AAM  >> Vol. 2 No. 3 (August 2013)

    一类渔业生态扩散系统的动力性分析
    The Dynamical Analysis of a Fishery Ecosystem Diffusion Model

  • 全文下载: PDF(510KB)    PP.127-134   DOI: 10.12677/AAM.2013.23016  
  • 下载量: 1,453  浏览量: 5,910  

作者:  

段彩霞,杜 鹏,廖新元:南华大学数理学院,衡阳

关键词:
捕食与被捕食渔业模型稳定性线性化方法波前解上下解方法 Prey-Predator Fishery Model; Stability; Linearized Method; Traveling Wavefront; Upper andLower Solution

摘要:

本文研究一类带有病毒的捕食与被捕食渔业扩散生物经济收获模型,得到了非负平衡点的局部渐近稳定性的一些结果,并且通过构建适当的Lyapunov函数,得到了唯一正平衡点的全局稳定性的充分条件,并通过数值模拟验证了所得到结果的正确性。最后,利用上下解方法,证明了连接两个平衡点的行波解的存在性。

In this work, we introduce the bio-economic harvesting of a prey-predator fishery diffusion model with toxicity in which both the species are infected by some toxicants released by some other species. We obtain some results for the locally asymptotical stability of the nonnegative constant equilibria, and the global stability of the unique positive equilibrium is also obtained by constructing suitable Lyapunov function. Numerical simulations are illustrated to confirm our rigorous results. Finally, via the upper and lower solution method, we also show the existence of traveling wave fronts connecting the zero solution with the positive equilibrium of this system.

文章引用:
段彩霞, 杜鹏, 廖新元. 一类渔业生态扩散系统的动力性分析[J]. 应用数学进展, 2013, 2(3): 127-134. http://dx.doi.org/10.12677/AAM.2013.23016

参考文献

[1] T. Das, R. N. Mukherjee and K. S. Chaudhuri. Harvesting of a prey-predator fishery in the presence of toxicity. Applied Mathematical Model- ing, 2009, 33(5): 2282-2292.
[2] T. K. Kar, K. S. Chaudhuri. On non-selective harvesting of two competing fish species in the presence of toxicity. Ecological Modeling, 2003, 161(1-2): 125-137.
[3] G. Lin, Y. Hong. Travelling wave fronts in a vector disease model with delay. Applied Mathematical Modeling, 2008, 32(12): 2831-2838.
[4] J. W. H. So, X. Zou. Traveling waves for the diffusive Nicholson’s blowflies equation. Applied Mathematical Computation, 2001, 122(3): 385- 392.
[5] J. Huang, X. Zou. Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays. Journal of Mathematical Analysis and Applications, 2002, 271(2): 455-466.
[6] Z. Ge, Y. He. Traveling wavefronts for a two-species predator-prey system with diffusion terms and stage structure. Applied Mathematical Modeling, 2009, 33(3): 1356-1365.
[7] X. Hou, Y. Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete Continuous Dynamical System, 2006, 15(2): 681-701.
[8] H. Smith, X. Zhao. Global asymptotic stability of traveling waves in delayed reaction-diffusion equations. SIAM: SIAM Journal on Mathe- matical Analysis, 2001, 31(3): 514-534.
[9] J. Wu, X. Zou. Traveling wave fronts of reaction-diffusion systems with delay. Journal of Dynamics and Differential Equations, 2001, 13(3): 651-687.
[10] X. Liao, X. Tang and S. Zhou. Existence of traveling wave-fronts in a cooperative systems with discrete delays. Applied Mathematical Compu- tation, 2009, 215(5): 1806-1812.
[11] X. Y. Liao, Y. M. Chen and S. F. Zhou. Traveling wavefronts of a prey-predator diffusion system with stage-structure and harvesting. Journal of Computational and Applied Mathematics, 2011, 235(8): 2560-2568.