AMB  >> Vol. 2 No. 2 (June 2013)

    经过基质修正的Monod方程——一个微生物生长的新模型
    Substrate-Revised Monod Equation——A New Model on Microorganism Growth

  • 全文下载: PDF(269KB) HTML    PP.49-52   DOI: 10.12677/AMB.2013.22010  
  • 下载量: 1,565  浏览量: 6,120   国家自然科学基金支持

作者:  

王俊博,柴立和:天津大学环境科学与工程学院,天津;
张宇:南开大学环境科学与工程学院,天津

关键词:
微生物经典Monod方程修正Monod方程Microorganism; Original Monod Equation; Revised Monod Equation

摘要:

Monod方程作为一个描述微生物生长规律的经验方程,在工程实践中有着广泛的应用。本文针对经典Monod方程在微生物浓度较高,而基质浓度较低时,表现出的局限性,提出了经过基质修正的Monod方程。理论分析和模拟结果表明,此方程能够较好地描述高菌体低基质条件下的微生物生长规律。
As an empirical equation of describing microorganism growth feature, Monod equation has found wide spectrum of applications in engineering practices. Since classical Monod equation is restricted for the solution with high microorganism concentration and low substrate concentration, the substrate-revised Monod equation is proposed in the paper. Theoretical analyses and simulation results show that it can better describe the microorganism growth in situations of the high microorganism concentration and the low substrate concentration.

文章引用:
王俊博, 柴立和, 张宇. 经过基质修正的Monod方程——一个微生物生长的新模型[J]. 微生物前沿, 2013, 2(2): 49-52. http://dx.doi.org/10.12677/AMB.2013.22010

参考文献

[1] J. B. Wang, L. H. Chai, Y. Zhang and L. M. Chen. Microbial ecological model of filamentous bulking and mechanisms. World Journal of Microbiology and Biotechnology, 2006, 22(12): 1313-1320.
[2] 陈黎明, 柴立和. 生物膜动力学的研究现状与展望[J]. 力学进展, 2005, 35(3): 411-416.
[3] L. M. Chen, L. H. Chai. A theoretical analysis on self-organized formation of microbial biofilms. Physica A: Statistical Mechanics and its Applications, 2006, 370(2): 793-807.
[4] L. M. Chen, L. H. Chai. Mathematical model and mechanisms for biofilm wastewater treatment system. World Journal of Mi- crobiology and Biotechnology, 2005, 21(8-9): 1455-1460.
[5] 张锡辉. 高等环境化学与微生物学原理及应用[M]. 北京: 化学工业出版社, 2001.
[6] J. Zhang, Y. Zheng, C. Y. Li and L. H. Chai. A confined DLA model of microbial biofilm in wastewater treatment systems. International Conference on Electrical and Control Engineering (ICECE), Yichang, 16-18 September 2011: 4234-4237.
[7] 臧荣春, 夏凤毅. 微生物动力学模型[M]. 北京: 化学工业出版社, 2004.