基于荧光硅纳米粒子的乙醇检测应用研究
Application of Ethanol Detection Based on Fluorescent Silicon Nanoparticles
DOI: 10.12677/aac.2024.142010, PDF, HTML, XML, 下载: 24  浏览: 44  科研立项经费支持
作者: 张婷婷*, 谢锦童*, 涂培垚, 李世豪, 宇文寒果, 窦亚坤#, 刘占军:华北理工大学药学院,河北 唐山
关键词: 一锅合成法硅纳米粒子乙醇检测化学传感One-Pot Synthesis Method Silicon Nanoparticles Ethanol Detection Chemical Sensing
摘要: 在常温常压下,以N-(2-氨乙基)-3-氨丙基三乙氧基硅烷作为硅源,以2,4-二氨基苯酚盐酸盐作为还原剂,在一定条件下,通过一锅合成法,成功制备了具有荧光性质同时对乙醇响应的硅纳米粒子。这一制备方法克服了激光等离子体辅助合成法、电化学刻蚀法、微波辅助合成法等制备方法操作复杂,设备要求高等缺点,该方法不仅操作简便,而且能够通过优化实验条件,进一步优化硅纳米粒子的荧光性能。制备的硅纳米粒子不仅具有优异的光学性能,并且对乙醇具有灵敏的响应能力,在较大的浓度范围内,硅纳米粒子的荧光强度与乙醇的浓度之间呈现良好的线性关系,为其在乙醇的检测领域的应用提供了可能性,并拓展了硅纳米粒子在更多领域的应用前景。
Abstract: Under normal temperature and pressure, silicon nanoparticles with fluorescent properties and response to ethanol were successfully prepared by a one-pot synthesis method using N-(2- aminoethyl)-3-aminopropyltriethoxysilane as the silicon source and 2,4-diaminophenol hydrochloride as the reducing agent. This method overcomes the shortcomings of laser plasma-assisted synthesis, electrochemical etching, microwave-assisted synthesis and other preparation methods with complex operation and high equipment requirements, and the method is not only easy to operate, but also can further optimize the fluorescence performance of silicon nanoparticles by optimizing the experimental conditions. The prepared silicon nanoparticles not only have excellent optical properties, but also have a sensitive response to ethanol, and there is a good linear relationship between the fluorescence intensity of silicon nanoparticles and the concentration of ethanol in a large concentration range, which provides the possibility of its application in the field of ethanol detection and expands the application prospect of silicon nanoparticles in more fields.
文章引用:张婷婷, 谢锦童, 涂培垚, 李世豪, 宇文寒果, 窦亚坤, 刘占军. 基于荧光硅纳米粒子的乙醇检测应用研究[J]. 分析化学进展, 2024, 14(2): 77-85. https://doi.org/10.12677/aac.2024.142010

1. 引言

在荧光检测和荧光成像技术领域,硅纳米粒子作为一种新型荧光材料 [1] [2] [3] ,由于其独特的物理化学性质,如高稳定性、低毒性、荧光量子产率高等,在荧光传感领域具有巨大的潜力 [4] [5] 。Xiang [6] 等研究者利用罗丹明B、3-氨丙基三甲氧基硅烷、四乙氧基硅烷进行一系列修饰,制备出了双发射的硅纳米粒子(CD@RhB-SiNPs)。这种硅纳米粒子能够实现对食品和蔬菜中亚硝酸盐的检测。随后,Na等研究者 [7] 利用3-(2-氨基乙氨基)丙基–二甲氧基硅烷和抗坏血酸钠一步合成了具有良好光、热稳定性和水溶性的新型蓝色荧光硅量子点。这种硅量子点的荧光可以通过静电作用被K4[Fe(CN)6]显著淬灭。基于这一现象,他们建立了一种选择性好、灵敏度高、响应迅速的检测K4[Fe(CN)6]的新方法。这些研究为硅纳米粒子在化学检测方面的应用提供了新的思路和方法。尽管荧光硅纳米粒子在传感领域具有广泛的应用前景,但其在实际应用中仍面临一些挑战。例如,如何实现硅纳米粒子的规模化、可控合成以提高产量;如何进一步优化硅纳米粒子的荧光性能以满足特定应用需求。

近年来,硅纳米粒子的合成方法取得了显著的进展 [8] ,例如,发展了激光等离子体辅助合成法 [9] 、电化学刻蚀法 [10] [11] [12] 、微波辅助合成法等 [13] [14] [15] [16] 。然而,这些合成方法操作复杂,反应条件较苛刻,如需高温高压,特定的仪器和设备,特殊化合物刻蚀等。之前的研究表明 [17] [18] ,使用N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷(DAMO)作为硅源制备的SiNPs具有较高的荧光量子产率和较大的荧光发射波长,这可能是因为DAMO中的氮元素对硅纳米粒子的光学性能产生了积极的影响。此外,杂原子掺杂也被证明是一种有效的提高量子产率和荧光发射波长的方法,其中氮掺杂的效果尤为显著 [19] [20] [21] 。由于硅源中氮含量较高,因此被认为是改善光学性能的有效途径 [22] 。除了硅源的选择,还原剂在合成高质量硅纳米粒子方面也起着重要作用。通常,研究者们使用柠檬酸盐和抗坏血酸作为常用的还原剂 [23] ,但这些还原剂并不含氮元素。因此,为了进一步提高硅纳米粒子的荧光发射波长,有必要探索新的富含氮的还原剂。

基于以上研究背景 [15] [24] [25] [26] ,我们提出了一种新的方法,使用富氮还原试剂来合成荧光发射波长较大的硅纳米粒子。这种方法有望为硅纳米粒子的合成提供新的思路。通过不断优化硅源和还原剂的选择,我们可以进一步提高硅纳米粒子的光学性能。本研究将采用硅烷化试剂N-(2-氨乙基)-3-氨丙基三乙氧基硅烷(N-APTES)作为硅源、2,4-二氨基苯酚盐酸盐作为还原剂、超纯水作为溶剂,在常温下,通过一锅合成法成功制备了具有高稳定性、较大荧光发射波长的SiNPs。我们对这些硅纳米粒子的表面结构、稳定性以及荧光发射情况进行了深入研究。与此同时,我们将制备的硅纳米粒子与乙醇进行混合,通过监测其荧光信号,探究了乙醇对硅纳米粒子荧光强度的影响。在较大的浓度范围内,硅纳米粒子的荧光强度与乙醇的浓度之间呈现良好的线性关系,为其在乙醇的检测领域的应用提供了可能性,并拓展了硅纳米粒子在更多领域的应用前景。

2. 实验部分

2.1. 仪器与试剂

傅里叶变换红外光谱仪(Spectrum Two,PerkinElmer仪器有限公司),荧光分光光度计(F-4500,日本日立公司),紫外可见分光光度计(Lambda 35,PerkinElmer仪器有限公司),激光粒度测定仪(ZEN-3690,英国马尔文有限公司)。

N-(2-氨乙基)-3-氨丙基三乙氧基硅烷(N-APTES,纯度98%)购于唐山卓航科技有限公司;2,4-二氨基苯酚盐酸盐(纯度99%)购于上海阿拉丁生化科技股份有限公司;乙醇购于唐山卓航科技有限公司;实验用水均为超纯水(艾科浦超纯水系统,电阻率18.25 MΩ∙cm),所有的试剂在使用前均未进一步纯化。

2.2. 硅纳米粒子(SiNPs)的制备

SiNPs的制备:如图1所示,采用一锅合成法,在室温下,精确称取6 mg的2,4-二氨基苯酚盐酸盐,并将其溶解在10 mL超纯水中,用磁力搅拌器持续搅拌20 min,转速设定为500 r/min,以确保2,4-二氨基苯酚盐酸盐的完全溶解。然后向溶液中加入2 mL的N-(2-氨乙基)-3-氨丙基三乙氧基硅烷(N-APTES)作为硅源,继续搅拌该溶液,持续时间为6小时,以保证反应的充分进行。

Figure 1. Preparation schematic diagram of SiNP

图1. SiNPs的制备示意图

SiNPs的纯化:将6 mL SiNPs溶液用超纯水稀释2.5倍后用分子截留量为3500的透析袋透析12 h (每4 h换1次透析水),除去未反应试剂,得到纯化的SiNPs溶液,于4℃下避光保存备用。SiNPs固体经冷冻干燥得到。

SiNPs的条件优化:

为获得更为稳定,荧光性能更好的硅纳米粒子(SiNPs),按照控制单一变量的原则,优化反应时间以及还原剂的剂量。

反应时间优化:反应温度,剂量等因素维持不变,设置反应时间为4 h、5 h、6 h、7 h和8 h,分别进行反应,得到五组SiNPs原液,进行纯化后,测量各溶液的荧光发射光谱,观察荧光发射峰的位置和强度变化,确定最佳反应时间。

还原剂剂量优化:反应温度,反应时间等因素维持不变,固定N-APTES的用量为2 mL,设置还原剂的用量分别为4 mg、6 mg、8 mg、10 mg和12 mg,分别进行反应,得到五组SiNPs原液,经过纯化后,测量各溶液的荧光发射光谱,观察荧光发射峰的位置和强度变化,确定最佳还原剂剂量。

2.3. 硅纳米粒子(SiNPs)的稳定性考察

在不同pH下,测试相同浓度SiNPs的荧光强度。其中不同pH (3~11)的溶液是在10 mmol/L的PBS缓冲液中用盐酸和氢氧化钠溶液来进行调节的。以pH为横坐标,各溶液的荧光强度为纵坐标,绘制荧光强度–pH直方图。

2.4.硅纳米粒子(SiNPs)对乙醇的荧光响应

首先配置不同浓度(0.00 mol/L、0.95 mol/L、1.89 mol/L、3.81 mol/L、5.72 mol/L、7.63 mol/L、9.52 mol/L、11.43 mol/L、13.34 mol/L)的乙醇溶液。在离心管中分别加入1 mL的硅纳米粒子溶液,然后逐个向离心管中加入7 mL不同浓度的乙醇溶液,摇晃均匀。使用荧光分光光度计测量各溶液的荧光发射光谱,观察荧光发射峰的位置和强度变化。对比不同浓度乙醇溶液对硅纳米粒子荧光发射的影响,并分析数据。

3. 结果与讨论

3.1. 乙醇响应型SiNPs的制备

荧光硅纳米粒子(SiNPs)的制备流程如图2所示,即以N-(2-氨乙基)-3-氨丙基三乙氧基硅烷(N-APTES)为硅源,2,4-二氨基苯酚盐酸盐作为还原剂,超纯水为溶剂,通过一锅合成法在常温下反应6 h制备乙醇响应型SiNPs。

Figure 2. Schematic diagram of the synthesis of SiNPs by one-pot synthesis method at room temperature and pressure

图2. 常温常压一锅合成法制备乙醇响应型SiNPs示意图

3.2. SiNPs的条件优化

优化实验条件的过程中,在其他实验条件恒定的基础上,设置了4 h、5 h、6 h、7 h和8 h五个时间梯度,对制备的样品通过荧光强度分析,确定最优时间,通过硅纳米粒子的荧光发射谱图(图3(a))可观察到,反应时间从4 h增大到为8 h的过程中,当反应时间为6 h时,所得的硅纳米粒子的荧光强度最强。实验中的剂量优化,在保持其他实验条件不变的情况下,将2,4-二氨基苯酚盐酸盐设置为4 mg、6 mg、8 mg、10 mg和12 mg五个不同剂量,通过硅纳米粒子的荧光发射谱图(图3(b))可以清晰地看到,当使用还原剂的剂量为6 mg时,所得的硅纳米粒子的荧光强度达到最强。因此,最佳的反应时间为6 h,硅源的用量为2 mL时,还原剂的最佳剂量为6 mg。

(a) (b)

Figure 3. (a) Time-optimized fluorescence emission spectra of silicon nanoparticles; (b) Dose-optimized fluorescence emission spectra of silicon nanoparticles

图3. (a) 时间优化硅纳米粒子的荧光发射谱图;(b) 剂量优化硅纳米粒子的荧光发射谱图

3.3. SiNPs的结构表征

Figure 4. Hydrated particle size map of fluorescent silicon nanoparticles

图4. 荧光硅纳米粒子的水合粒径分析图

对合成的荧光硅纳米粒子进行动态光散射分析,由图4可知,荧光硅纳米粒子的平均水合粒径为4.85 nm。

图5所示,通过傅里叶变换(FT-IR)红外光谱图分析SiNPs的结构组成。在红外光谱图中,686 cm−1和1110 cm−1处出现强吸收峰,对应于Si-O-Si键的伸缩振动,揭示了硅和氧之间的强相互作用,这与文献报道的结果相一致 [25] [27] 。此外,1630 cm−1、2931 cm−1、3358cm−1等特征吸收峰分别与N-H键、C-H键、O-H键及N-H键的伸缩振动相对应。在1630 cm−1和3358 cm−1处的较强吸收峰,归属于N-H键的伸缩和弯曲振动,证明了氨基的存在。

Figure 5. Infrared spectra of fluorescent silicon nanoparticles

图5. 荧光硅纳米粒子的红外光谱图

3.4. SiNPs的光学性质

Figure 6. Fluorescence excitation spectra and fluorescence emission spectra of SiNPs

图6. SiNPs的荧光激发光谱图与荧光发射光谱图

图6为SiNPs的荧光激发光谱图与荧光发射光谱图,从荧光激发光谱可见,合成的SiNPs最佳吸收波长为450 nm。在450 nm激发光照射下,合成的SiNPs的最佳发射波长为560 nm。在自然光下,SiNPs溶液为淡黄色液体;365 nm紫外光照射时,SiNPs溶液发出明亮的黄色荧光。

3.5. 硅纳米粒子(SiNPs)的稳定性

制备的SiNPs具有良好的化学稳定性。由图7可知,在3~11的pH范围内,SiNPs的荧光发射强度基本保持一致,变化程度较小,说明SiNPs的荧光发射受pH的影响较小。

Figure 7. pH stability diagram of silicon nanoparticles

图7. 硅纳米粒子的pH稳定性图

3.6. SiNPs对乙醇的荧光响应

(a) (b)

Figure 8. (a) Fluorescence emission spectra of silicon nanoparticles at different ethanol concentrations; (b) Ethanol concentration-silicon nanoparticle fluorescence intensity line pattern

图8. (a) 不同乙醇浓度下的硅纳米粒子的荧光发射光谱图;(b) 乙醇浓度–硅纳米粒子荧光强度线型图

在不同浓度乙醇溶液中,探究SiNPs对乙醇的荧光响应情况。通过对不同乙醇浓度下,硅纳米粒子的荧光发射光谱图(图8(a))分析可知,在一定浓度(0.00~13.34 mol/L)范围内,随着乙醇浓度的增大,SiNPs的荧光强度呈现上升趋势。以乙醇的浓度为横坐标,硅纳米粒子溶液的荧光强度为纵坐标作图,得到图8(b),由图可知,在一定的乙醇浓度(1.89~9.52 mol/L)范围内,SiNPs的荧光强度与乙醇浓度具有良好的线性关系,线性方程F = 31.2x + 317.17 (R2 = 0.9957)。基于此可以建立一种乙醇检测的新方法。硅纳米粒子对乙醇的荧光响应主要基于其与乙醇分子之间的相互作用。当乙醇分子与硅纳米粒子接触时,可能会发生吸附等过程,这些过程会影响硅纳米粒子的表面状态和局域环境,进而影响其荧光发射,具体表现为荧光增强或荧光减弱。此外,乙醇的浓度也会对硅纳米粒子的荧光响应产生影响。随着乙醇浓度的增加,硅纳米粒子的荧光发射强度可能会发生变化,从而实现对乙醇的高灵敏度检测。

4. 结论

本研究报道了一种在常温常压条件下采用纯水为溶剂制备水溶性荧光硅纳米粒子(SiNPs)的简便方法。该方法操作简便,对仪器设备要求较低,更有利于硅纳米粒子研究的广泛开展和批量生产。制备的SiNPs具有良好的水溶性、光学稳定性和较大的荧光发射波长。此外,研究发现在一定浓度范围内(1.89~9.52 mol/L),乙醇浓度和硅纳米粒子荧光强度呈线性关系,从而建立了一种乙醇检测新方法。这一研究拓展了硅纳米粒子在传感领域的应用思路,并拓展了硅纳米粒子在更多领域的应用前景。

致谢

感谢河北省教育厅科技项目–河北省省属高校基本科研业务费研究项目(JQN2021036),华北理工大学大学生创新性实验计划(X2022088)对本研究提供的资助。

基金项目

河北省教育厅科技项目–河北省省属高校基本科研业务费研究项目(JQN2021036),华北理工大学大学生创新性实验计划(X2022088)。

NOTES

*共同第一作者。

#通讯作者。

参考文献

[1] Lee, D.E., Koo, H., Sun, I.C., et al. (2012) Multifunctional Nanoparticles for Multimodal Imaging and Theragnosis. Chemical Society Reviews, 41, 2656-2672.
https://doi.org/10.1039/C2CS15261D
[2] Sun, X., Zhai, W., Fossey, J.S., et al. (2016) Boronic Acids for Fluorescence Imaging of Carbohydrates. Chemical Communications, 52, 3456-3469.
https://doi.org/10.1039/C5CC08633G
[3] Zhao, J., Jin, G., Weng, G., et al. (2017) Recent Advances in Activatable Fluorescence Imaging Probes for Tumor Imaging. Drug Discovery Today, 22, 1367-1374.
https://doi.org/10.1016/j.drudis.2017.04.006
[4] Han, Y.X., Wang, Y.X., Zhang, H.X., et al. (2023) Facile Synthesis of Yellow-Green Fluorescent Silicon Nanoparticles and Their Application in Detection of Nitrophenol Isomers. Talanta, 257, Article 124347.
https://doi.org/10.1016/j.talanta.2023.124347
[5] Chao, Y., Ting, L., Qin, Y., et al. (2022) One-Step Hydrothermal Synthesis of Fluorescent Silicon Nanoparticles for Sensing Sulfide Ions and Cell Imaging. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 273, Article 121048.
https://doi.org/10.1016/j.saa.2022.121048
[6] Xiang, G., Wang, Y. and Zhang, G. (2018) Carbon Dots Based Dual-Emission Silica Nanoparticles as Ratiometric Fluorescent Probe for Nitrite Determination in Food Samples. Food Chemistry, 260, 13-18.
https://doi.org/10.1016/j.foodchem.2018.03.150
[7] Na, M., Chen, Y. and Han, Y. (2019) Determination of Potassium Ferrocyanide in Table Salt and Salted Food Using a Watersoluble Fluorescent Silicon Quantum Dots. Food Chemistry, 288, 248-255.
https://doi.org/10.1016/j.foodchem.2019.02.111
[8] Pan, C.J., Qin, X.Z., Lu, M.C., et al. (2022) Water Soluble Silicon Nanoparticles as a Fluorescent Probe for Highly Sensitive Detection of Rutin. ACS Omega, 7, 28588-28596.
https://doi.org/10.1021/acsomega.2c03463
[9] Mangolini, L. and Kortshagen. U. (2007) Inside Front Cover: Plasma-Assisted Synthesis of Silicon Nanocrystal Inks. Advanced Materials, 19, 18-22.
https://doi.org/10.1002/adma.200700595
[10] Heinrich, J.L., Curtis, C.L., Credo, G.M., et al. (1992) Luminescent Colloidal Silicon Suspensions from Porous Silicon. Science, 255, 66-68.
https://doi.org/10.1126/science.255.5040.66
[11] Kang, Z., Liu, Y., Tsang, C.H.A., et al. (2009) Water-Soluble Silicon Quantum Dots with Wavelength-Tunable Photoluminescence. Advanced Materials, 21, 661-664.
https://doi.org/10.1002/adma.200801642
[12] He, Y., Kang, Z.H., Li, Q.S., et al. (2009) Ultrastable, Highly Fluorescent, and Water-Dispersed Silicon-Based Nanospheres as Cellular Probes. Angewandte Chemie-International Edition, 48, 128-132.
https://doi.org/10.1002/anie.200802230
[13] He, Y., Zhong, Y., Peng, F., et al. (2011) One-Pot Microwave Synthesis of Water-Dispersible, Ultraphoto-and pH-Stable, and Highly Fluorescent Silicon Quantum Dots. Journal of the American Chemical Society, 133, 14192-14195.
https://doi.org/10.1021/ja2048804
[14] Zhong, Y., Peng, F., Wei, X., et al. (2012) Microwave-Assisted Synthesis of Biofunctional and Fluorescent Silicon Nanoparticles Using Proteins as Hydrophilic Ligands. Angewandte Chemie-International Edition, 51, 8485-8489.
https://doi.org/10.1002/anie.201202085
[15] Zhong, Y., Peng, F., Bao, F., et al. (2013) Large-Scale Aqueous Synthesis of Fluorescent and Biocompatible Silicon Nanoparticles and Their Use as Highly Photostable Biological Probes. Journal of the American Chemical Society, 135, 8350-8356.
https://doi.org/10.1021/ja4026227
[16] Wu, S., Zhong, Y., Zhou, Y., et al. (2015) Biomimetic Preparation and Dual-Color Bioimaging of Fluorescent Silicon Nanoparticles. Journal of the American Chemical Society, 137, 14726-14732.
https://doi.org/10.1021/jacs.5b08685
[17] Han, Y., Chen, Y., Feng, J., et al. (2017) One-Pot Synthesis of Fluorescent Silicon Nanoparticles for Sensitive and Selective Determination of 2,4,6-Trinitrophenol in Aqueous Solution. Analytical Chemistry, 89, 3001-3008.
https://doi.org/10.1021/acs.analchem.6b04509
[18] Nijegorodov, N., Mabbs, R., Winkoun, D.P. (2003) Influence of Weak and Strong Donor Groups on the Fluorescence Parameters and the Intersystem Crossing Rate Constant. Spectrochim Acta Part A, 59, 595-606.
https://doi.org/10.1016/S1386-1425(02)00207-X
[19] Wu, Z.L., Gao, M.X., Wang, T.T., et al. (2014) A General Quantitative pH Sensor Developed with Dicyandiamide N-Doped High Quantum Yield Graphene Quantum Dots. Nanoscale, 6, 3868-3874.
https://doi.org/10.1039/C3NR06353D
[20] Tang, Z., Lin, Z., Li, G., et al. (2017) Amino Nitrogen Quantum Dots-Based Nanoprobe for Fluorescence Detection and Imaging of Cysteine in Biological Samples. Analytical Chemistry, 89, 4238-4245.
https://doi.org/10.1021/acs.analchem.7b00284
[21] Yang, C., Zhu, S., Li, Z., et al. (2016) Nitrogen-Doped Carbon Dots with Excitation-Independent Long-Wavelength Emission Produced by a Room-Temperature Reaction. Chemical Communications, 52, 11912-11914.
https://doi.org/10.1039/C6CC06673A
[22] Wu, F.G., Zhang, X., Kai, S., et al. (2015) One-Step Synthesis of Superbright Water-Soluble Silicon Nanoparticles with Photoluminescence Quantum Yield Exceeding 80%. Advanced Materials Interfaces, 2, Article 1500360.
https://doi.org/10.1002/admi.201500360
[23] Wang, J., Ye, D.X., Liang, G.H., et al. (2014) One-Step Synthesis of Water-Dispersible Silicon Nanoparticles and Their Use in Fluorescence Lifetime Imaging of Living Cells. Journal of Materials Chemistry B, 2, 4338-4345.
https://doi.org/10.1039/C4TB00366G
[24] Ma, S.D., Chen, Y.L., Feng, J., et al. (2016) One-Step Synthesis of Water-Dispersible and Biocompatible Silicon Nanoparticles Forselective Heparin Sensing and Cell Imaging. Analytical Chemistry, 88, 10474-10481.
https://doi.org/10.1021/acs.analchem.6b02448
[25] Wang, Y.Q., Tian, M.L., Xie, W.Y., et al. (2019) One-Step Synthesis of Amine-Functionalized Fluorescent Silicon Nanoparticles for Copper (II) Ion Detection. Analytical and Bioanalytical Chemistry, 411, 6419-6426.
https://doi.org/10.1007/s00216-019-02020-9
[26] Geng, X., Li, Z.H., Hu, Y.L., et al. (2018) One-Pot Green Synthesis of Ultrabright N-Doped Fluorescent Silicon Nanoparticles for Cellular Imaging by Using Ethylenediaminetetraacetic Acid Disodium Salt as an Effective Reductant. ACS Applied Materials Interfaces, 10, 27979-27986.
https://doi.org/10.1021/acsami.8b09242
[27] Han, Y.X., Chen, Y.L., Liu, J.J., et al. (2018) Room-Temperature Synthesis of Yellow-Emitting Fluorescent Silicon Nanoparticles for Sensitive and Selective Determination of Crystal Violet in Fish Tissues. Sensors Actuators: B. Chemical, 263, 508-516.
https://doi.org/10.1016/j.snb.2018.02.163