# 基于泰勒展开的线性多步法构造方法的研究A Study on Construction for Linear Multi-Step Methods Based on Taylor Expansion

• 全文下载: PDF(568KB)    PP.336-342   DOI: 10.12677/AAM.2015.44042
• 下载量: 1,614  浏览量: 4,058   国家自然科学基金支持

Following the previous literature on multi-step formulae for initial value problems of ODEs (ordi-nary differential equations), we study the construction for linear multi-step methods based on Taylor expansion in this paper. We try the weighted average method and derive a new formula. Then we check this new method in an example, and compare the original two formulae and con-structed new formula. Via such numerical experiment, this method is reliable. Some constructed new formulae can have relatively high stability and small error while solving ODEs initial value problems.

  Atkinson, K.E., 著. 数值分析引论[M]. 匡蛟勋, 译. 上海: 上海科学技术出版社, 1986.  李庆扬, 关治, 白峰杉. 数值计算原理[M]. 北京: 清华大学出版社, 2000.  关治, 陆金甫. 数值分析基础[M]. 北京: 高等教育出版社, 1998.  李庆扬, 王能超, 易大义. 数值分析[M]. 第4版. 武汉: 华中科技大学出版社, 2006.  Henrici, P. (1962) Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York.  李大侃, 编. 常微分方程数值解[M]. 杭州: 浙江大学出版社, 1994.  李庆扬. 常微分方程数值解法[M]. 北京: 高等教育出版社, 1992.  李荣华, 冯果忱. 微分方程的数值解法[M]. 第3版. 北京: 高等教育出版社, 1996.  Dahlquist, G. (1963) A Special Stability Problem for Linear Multistep Methods. BIT, 3, 27-43.  Butcher, J.C. (1975) A Stability Property of Implicity Runge-Kutta Methods. BIT, 15, 358-361.  刘丹. 常微分方程数值解的长时间性态[D]: [硕士论文]. 哈尔滨: 黑龙江大学, 2004.  吕万金. 一类常微分方程长时间数值计算稳定性分析[J]. 黑龙江大学自然科学学报, 2000, 17(4): 4-6.