AAC  >> Vol. 1 No. 1 (August 2011)

    中孔纳米棒催化发光传感器对环境VOCs 快速监测分析
    Fast monitoring environmental VOCs by Catalluminescencesensor of Porous Co3O4 nanorods

  • 全文下载: PDF(1628KB) HTML    PP.1-6   DOI: 10.12677/aac.2011.11001  
  • 下载量: 2,309  浏览量: 10,725   国家自然科学基金支持

作者:  

滕飞,陈敏东,李贵清,杭叶超,孟德生

关键词:
催化发光传感器
Catalluminesence; Sensor;VOCs

摘要:
采用水热法制备形状均匀的窄分布的中孔Co3O4纳米棒,利用扫描电子显微镜、高分辨透射电镜(TEM)和选区电子衍射(ED),X 射线衍射(XRD)、X-光电子能谱(XPS)、和N2 吸附对其进行表征,研究了中孔Co3O4纳米棒的CO 催化氧化化学发光性能。结果表明,多孔纳米棒表现出较强的CO 氧化发光(CTL)强度,催化发光性质可以用于环境挥发性物质(VOCs)快速监测。 The mesoporous Co3O4 nanorods with narrow pore size distributions are prepared by a simple hydrothermal method. The samples are characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (TEM), selected area electron diffraction (ED), X-ray diffraction (XRD), X-ray phonoelectron spectra and N2 adsorption. The chemoluminescence and catalytic oxidation properties of CO over Co3O4 nanorods are mainly investigated. The results show that the mesoporous Co3O4 nanorods show a higher catalluminescence (CTL) intensity of CO oxidation than the bulk one. Due to the high sensitivity, CTL can be used to fast monitor environmental toxic volatile organic chemicals (VOCs)

文章引用:
滕飞, 陈敏东, 李贵清, 杭叶超, 孟德生. 中孔纳米棒催化发光传感器对环境VOCs 快速监测分析[J]. 分析化学进展, 2011, 1(1): 1-6. http://dx.doi.org/10.12677/aac.2011.11001

参考文献

[1] T. He, D. Chen, X. Jiao, et al. Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size. Langmuir, 2004, 20(19): 8404-8410.
[2] B. Liu, H. Zeng. Symmetric and asymmetric ostwald ripening in fabrication of homogeneous core-shell semiconductors. Small, 2005, 1(5): 566-571.
[3] F. Teng, S. Liang, G. Buergen et al. Catalytic behavior of hy-drothermally synthesized La0.5Sr0.5MnO3 single-crystal cubes in the oxidation of C and CH4. Journal of Catalysis, 2007, 250(1): 1-11.
[4] K. Zhou, X. Wang, X. Sun et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. Journal of Catalysis, 2005, 229(1): 206-212.
[5] S. Liang, F. Teng, G. Bulgan et al. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J. Phys. Chem. C, 2008, 111: 273-277.
[6] B. Lakshmi B, J. Patrissic, and R. Martinc. Sol–gel template synthesis of semiconductor oxide micro- and nanostructures. Chem. Mater. 1997, 9(11): 2544-2547.
[7] Y. K. Liu, G. H. Wang, and C. K. Xu. Fabrication of Co3O4 nanorods Liu microemulsion. Chem. Commun, 2002, 14: 1486- 1487.
[8] W. Zhang, Y. Zhang, G. Dong, Z. Sun. Synthesis and crystal structure of a novel 2D network copper complex constructed through hydrogen bonds linking zigzag chains. Chemical Journal of Chinese Universities, 2005, 27: 1791-1794.
[9] Y. F. Zhu, J. Shi, Z. Zhang, et al. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Analitical Chemistry, 2002, 74(1): 120-125.
[10] M. Oku, Y. Sato. Highly sensitive and fast responding CO sen-sor based on Co3O4. Applied Surface Science, 1992, 55: 37- 43.
[11] V. M. Jimne, A. Fernndez, J. P. Espins, et al. Systematic XPS studies of metal oxides, hydroxides and per-oxides. Journal of Electron Spectroscopy and Related Phenomena, 1995, 71: 61- 68.
[12] K. S. W., Sing, D. H. Everett, R. A. W. Haul, et al. Physical and biophysical chemistry division commission on colloid and sur-face chemistry including catalysis. Pure and Applied Chemistry, 1985, 57: 6031-6036.
[13] M. Nakagawa, N. Yamashita. Cataluminescence-based gas sensors. Springer Series on Chemical Sensors and Biosensors, 2005, 3: 93-98.
[14] X. Wang, N. Na, S. Zhang, et al. Rapid screening of gold cata-lysts by chemiluminescence-based array imaging. Journal of the American Chemical Society, 2007, 129(19): 6062-6065.
[15] E. M. Johansson, K. M. J. Danielsson, E. Pocoroba, et al. Cata-lytic combustion of gasified biomass over hexaaluminate cata-lysts: influence of palladium loading and ageing. Applied Ca-talysis A: General, 1999, 182(1): 199-205.