersin.org/articles/10.3389/fimmu.2020.581433
https://doi.org/10.3389/fimmu.2020.581433
[37] Sushama, S., Dixit, N., Gautam, R.K., et al. (2019) Cytokine Profile (IL-2, IL-6, IL-17, IL-22, and TNF-α) in Vitiligo-New Insight into Pathogenesis of Disease. Journal of Cosmetic Dermatology, 18, 337-341.
https://doi.org/10.1111/jocd.12517
[38] Bernardini, N., Skroza, N., Tolino, E., et al. (2020) IL-17 and Its Role in Inflammatory, Autoimmune, and Oncological Skin Diseases: State of Art. International Journal of Dermatology, 59, 406-411.
https://doi.org/10.1111/ijd.14695
[39] Kotobuki, Y., Tanemura, A., Yang, L., et al. (2012) Dysregulation of Melanocyte Function by Th17-Related Cytokines: Significance of Th17 Cell Infiltration in Autoimmune Vitiligo Vulgaris. Pigment Cell & Melanoma Research, 25, 219-230.
https://doi.org/10.1111/j.1755-148X.2011.00945.x
[40] Wang, W., et al. (2019) Astilbin Reduces ROS Accumulation and VEGF Expression through Nrf2 in Psoriasis-Like Skin Disease. Biological Research, 52, Article No. 49.
https://doi.org/10.1186/s40659-019-0255-2
[41] Speeckaert, R., Mylle, S. and Van Geel, N. (2019) IL-17A Is Not a Treatment Target in Progressive Vitiligo. Pigment Cell & Melanoma Research, 32, 842-847.
https://doi.org/10.1111/pcmr.12789
[42] Belpaire, A., Van Geel, N. and Speeckaert, R. (2022) From IL-17 to IFN-γ in Inflammatory Skin Disorders: Is Transdifferentiation a Potential Treatment Target? Frontiers in Immunology, 13, Article ID: 932265.
https://doi.org/10.3389/fimmu.2022.932265