AAM  >> Vol. 3 No. 2 (May 2014)

    随机脉冲时刻下微分系统的稳定性
    Stabilization of Differential Systems with Random Impulsive Effect

  • 全文下载: PDF(311KB) HTML    PP.85-90   DOI: 10.12677/AAM.2014.32013  
  • 下载量: 1,641  浏览量: 5,684   国家自然科学基金支持

作者:  

韩文博,高彩霞:内蒙古大学数学科学学院,呼和浩特

关键词:
脉冲微分系统P阶指数稳定性随机过程Lyapunov直接法充分条件Impulsive Differential System P-Moment Exponential Stability Stochastic Process Lyapunov’s Direct Method Sufficient Conditions

摘要:

本文研究了当脉冲时刻是随机变量时,脉冲微分系统的稳定性。因为在随机脉冲时刻的影响下,脉冲微分方程的解为随机过程,这与传统的确定性脉冲时刻的微分方程解的性质相差甚远。本文便研究随机脉冲的发生是如何影响系统稳定性的,并给出使系统P阶指数稳定的充分条件。

This paper studies the stability of impulsive differential systems when the pulses happen in the random time. Under the influence of random pulses, the solutions of impulsive differential equations become the stochastic processes, so the solutions are far different from the deterministic impulsive differential equations’. In this paper, we study how the random pulses affect the stability of the systems, and then the sufficient condition on P-moment stability is established.

文章引用:
韩文博, 高彩霞. 随机脉冲时刻下微分系统的稳定性[J]. 应用数学进展, 2014, 3(2): 85-90. http://dx.doi.org/10.12677/AAM.2014.32013

参考文献

[1] Lakshmikantham, V., Bainov, D.D. and Slmeonov, P.S. (1989) Theory of impulsive differential equations. World Scientific, Singapore.
[2] Yang, T. (2001) Impulsive control theory. Vol. 272, Springer.
[3] Samoilenko, A.M., Perestyuk, N.A. and Chapovsky, Y. (1995) Impulsive differential equations. World Scientific, Singapore.
[4] Liu, X. (1993) Impulsive stabilization of nonlinear systems. IMA Journal of Mathematical Control and Information, 10, 11-19.
[5] Reinfelds, A. and Sermone, L. (2013) Stability of impulsive differential systems. Abstract and Applied Analysis, Vol. 2013, Hindawi Publishing Corporation.
[6] Stamova, I.M. and Stamov, G.T. (2001) Lyapu-nov-Razumikhin method for impulsive functional differential equations and applications to the population dynamics. Journal of Computational and Applied Mathematics, 130, 163-171.
[7] Kou, C.H., Zhang, S.N. and Wu, S.J. (2002) Stability analysis in terms of two measures for impulsive differential equations. Journal of the London Mathematical Society, 66, 142-152.
[8] Naghshtabrizi, P., Hespanha, J.P. and Teel, A.R. (2008) Exponential stability of impulsive systems with application to uncertain sampled-data systems. Systems & Control Letters, 57, 378-385.
[9] Hetel, L., Kruszewski, A., Perruquetti, W. and Richard, J. (2011) Discrete and inter-sample analysis of systems with aperiodic sampling. IEEE Transactions on Automatic Control, 56, 1696-1701.
[10] Liu, K. and Fridman, E. (2012) Wirtingers inequality and lyapunov-based sampled-data stabilization, Automatica, 48, 102-108.
[11] Hetel, L., Daafouz, J., Tarbouriech, S., Prieur, C., et al. (2013) Stabilization of linear impulsive systems through a nearly-periodic reset. Nonlinear Analysis: Hybrid Systems, 7, 4-15.
[12] Lakshmikantham, V. and Devi, J.V. (1993) Strick stability for impulsive differential systems. Nonlinear Analysis, 21, 785-794.
[13] Wu, S.J. and Han, D. (2005) Exponential stability of impulsive functional differential systems with random impulsive moments. Computers & Mathematics with Applications‚ 50‚ 321-328.
[14] Molchanov, A.P. and Pyatnitskiy, Y.S. (1989) Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems and Control Letters, 13, 59-64.