AAM  >> Vol. 2 No. 2 (May 2013)

    基于虚位移原理的动态随机有限元方法理论推导
    Theoretical Inference of the Dynamic Stochastic Finite Element Method Based on the Virtual Displacement Principle

  • 全文下载: PDF(268KB) HTML    PP.74-82   DOI: 10.12677/AAM.2013.22010  
  • 下载量: 1,589  浏览量: 4,900  

作者:  

周宗和,余广平:海军驻武汉438厂军事代表室,武汉

关键词:
虚位移原理摄动技术八节点四边形对称等参单元动态随机有限元 Virtual Displacement Principle; Perturbation Technology; Axisymmetric Isoparametric Quadrilateral Element with Eight-Nodes; Dynamic Stochastic Finite Element

摘要:

对偏微分方程弱解的积分形式——虚位移原理进行较详细的研究,并构造出八节点四边形轴对称等参单元。然后从虚位移原理出发,给出轴对称动态问题的平衡方程以及力的边界条件下的等效积分“弱”形式。结合摄动技术,推导出八节点四边形轴对称等参单元的动态随机有限元方程,提出了基于虚位移原理的动态随机有限元方法,该方法为研究工程对象的动态响应特性提供了一种新的解决途径。

Virtual displacement principle which is the weak solution integral form of partial differential equations was researched in detail, and axisymmetric isoparametric quadrilateral element with eight-nodes was constructed. Then, based on the virtual displacement principle, the static equilibrium equation of the axisymmetric dynamic problems and the equivalent integral weak form under the boundary conditions of the force were derived, combined with perturbation technology, the dynamic stochastic finite element equation of the axisymmetric isoparametric quadrilateral element with eight-nodes was derived, and the dynamic stochastic finite element method based on the principle of the virtual displacements principle was put forward, the method provides a new solution for researching dynamic response characteristics of engineering objects.

文章引用:
周宗和, 余广平. 基于虚位移原理的动态随机有限元方法理论推导[J]. 应用数学进展, 2013, 2(2): 74-82. http://dx.doi.org/10.12677/AAM.2013.22010

参考文献

[1] 安伟光, 朱卫兵等. 随机有限元法在不确定性分析中的应用[J]. 哈尔滨工程大学学报, 2002, 23(1): 132-135.
[2] 安立强, 王璋奇. 随机约束汽轮机叶片频率的有限元分析[J]. 中国电机工程学报, 2009, 29(2): 95-100.
[3] A. Shaker, W. Abdelrahman, et al. Stochastic finite element analysis of the free vibration of functionally graded material plates. Computational Mechanics, 2008, 41(5): 707-714.
[4] M. Kaminski. Perturbation-based stochastic finite element method using polynomial response function for the elastic beams. Mechanics Research Communications, 2009, 36: 381-390.
[5] 安利强. 汽轮机叶片静动特性的随机有限元方法研究[D]. 华北电力大学, 2005.
[6] 周宗和, 杨自春等. 基于摄动响应面法的汽轮机转子随机响应特性及灵敏度分析[J]. 汽轮机技术, 2011, 53(4): 41-44.
[7] 周宗和, 杨自春等. 汽轮机转子的多变量随机动态响应及可靠性分析[J]. 汽轮机技术, 2011, 53(5): 35-38.
[8] 胡海昌. 弹性力学的变分原理及其应用[M]. 北京: 科学出版社, 1981.
[9] 王勖成, 邵敏. 有限单元法基本原理和数值方法[M]. 北京: 清华大学出版社, 1997.
[10] 曾攀. 有限元方法基本原理[M]. 北京: 清华大学出版社, 2008.