NFKBIA突变致免疫出生缺陷研究进展
Research Progress on Inborn Errors of Immunity Caused by NFKBIA Mutation
DOI: 10.12677/acm.2024.1451471, PDF, HTML, XML, 下载: 50  浏览: 96  科研立项经费支持
作者: 李光曌, 赵晓东, 吴俊峰*:重庆医科大学附属儿童医院风湿免疫科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童感染与免疫罕见病重庆市重点实验室,重庆
关键词: NFKBIA基因突变免疫出生缺陷外胚层发育不良NF-κB通路NFKBIA Mutation Inborn Errors of Immunity Ectodermal Dysplasia NF-κB Pathway
摘要: NFKBIA突变致免疫出生缺陷极为罕见,目前全球仅报道23例病例,但其死亡率近50%,早期诊治尤为关键。NFKBIA编码IκBα,其突变导致IκBα降解受阻碍,引起NF-κB通路活化障碍,临床表现为免疫缺陷伴(或不伴)少汗或无汗型外胚层发育不良,主要治疗方式为免疫球蛋白替代治疗和抗感染治疗,根治方法为造血干细胞移植。近年来,对NFKBIA突变致免疫出生缺陷的研究逐渐增多,为提高临床医师对该病的认识,本文就NFKBIA突变致免疫出生缺陷研究进展进行综述。
Abstract: NFKBIA mutation-induced immunodeficiency is extremely rare, with only 23 cases reported worldwide, but with a mortality rate of nearly 50%, early diagnosis and treatment are critical. NFKBIA encodes IκBα, whose mutation leads to impaired degradation of IκBα, resulting in the impaired activation of the NF-κB pathway, which is clinically manifested as immune deficiency with or without hypohidrosis or anhidrosis ectodermal dysplasia. The main treatment is immunoglobulin replacement and anti-infection therapy, and the radical treatment is hematopoietic stem cell transplantation. In recent years, the research on NFKBIA mutation-induced immunodeficiency has been increasing gradually. To improve clinicians’ understanding of NFKBIA mutation-induced immunodeficiency, this paper reviews the research progress of NFKBIA mutation-induced immunodeficiency.
文章引用:李光曌, 赵晓东, 吴俊峰. NFKBIA突变致免疫出生缺陷研究进展[J]. 临床医学进展, 2024, 14(5): 630-638. https://doi.org/10.12677/acm.2024.1451471

1. 引言

核因子κB (nuclear factor of kappa light polypeptide gene enhancer in B cell, NF-κB)是一种重要的、普遍存在的转录因子,由一组二聚体构成,参与免疫调节及炎症反应、淋巴细胞发育、肿瘤形成等 [1] 。NF-κB通路的激活被一系列抑制蛋白和调控蛋白严格控制 [2] 。NFKBIA基因编码IκBα蛋白,是NF-κB通路活化的重要抑制蛋白之一 [3] 。NFKBIA突变可致IκBα降解受损,引起NF-κB通路的持续抑制,导致无汗型外胚层发育不良伴免疫缺陷(anhidrotic ectodermal dysplasia with immunodeficiency, EDA-ID, OMIM#300291)。NFKBIA突变所致的EDA-ID为一种常染色体显性遗传免疫出生缺陷(Inborn errors of immunity, IEI),临床表现为不同程度的无汗或少汗、锥齿、头发稀疏和免疫功能异常 [4] ,目前唯一根治方法为造血干细胞移植(hematopoietic stem cell transplantation, HSCT)。

至今,全球共报道23例NFKBIA突变患者(见表1) [5] - [22] ,NFKBIA突变导致的EDA-ID非常罕见,但其死亡率高,患者临床表现差异大,治疗效果也存在异质性 [17] 。因此,本文对目前NFKBIA突变导致的免疫出生缺陷相关报道进行总结,以便于临床医生更全面深入地认识该类疾病,早期启动有效诊治及深入开展机制研究,同时探寻更为有效的治疗方式。

2. 致病机制

NF-κB家族包括5个成员:NF-κB1 (p50/p105)、NF-κB2 (p52/p100)、c-Rel、RelA (p65)和RelB。这些转录因子通过N-末端约300个氨基酸的Rel同源结构域(rel homology domain, RHD)关联,该结构域包含了与DNA结合、二聚化、核易位和与NF-κB抑制蛋白(inhibitors of NF-κB, IκB)结合的序列。IκB家族包括IκBα、IκBβ、IκBε、IκBζ和MAIL蛋白等。IκB蛋白主要通过掩蔽NF-κB的核定位信号,阻止其入核和与DNA结合。当细胞处于静息状态,即未受到刺激时,NF-κB被IκB抑制,滞留在细胞质中。多数细胞中的NF-κB复合物为p50-RelA-IκBα三聚体 [23] [24] 。

NF-KB通路可被多种刺激因子激活,包括微生物成分(例如脂多糖)、Toll样受体(Toll like receptor, TLR)、肿瘤坏死因子(TNF-α)、白介素1 (IL-1)以及生长因子等。当细胞处于活化状态时,IκB被IκB激酶(IκB kinase, IKK)复合体通过特定丝氨酸残基磷酸化(Ser32和Ser36),随后从NF-κB上脱落并被泛素化,继而被蛋白酶体降解。IκB降解后,NF-κB转录因子得到短暂释放并进入细胞核内调控目的基因表达。

Table 1. Clinical and mutational characteristics of patients with NFKBIA mutations

表1. NFKBIA突变患者的临床和基因突变特征

NR,未报道;HSCT,造血干细胞移植;IVIG,免疫球蛋白替代治疗;#P3为P2的父亲,为马赛克突变(Mosaicism mutation),P17、P18、P19来自同一家系。

突变的IκBα蛋白不受随后泛素化依赖的蛋白酶体降解,将NF-κB转录因子持续抑制在细胞质中,导致NF-κB通路的活化受损 [25] [26] 。

3. NFKBIA突变患者的基因突变特征

NFKBIA编码的IκBα蛋白是目前NF-κB抑制家族中唯一被鉴定和报道可以导致人类单基因疾病的抑制蛋白 [27] 。IκBα属于丝氨酸/苏氨酸蛋白激酶家族,包括一个N端信号接收域(signal-receiving domain, SRD)、中间锚蛋白重复域(Ankyrin repeat domain)以及C端富含酸性氨基酸及苏氨酸的PEST序列(proline-glutamate/aspartate-serine threonine, PEST)和两个核转运序列(见图1)。N端信号接收域可接受磷酸化和泛素化信号,调节自身降解,是IκBα的重要功能结构域 [28] 。IκBα N端序列在物种之间高度保守,尤其是连续的六位氨基酸序列(DSGLDS)中第32位和第36位丝氨酸磷酸化位点 [29] 。

NFKBIA突变导致的EDA-ID于2003年首次报道 [5] ,截止目前,全球共报道23例NFKBIA突变患者,含15种不同NFKBIA突变(图1表1);其中,13例自发突变,1例马赛克突变(Mosaicism mutation),其余10例患者未能获得其父母的基因突变数据,因此遗传方式未明。23例NFKBIA突变患者均为功能获得性突变,突变均位于NFKBIA基因1号外显子,影响IκBα氨基端的信号接收结构域。

NFKBIA突变有两种形式:错义突变和无义突变。错义突变影响S32和S36磷酸化位点或者相邻碱基,导致单个氨基酸替换,已报道19例患者有12种突变,分别为D31N、S32I、S32G、S32R、S32N、S32C、G33V、L34P、S36Y、S36A、M37K、M37R。无义突变位于S32位点的上游,提前引入早期终止密码子并通过在下游ATG位点重新启动翻译而产生N端截短的IκBα蛋白,共报道4例患者3种突变,分别为W11X、E14X、Q9X。目前对这两种突变形式的基因型–表现型相关性研究认为,IκBα错义突变导致的点突变体较无义突变导致的IκBα截断突变体表达水平更高,更严重损害经典和非经典NF-κB信号通路,临床表现因此更严重 [19] 。

在小鼠模型中,NFKBIA首个被描述的突变位点S32I通过基因敲除得到进一步研究,NFKBIA WT/S32I小鼠大多数表型与患者临床表型一致,但也表现出患者中未被描述的新特征,包括缺乏Peyer斑块,脾脏滤泡、边缘区和生发中心等次级淋巴器官,这为部分患者缺乏扁桃体和淋巴结以及在HSCT后免疫重建不良提供了潜在解释 [30] 。

文献中所有报道的突变位点均标注于序列上方。I-VI分别指示NFBIA的1-6号外显子。K21、K22指示为K48链多泛素化位点的精氨酸。S32、S36指示为两个重要功能磷酸化的丝氨酸。Ankyrin repeat domain:锚蛋白重复域,PEST:富含酸性氨基酸及苏氨酸的重复肽序列。

Figure 1. Schematic representation of NFKBIA gene domain and mutation

图1. NFKBIA基因结构域及突变

4. NFKBIA突变患者的免疫学特征

NFKBIA突变所致NF-κB通路活化受损可引起多种免疫表型,T淋巴细胞受影响最为显著 [5] 。10例NFKBIA突变患者出现T淋巴细胞增多症,其中8例患者幼稚T 细胞数目升高,7例患者记忆T细胞数目降低。在T淋巴细胞数目正常的患者中,也有1例患者出现幼稚T细胞比例增加和记忆T细胞比例降低(P5: E14X)。3例患者出现CD3+CD8+T和γδ +T细胞比例降低,2例患者出现γδ+T细胞比例增加,以及2例患者Treg细胞缺失。3例患者报道NK细胞数目下降,其中有1例患者进行了NK细胞功能评估并且正常(P7: S36Y)。另外,研究人员对13例患者T细胞体外增殖进行了进一步研究,使用α-CD3刺激患者PBMC后,9例患者表现出增殖受损,但使用其它刺激剂(如有丝分裂原等)可部分恢复正常,这表明患者由TCR参与介导的T细胞功能受损,但并未完全缺失。

NFKBIA突变除影响T细胞,还会影响B细胞,绝大多数NFKBIA突变患者B细胞数量正常,仅有1例患者报告有B细胞数量降低(P2: S32I),但有6例患者报道记忆B细胞比例降低,1例患者幼稚B细胞比例增加。5例患者有高IgM、低IgG、低IgA综合表现,2例患者有高丙种球蛋白血症,3例患者为低丙种球蛋白血症。共有9例患者报道只有低水平或没有针对疫苗抗原的抗体。因此,NFKBIA突变导致的EDA-ID也是一种联合免疫缺陷。

目前,已报道的23例NFKBIA突变患者均未描述其固有淋巴细胞比例或计数情况。在NFKBIA WT/S32I小鼠模型中,NFKBIA WT/S32I小鼠的粒细胞正常,骨髓和浆细胞样树突状细胞计数与其同型野生型小鼠相似,但淋巴样树突状细胞计数较低。

5. NFKBIA突变患者的临床特征

5.1. 外胚层发育不良

NFKBIA突变主要影响EDA/EDAR/EDARADD信号通路介导的NF-κB活性调节,影响外胚层和中胚层之间的信号转导,导致外胚层发育不良表型 [31] 。该信号通路上其他基因突变(如EDA基因和NEMO基因)也会引起类似表型。外胚层发育不良的典型临床表现为少汗或无汗、毛发稀疏或全秃、少牙或牙齿形态异常三联症 [32] 。

已报道的23例NFKBIA突变患者中,17例患者都具有EDA的某些特征;其中12例患者观察到因缺乏功能性汗腺而导致的少汗或无汗症,10例患者表现出头发稀疏,8例患者有锥型齿。P3缺乏EDA表现,考虑因为他具有复杂的嵌合体突变表型,WT/WT基因型的细胞比例高于具有WT/S32I基因型的细胞比例(4:1)。然而,目前尚不清楚其它4例患者没有典型EDA表现的原因。

5.2. 感染

23例NFKBIA突变患者均以感染为首发表现。大多数患者在生命早期(<6月龄)就出现了由细菌、真菌和病毒引起的多重严重感染。19例患者报告了复发性上呼吸道感染或肺炎,病原包括由肺炎克雷伯菌、铜绿假单胞菌、流感嗜血杆菌、A族溶血性链球菌、鲍曼不动杆菌、粪肠球菌和军团菌。8例患者报告了由A族溶血性链球菌、沙门氏菌、肺炎克雷伯菌、脑膜炎奈瑟菌、粘质沙雷氏菌或金黄色葡萄球菌引起的败血症或脑膜炎。部分患者还有特殊部位感染,包括骨髓炎、尿路感染、沙门氏菌肠炎、肛周脓肿等;患者对细菌的易感性可能是由于幼稚 B 细胞转换和分化为记忆 B 细胞的能力受损,导致抗体产生水平降低 [33] 。与MyD88或IRAK-4缺乏患者相似,这种对细菌的高易感性还可能与TLR/IL-1受体信号转导途径的反应受损有关 [34] [35] 。值得注意的是,4例患者有结核分枝杆菌感染,在接种卡介苗后出现皮肤脓肿,其中两例患者携带相同位点突变(P7: S36Y, P10: S36Y)。对分枝杆菌的易感性与NEMO缺陷综合征患者类似,可能与IL-12/IFN-γ通路受损有关,导致T细胞分泌IFN-γ减少 [36] [37] 。

NFKBIA突变患者还容易出现真菌感染,8例患者患有慢性皮肤黏膜念珠菌病,其中2例患者同时患有卡氏肺囊虫病。患者真菌感染表现可能与内皮细胞对IL-17反应缺陷相关,正如在一例患者中观察到Th17细胞下降(P8: M37K),但目前还缺乏相关研究 [38] 。与其它CD40/CD40L缺乏患者相似,该通路受损的患者可能更容易发生肺囊虫病 [39] [40] 。此外,3例患者出现由轮状病毒、诺如病毒、副流感病毒、呼吸道合胞病毒和巨细胞病毒引起的严重病毒感染,NF-κB信号通路在诱导干扰素产生中有关键作用,NFKBIA突变可能会降低抗病毒干扰素的产生 [41] [42] 。

5.3. 其它临床表现

除感染外,少数NFKBIA突变患者还有自身炎症和自身免疫表现,如炎症性肠病(P6: Q9X, P15: S32N),幼年特发性关节炎(P17: S36A),自身免疫性溶血性贫血(P22: S32C)。另外,9例患者表现出生长发育迟缓,1例患者(P16: L34P)还报道了NFKBIA突变导致髓系分泌IL-1β过多和肝脏中性粒细胞蓄积 [43] 。患者广泛的临床和免疫学表型反映了NFKBIA基因对先天性和适应性免疫,以及免疫系统之外的巨大影响 [44] 。

6. 治疗

目前,针对NFKBIIA突变患者的主要治疗方式为静脉注射免疫球蛋白 (Intravenous Immunoglobulin, IVIG)替代治疗和抗感染治疗,根治方法为造血干细胞移植。目前,共有13例NFKBIA突变患者进行HSCT,8例患者在移植期间或移植之后死亡,死亡原因包括细菌性败血症、急性呼吸窘迫、进行性神经退行性疾病和小脑出血。5例患者移植成功,其中一例患者(P1: S32I)移植后随访已超过23年,该患者移植后总体情况良好,然而仍然有反复呼吸道和皮肤感染,需继续接受免疫球蛋白替代治疗 [45] 。需要注意的是,造血干细胞移植无法解决患者EDA表现。其余10例NFKBIA突变患者均接受IVIG和预防性抗菌治疗(如复方新诺明、氟康唑),但部分患者仍存在复发性感染、弥漫性皮肤疣和慢性腹泻等;有分枝杆菌感染的患者额外接受规律抗结核和IFN-γ注射治疗。嵌合体突变患者(P3: S32I)未接受相关治疗。截止报道时,23例NFKBIA突变患者中有12例已经死亡,11例患者存活。

7. 小结

NFKBIA突变致免疫出生缺陷极为罕见,目前全球仅报道23例NFKBIA突变患者,但其死亡率近50%,早期、规范诊治对改善患者预后极为重要。NFKBIA功能获得性突变引起IκBα降解障碍,导致NF-κB通路持续抑制,从而引起感染、外胚层发育不良等临床表现。NFKBIA突变患者临床和免疫学表现异质性大,与基因突变类型相关。一旦临床确诊,需尽早开展预防性抗菌联合免疫球蛋白替代治疗,HSCT是NFKBIA突变患者唯一根除治疗方法,但不能纠正细胞固有免疫和某些淋巴器官发育缺陷,以及EDA表现,临床应根据患者的基因型和表现型具体讨论HSCT的适应性。

基金项目

重庆市教委科学技术研究项目(KJQN202200418),国家儿童健康与疾病临床医学研究中心临床医学研究一般项目(NCRCCHD-2022-YP-07)。

NOTES

*通讯作者。

参考文献

[1] Zhang, Q., Lenardo, M.J. and Baltimore, D. (2017) 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell, 168, 37-57.
https://doi.org/10.1016/j.cell.2016.12.012
[2] Vallabhapurapu, S. and Karin, M. (2009) Regulation and Function of NF-KappaB Transcription Factors in the Immune System. Annual Review of Immunology, 27, 693-733.
https://doi.org/10.1146/annurev.immunol.021908.132641
[3] Oeckinghaus, A. and Ghosh, S. (2009) The NF-KappaB Family of Transcription Factors and Its Regulation. Cold Spring Harbor Perspectives in Biology, 1, A000034.
https://doi.org/10.1101/cshperspect.a000034
[4] Boisson, B., Puel, A., Picard, C., et al. (2017) Human IκBα Gain of Function: A Severe and Syndromic Immunodeficiency. Journal of Clinical Immunology, 37, 397-412.
https://doi.org/10.1007/s10875-017-0400-z
[5] Wen, W., Wang, L., Deng, M., et al. (2021) A Heterozygous N-Terminal Truncation Mutation of NFKBIA Results in an Impaired NF-κB Dependent Inflammatory Response. Genes & Diseases, 9, 176-186.
https://doi.org/10.1016/j.gendis.2021.03.005
[6] Courtois, G., Smahi, A., Reichenbach, J., et al. (2003) A Hypermorphic IkappaBalpha Mutation Is Associated with Autosomal Dominant Anhidrotic Ectodermal Dysplasia and T Cell Immunodeficiency. The Journal of Clinical Investigation, 112, 1108-1115.
https://doi.org/10.1172/JCI18714
[7] Chear, C.T., El Farran, B.A.K., Sham, M., et al. (2022) A Novel De Novo NFKBIA Missense Mutation Associated to Ectodermal Dysplasia with Dysgammaglobulinemia. Genes, 13, Article No. 1900.
https://doi.org/10.3390/genes13101900
[8] Schimke, L.F., Rieber, N., Rylaarsdam, S., et al. (2013) A Novel Gain-of-Function IKBA Mutation Underlies Ectodermal Dysplasia with Immunodeficiency and Polyendocrinopathy. Journal of Clinical Immunology, 33, 1088-1099.
https://doi.org/10.1007/s10875-013-9906-1
[9] Lopez-Granados, E., Keenan, J.E., Kinney, M.C., et al. (2008) A Novel Mutation in NFKBIA/IKBA Results in a Degradation-Resistant N-Truncated Protein and Is Associated with Ectodermal Dysplasia with Immunodeficiency. Human Mutation, 29, 861-868.
https://doi.org/10.1002/humu.20740
[10] Sogkas, G., Adriawan, I.R., Ringshausen, F.C., et al. (2020) A Novel NFKBIA Variant Substituting Serine 36 of IκBα Causes Immunodeficiency with Warts, Bronchiectasis and Juvenile Rheumatoid Arthritis in the Absence of Ectodermal Dysplasia. Clinical Immunology (Orlando, Fla.), 210, Article ID: 108269.
https://doi.org/10.1016/j.clim.2019.108269
[11] Ohnishi, H., Miyata, R., Suzuki, T., et al. (2012) A Rapid Screening Method to Detect Autosomal-Dominant Ectodermal Dysplasia with Immune Deficiency Syndrome. The Journal of Allergy and Clinical Immunology, 129, 578-580.
https://doi.org/10.1016/j.jaci.2011.09.042
[12] Giancane, G., Ferrari, S., Carsetti, R., et al. (2013) Anhidrotic Ectodermal Dysplasia: A New Mutation. The Journal of Allergy and Clinical Immunology, 132, 1451-1453.
https://doi.org/10.1016/j.jaci.2013.05.034
[13] Yoshioka, T., Nishikomori, R., Hara, J., et al. (2013) Autosomal Dominant Anhidrotic Ectodermal Dysplasia with Immunodeficiency Caused by a Novel NFKBIA Mutation, P.Ser36Tyr, Presents with Mild Ectodermal Dysplasia and Non-Infectious Systemic Inflammation. Journal of Clinical Immunology, 33, 1165-1174.
https://doi.org/10.1007/s10875-013-9924-z
[14] Tan, E.E., Hopkins, R.A., Lim, C.K., et al. (2020) Dominant-Negative NFKBIA Mutation Promotes IL-1β Production Causing Hepatic Disease with Severe Immunodeficiency. The Journal of Clinical Investigation, 130, 5817-5832.
https://doi.org/10.1172/JCI98882
[15] Staples, E., Morillo-Gutierrez, B., Davies, J., et al. (2017) Disseminated Mycobacterium Malmoense and Salmonella Infections Associated with a Novel Variant in NFKBIA. Journal of Clinical Immunology, 37, 415-418.
https://doi.org/10.1007/s10875-017-0390-x
[16] Batlle-Maso, L., Mensa-Vilaro, A., Solis-Moruno, M., et al. (2020) Genetic Diagnosis of Autoinflammatory Disease Patients Using Clinical Exome Sequencing. European Journal of Medical Genetics, 63, Article ID: 103920.
https://doi.org/10.1016/j.ejmg.2020.103920
[17] McDonald, D.R., Mooster, J.L., Reddy, M., et al. (2007) Heterozygous N-Terminal Deletion of IkappaBalpha Results in Functional Nuclear Factor KappaB Haploinsufficiency, Ectodermal Dysplasia, and Immune Deficiency. The Journal of Allergy and Clinical Immunology, 120, 900-907.
https://doi.org/10.1016/j.jaci.2007.08.035
[18] Moriya, K., Sasahara, Y., Ohnishi, H., et al. (2018) IKBA S32 Mutations Underlie Ectodermal Dysplasia with Immunodeficiency and Severe Noninfectious Systemic Inflammation. Journal of Clinical Immunology, 38, 543-545.
https://doi.org/10.1007/s10875-018-0522-y
[19] Petersheim, D., Massaad, M.J., Lee, S., et al. (2018) Mechanisms of Genotype-Phenotype Correlation in Autosomal Dominant Anhidrotic Ectodermal Dysplasia with Immune Deficiency. The Journal of Allergy and Clinical Immunology, 141, 1060-1073.E3.
https://doi.org/10.1016/j.jaci.2017.05.030
[20] Gunderman, L.M., Asano, T., Casanova, J.L., et al. (2023) Novel NF-Kappa B Inhibitor Alpha Gain-of-Function Variant in an Infant with Lymphocytosis and Recurrent Serratia Bacteremia. Journal of Clinical Immunology, 43, 1122-1126.
https://doi.org/10.1007/s10875-023-01481-z
[21] Lee, A.J., Moncada-VELez, M., Picard, C., et al. (2016) Severe Mycobacterial Diseases in a Patient with GOF IκBα Mutation without EDA. Journal of Clinical Immunology, 36, 12-15.
https://doi.org/10.1007/s10875-015-0223-8
[22] Janssen, R., Van Wengen, A., Hoeve, M.A., et al. (2004) The Same IkappaBalpha Mutation in Two Related Individuals Leads to Completely Different Clinical Syndromes. The Journal of Experimental Medicine, 200, 559-568.
https://doi.org/10.1084/jem.20040773
[23] Ghosh, S. and Karin, M. (2002) Missing Pieces in the NF-KappaB Puzzle. Cell, 109, S81-S96.
https://doi.org/10.1016/S0092-8674(02)00703-1
[24] Chen, Z., Hagler, J., Palombella, V.J., et al. (1995) Signal-Induced Site-Specific Phosphorylation Targets I Kappa B Alpha to the Ubiquitin-Proteasome Pathway. Genes & Development, 9, 1586-1597.
https://doi.org/10.1101/gad.9.13.1586
[25] Karin, M. and Ben-Neriah, Y. (2000) Phosphorylation Meets Ubiquitination: The Control of NF-[Kappa]B Activity. Annual Review of Immunology, 18, 621-663.
https://doi.org/10.1146/annurev.immunol.18.1.621
[26] Ghosh, S. and Hayden, M.S. (2008) New Regulators of NF-KappaB in Inflammation. Nature Reviews. Immunology, 8, 837-848.
https://doi.org/10.1038/nri2423
[27] Hayden, M.S. and Ghosh, S. (2008) Shared Principles in NF-KappaB Signaling. Cell, 132, 344-362.
https://doi.org/10.1016/j.cell.2008.01.020
[28] Manavalan, B., Basith, S., Choi, Y.M., et al. (2010) Structure-Function Relationship of Cytoplasmic and Nuclear IκB Proteins: An in Silico Analysis. PLOS ONE, 5, e15782.
https://doi.org/10.1371/journal.pone.0015782
[29] MaruYama, T. (2015) The Nuclear IκB Family of Proteins Controls Gene Regulation and Immune Homeostasis. International Immunopharmacology, 28, 836-840.
https://doi.org/10.1016/j.intimp.2015.03.053
[30] Mooster, J.L., Le Bras, S., Massaad, M.J., et al. (2015) Defective Lymphoid Organogenesis Underlies the Immune Deficiency Caused by a Heterozygous S32I Mutation in IκBα. The Journal of Experimental Medicine, 212, 185-202.
https://doi.org/10.1084/jem.20140979
[31] Itin, P.H. and Fistarol, S.K. (2004) Ectodermal Dysplasias. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 131C, 45-51.
https://doi.org/10.1002/ajmg.c.30033
[32] Anoop, T.M., Simi, S., Mini, P.N., et al. (2008) Hypohydrotic Ectodermal Dysplasia. The Journal of the Association of Physicians of India, 56, 268-270.
[33] Demirdag, Y.Y. and Gupta, S. (2021) Update on Infections in Primary Antibody Deficiencies. Frontiers in Immunology, 12, Article ID: 634181.
https://doi.org/10.3389/fimmu.2021.634181
[34] Pereira, M., Durso, D.F., Bryant, C.E., et al. (2022) The IRAK4 Scaffold Integrates TLR4-Driven TRIF and MYD88 Signaling Pathways. Cell Reports, 40, Article ID: 111225.
https://doi.org/10.1016/j.celrep.2022.111225
[35] Capitani, M., Al-Shaibi, A.A., Pandey, S., et al. (2023) Biallelic TLR4 Deficiency in Humans. The Journal of Allergy and Clinical Immunology, 151, 783-790.E5.
https://doi.org/10.1016/j.jaci.2022.08.030
[36] Hsu, A.P., Zerbe, C.S., Foruraghi, L., et al. (2018) IKBKG (NEMO) 5’ Untranslated Splice Mutations Lead to Severe, Chronic Disseminated Mycobacterial Infections. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 67, 456-459.
https://doi.org/10.1093/cid/ciy186
[37] Yu, H.H., Hu, T.C., Lee, N.C., et al. (2019) Mycobacterium Abscessus Infection in a Boy with X-Linked Anhidrotic Ectodermal Dysplasia, Immunodeficiency. Journal of Microbiology, Immunology, and Infection, 52, 504-506.
https://doi.org/10.1016/j.jmii.2018.04.009
[38] Shamriz, O., Tal, Y., Talmon, A., et al. (2020) Chronic Mucocutaneous Candidiasis in Early Life: Insights into Immune Mechanisms and Novel Targeted Therapies. Frontiers in Immunology, 11, Article ID: 593289.
https://doi.org/10.3389/fimmu.2020.593289
[39] Ferrari, S., Giliani, S., Insalaco, A., et al. (2001) Mutations of CD40 Gene Cause an Autosomal Recessive Form of Immunodeficiency with Hyper IgM. Proceedings of the National Academy of Sciences of the United States of America, 98, 12614-12619.
https://doi.org/10.1073/pnas.221456898
[40] Du, X., Tang, W., Chen, X., et al. (2019) Clinical, Genetic and Immunological Characteristics of 40 Chinese Patients with CD40 Ligand Deficiency. Scandinavian Journal of Immunology, 90, E12798.
https://doi.org/10.1111/sji.12798
[41] Conzelmann, K.K. (2005) Transcriptional Activation of Alpha/Beta Interferon Genes: Interference by Nonsegmented Negative-Strand RNA Viruses. Journal of Virology, 79, 5241-5248.
https://doi.org/10.1128/JVI.79.9.5241-5248.2005
[42] Ciancanelli, M.J., Huang, S.X., Luthra, P., et al. (2015) Infectious Disease. Life-Threatening Influenza and Impaired Interferon Amplification in Human IRF7 Deficiency. Science (New York, N.Y.), 348, 448-453.
https://doi.org/10.1126/science.aaa1578
[43] Greten, F.R., Arkan, M.C., Bollrath, J., et al. (2007) NF-KappaB Is a Negative Regulator of IL-1Beta Secretion as Revealed by Genetic and Pharmacological Inhibition of IKKbeta. Cell, 130, 918-931.
https://doi.org/10.1016/j.cell.2007.07.009
[44] Carra, G., Ermondi, G., Riganti, C., et al. (2021) IκBα Targeting Promotes Oxidative Stress-Dependent Cell Death. Journal of Experimental & Clinical Cancer Research: CR, 40, Article No. 136.
https://doi.org/10.1186/s13046-021-01921-x
[45] Conti, F., Carsetti, R., Casanova, J.L., et al. (2020) A 23-Year Follow-Up of a Patient with Gain-of-Function IκB-Alpha Mutation and Stable Full Chimerism after Hematopoietic Stem Cell Transplantation. Journal of Clinical Immunology, 40, 927-933.
https://doi.org/10.1007/s10875-020-00780-z