AAM  >> Vol. 3 No. 4 (November 2014)

    谢宾斯基垫片上的尺度因子
    The Scaling Factor on the Sierpinski Gasket

  • 全文下载: PDF(328KB) HTML    PP.201-206   DOI: 10.12677/AAM.2014.34029  
  • 下载量: 1,065  浏览量: 3,562   国家科技经费支持

作者:  

唐东磊,胡 锐,潘新月,孙亚萍:南京审计学院,应用数学系,南京

关键词:
谢宾斯基垫片尺度因子Δ-Y 变换The Sierpinski Gasket Scaling Factor Δ-Y Transform

摘要:

本文将给出关于谢宾斯基垫片上尺度因子计算方法的综述。我们主要介绍等权条件下谢宾斯基垫片尺度因子的两种求法。一是用Δ-Y变换,另外一种则是用经典微积分中关于极值部分的理论。

In this paper, we give a statement of the computing method of scaling factor on the Sierpinski gasket. We will introduce two methods in computing the scaling factor under equal-weighted condition. One is by Δ-Y Transformation. The other one is using extreme values in classical calculus theory.

文章引用:
唐东磊, 胡锐, 潘新月, 孙亚萍. 谢宾斯基垫片上的尺度因子[J]. 应用数学进展, 2014, 3(4): 201-206. http://dx.doi.org/10.12677/AAM.2014.34029

参考文献

[1] Kigami, J. (1989) A harmonic calculus on the Sierpinski spaces. Japan Journal of Applied Mathematics, 8, 259-290.
[2] Kigami, J. (1993) Harmonic calculus on p.c.f. self-similar sets. Transactions of American Mathematical Society, 335, 721-755.
[3] Kigami, J. (2001) Analysis on fractals. Cambridge University Press, Cam-bridge.
[4] Lindstrøm, T. (1990) Brownian motion on nested fractal. Memory of American Mathematical Society, 420.
[5] Strichartz, R.S. (2000) Taylor approximations on Sierpinski gasket type fractals. Journal of Functional Analysis, 174, 76-127.
[6] Strichartz, R.S. (2006) Differential equations on fractals: A tutorial. Princeton University press, Princeton.
[7] 张永照, 杨万明, 张淑艳 (1995) 电阻形联接与形联接等效变换的简单推导. 大学物理, 3, 18-19.
[8] 过祥龙, 张毓麟 (1997) Sierpinski电阻网络等效电阻的研究. 大学物理, 4, 8-10.
[9] 郭慧丽 (2001) Sierpinski变形电阻网络等效阻值的研究. 甘肃高师学报, 2, 27-28.
[10] 李建新 (2005) 一类n级嵌套的三角形电阻网络的研究. 安阳工学院学报, 13, 58-60.
[11] 孙亚萍 (2011) Δ-Y变换在数学中的应用. 硕士论文, 南京审计学院, 南京.
[12] 潘新月 (2013) 谢宾斯基垫片上尺度因子的求法. 硕士论文, 南京审计学院, 南京.