AAC  >> Vol. 1 No. 1 (August 2011)

    中孔纳米棒催化发光传感器对环境VOCs 快速监测分析
    Fast monitoring environmental VOCs by Catalluminescencesensor of Porous Co3O4 nanorods

  • 全文下载: PDF(1628KB) HTML    PP.1-6   DOI: 10.12677/aac.2011.11001  
  • 下载量: 2,825  浏览量: 12,145   国家自然科学基金支持



Catalluminesence; Sensor;VOCs


采用水热法制备形状均匀的窄分布的中孔Co3O4纳米棒,利用扫描电子显微镜、高分辨透射电镜(TEM)和选区电子衍射(ED),X 射线衍射(XRD)、X-光电子能谱(XPS)、和N2 吸附对其进行表征,研究了中孔Co3O4纳米棒的CO 催化氧化化学发光性能。结果表明,多孔纳米棒表现出较强的CO 氧化发光(CTL)强度,催化发光性质可以用于环境挥发性物质(VOCs)快速监测。 The mesoporous Co3O4 nanorods with narrow pore size distributions are prepared by a simple hydrothermal method. The samples are characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (TEM), selected area electron diffraction (ED), X-ray diffraction (XRD), X-ray phonoelectron spectra and N2 adsorption. The chemoluminescence and catalytic oxidation properties of CO over Co3O4 nanorods are mainly investigated. The results show that the mesoporous Co3O4 nanorods show a higher catalluminescence (CTL) intensity of CO oxidation than the bulk one. Due to the high sensitivity, CTL can be used to fast monitor environmental toxic volatile organic chemicals (VOCs)

滕飞, 陈敏东, 李贵清, 杭叶超, 孟德生. 中孔纳米棒催化发光传感器对环境VOCs 快速监测分析[J]. 分析化学进展, 2011, 1(1): 1-6. http://dx.doi.org/10.12677/aac.2011.11001


[1] T. He, D. Chen, X. Jiao, et al. Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size. Langmuir, 2004, 20(19): 8404-8410.
[2] B. Liu, H. Zeng. Symmetric and asymmetric ostwald ripening in fabrication of homogeneous core-shell semiconductors. Small, 2005, 1(5): 566-571.
[3] F. Teng, S. Liang, G. Buergen et al. Catalytic behavior of hy-drothermally synthesized La0.5Sr0.5MnO3 single-crystal cubes in the oxidation of C and CH4. Journal of Catalysis, 2007, 250(1): 1-11.
[4] K. Zhou, X. Wang, X. Sun et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. Journal of Catalysis, 2005, 229(1): 206-212.
[5] S. Liang, F. Teng, G. Bulgan et al. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J. Phys. Chem. C, 2008, 111: 273-277.
[6] B. Lakshmi B, J. Patrissic, and R. Martinc. Sol–gel template synthesis of semiconductor oxide micro- and nanostructures. Chem. Mater. 1997, 9(11): 2544-2547.
[7] Y. K. Liu, G. H. Wang, and C. K. Xu. Fabrication of Co3O4 nanorods Liu microemulsion. Chem. Commun, 2002, 14: 1486- 1487.
[8] W. Zhang, Y. Zhang, G. Dong, Z. Sun. Synthesis and crystal structure of a novel 2D network copper complex constructed through hydrogen bonds linking zigzag chains. Chemical Journal of Chinese Universities, 2005, 27: 1791-1794.
[9] Y. F. Zhu, J. Shi, Z. Zhang, et al. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Analitical Chemistry, 2002, 74(1): 120-125.
[10] M. Oku, Y. Sato. Highly sensitive and fast responding CO sen-sor based on Co3O4. Applied Surface Science, 1992, 55: 37- 43.
[11] V. M. Jimne, A. Fernndez, J. P. Espins, et al. Systematic XPS studies of metal oxides, hydroxides and per-oxides. Journal of Electron Spectroscopy and Related Phenomena, 1995, 71: 61- 68.
[12] K. S. W., Sing, D. H. Everett, R. A. W. Haul, et al. Physical and biophysical chemistry division commission on colloid and sur-face chemistry including catalysis. Pure and Applied Chemistry, 1985, 57: 6031-6036.
[13] M. Nakagawa, N. Yamashita. Cataluminescence-based gas sensors. Springer Series on Chemical Sensors and Biosensors, 2005, 3: 93-98.
[14] X. Wang, N. Na, S. Zhang, et al. Rapid screening of gold cata-lysts by chemiluminescence-based array imaging. Journal of the American Chemical Society, 2007, 129(19): 6062-6065.
[15] E. M. Johansson, K. M. J. Danielsson, E. Pocoroba, et al. Cata-lytic combustion of gasified biomass over hexaaluminate cata-lysts: influence of palladium loading and ageing. Applied Ca-talysis A: General, 1999, 182(1): 199-205.