AAM  >> Vol. 2 No. 3 (August 2013)

    一个Toda晶格方程的条件对称
    Conditional Symmetries of a Toda Lattice Equation

  • 全文下载: PDF(175KB) HTML    PP.135-139   DOI: 10.12677/AAM.2013.23017  
  • 下载量: 1,417  浏览量: 5,959  

作者:  

潘 阳,张丽华,李德生:沈阳师范大学数学与系统科学学院,沈阳

关键词:
Toda晶格方程条件对称相似约化Lie点对称 Toda Lattice Equation; Conditional Symmetries; Similarity Reduction; Lie Point Symmetry

摘要:

本文把离散的Lie点对称群分析方法应用于一个非线性微分–差分Toda晶格方程(即Toda-like晶格方程)。即首先应用Lie点对称方法约化Toda晶格方程,用以得到此方程对应的超定方程,再引入一个约化条件解超定方程,从而对该Toda晶格方程进行了相似约化,进而得到了其新的精确解。

In this paper, the discrete Lie point symmetry group analysis method is applied on a nonlinear dif- ferential-difference Toda lattice equation (i.e. a Toda-like equation), i.e. firstly, the Toda lattice equation is reduced by using Lie point symmetry to get the overdetermined equations corresponding to this Toda lattice equation, then a conditional symmetry is introduced to solve the overdetermined equations, so the similarity reduction for the Toda lattice equation is obtained, and then the new exact solutions of this Toda lattice equa- tion are obtained.

文章引用:
潘阳, 张丽华, 李德生. 一个Toda晶格方程的条件对称[J]. 应用数学进展, 2013, 2(3): 135-139. http://dx.doi.org/10.12677/AAM.2013.23017

参考文献

[1] 范兴华. 离散非线性微分–差分晶格系统的孤立波和局域模分析[D]. 江苏大学, 2007.
[2] 张隽, 潘祖梁. 非齐次Toda晶格的对称, 精确解和可积性[J]. 高校应用数学学报A辑, 2002, 17(2): 140-144.
[3] 沈守枫. 非线性系统若干问题研究[D].浙江大学, 2005.
[4] 张隽, 潘祖梁. 几类非线性差分方程的对称和精确解[J]. 高校应用数学学报A 辑, 2001, 16(2): 143-146.
[5] 唐晓艳. 2 + 1维非线性系统的局域激发和对称性研究[D]. 上海交通大学, 2004.
[6] D. Leivi, O. Ragnisco. The inhomogeneous Toda lattice: Its hierarchy and Darboux-Bäcklund transformation. Journal of Physics A: Mathe- matical and General, 1991, 24(8): 1729-1740.
[7] P. J. Olver. Applications of Lie groups to differential equations. New York: Springer, 1986.
[8] D. Levi, P. WintIerniz. Continuous symmetries of discrete equations. Physics Letters A, 1991, 152(7): 335-338.
[9] D. Levi, P. WintIerniz. Symmetries and conditional symmetries of differential-difference equations. Journal of Mathematical Physics, 1993, 34(8): 3713-3730.
[10] Z. H. Jiang. Lie symmetries and their local determinacy for a class of differential-difference equations. Physics Letters A, 1998, 240(3): 137- 143.