AAC  >> Vol. 6 No. 1 (February 2016)

    基于近红外光谱技术快速鉴别白酒真伪
    Identification of Specific Liquor Based on Near-Infrared Spectroscopy Technology

  • 全文下载: PDF(524KB) HTML   XML   PP.1-6   DOI: 10.12677/AAC.2016.61001  
  • 下载量: 1,334  浏览量: 3,624   国家自然科学基金支持

作者:  

吴 同,谭 超:宜宾学院过程分析与控制四川省高校重点实验室,四川 宜宾

关键词:
近红外光谱白酒鉴别Fisher判别法Near-Infrared Spectroscopy Liquor Identification Fisher Linear Discriminant

摘要:

本文探索了一种利用近红外光谱技术进行白酒真伪快速鉴别的新方法。共收集到分属8个品牌的100个酒样,基于5340~7400 cm−1的光谱区域,使用四种化学计量学方法建立分类模型,即基于全部变量的K最近邻模型、基于前四个主成分得分的K最近邻模型,基于前四个主成分得分的感知机、基于全部变量的Fisher判别模型。比较显示,Fisher判别模型达到了最优的性能,在训练集和测试集上的误判率均为0%。可见近红外光谱技术结合模式识别方法可用于快速鉴别五粮液等高端酒真伪。

A rapid nondestructive method for kind identification of liquor by near infraredspectroscopy (NIR) was investigated and developed. A total of 100 samples belonging to 8 brands were collected in local markets. Based on the wavenumber region of 5340-7400 cm−1, four kinds of algorithm, i.e., K-nearest neighbor’s method of all spectral variables (KNN1) and of the first four principal components (KNN2), perception of the first four principal components and Fisher linear discrimination of all spectral variables, were used for constructing the classification models. By comparison, it shows that the Fisher linear discrimination model can achieve the best performance, with a misclassified ratio of 0%in either the training set or the test set. The results also indicate that the combination of NIR and pattern recognition models is feasible for a rapid identification of liquor such as Wuliangye.

文章引用:
吴同, 谭超. 基于近红外光谱技术快速鉴别白酒真伪[J]. 分析化学进展, 2016, 6(1): 1-6. http://dx.doi.org/10.12677/AAC.2016.61001

参考文献

[1] Saurina, J. (2010) Characterization of Wines Using Compositional Profiles and Chemometrics. Trends in Analytical Chemistry, 29, 234-245.
http://dx.doi.org/10.1016/j.trac.2009.11.008
[2] Song, H.Y., Qin, G. and Liu, H.Q. (2012) Qualitative Detection of Bottled Vinegar Based on NIR Spectroscopy Technique. Spectroscopy and Spectral Analysis, 32, 1547-1549.
[3] Cozzolino, D., Kwiatkowski, M.J., Parker, M., et al. (2004) Prediction of Phenolic Compounds in Red Wine Fermentations by Visible and Near Infrared Spectroscopy. Analytica Chimica Acta, 513, 73-80.
http://dx.doi.org/10.1016/j.aca.2003.08.066
[4] Tan, C., Wu, T., Xu, Z.H., et al. (2012) A Simple Ensemble Strategy of Uninformative Variable Elimination and Partial Least-Squares for Near-Infrared Spectroscopic Calibration of Pharmaceutical Products. Vibrational Spectroscopy, 58, 44-49.
http://dx.doi.org/10.1016/j.vibspec.2011.09.011
[5] Laxalde, J., Ruckebusch, C., Devos, O., et al. (2011) Cha-racterisation of Heavy Oils Using Near-Infrared Spectroscopy: Optimisation of Pre-Processing Methods and Variable Selection. Analytica Chimica Acta, 705, 227-233.
http://dx.doi.org/10.1016/j.aca.2011.05.048
[6] Jing, M., Cai, W.S. and Shao, X.G. (2010) Multiblock Partial Least Squares Regression Based on Wavelet Transform for Quantitative Analysis of Near Infrared Spectra. Chemome-trics and Intelligent Systems, 100, 22-27.
http://dx.doi.org/10.1016/j.chemolab.2009.09.006
[7] Liu, F., Ye, X.J., He, Y., et al. (2009) Application of Vis-ible/Near Infrared Spectroscopy and Chemometric Calibrations for Variety Discrimination of Instant Milk Teas. Journal of Food Engineering, 93, 127-133.
http://dx.doi.org/10.1016/j.jfoodeng.2009.01.004
[8] Tan, C., Chen, H., Wu, T., et al. (2013) Determination of Total Sugar in Tobacco by Near-infrared Spectroscopy and Wavelet Transformation-Based Calibration. Analytical Letters, 46, 171-183.
http://dx.doi.org/10.1080/00032719.2012.704538
[9] Ni, L.J., Zhang, L.G., Xie, J., et al. (2009) Pattern Recog-nition of Chinese Flue-Cured Tobaccos by an Improved and Simplified K-Nearest Neighbors Classification Algorithm on Near Infrared Spectra. Analytica Chimica Acta, 633, 43- 50.
http://dx.doi.org/10.1016/j.aca.2008.11.044
[10] Nahum, M., Daikhin, L., Lubin, Y., et al. (2010) From Compar-ison to Classification: A Cortical Tool for Boosting Perception. The Journal of Neuroscience, 30, 1128-1136.
http://dx.doi.org/10.1523/JNEUROSCI.1781-09.2010
[11] Chiang, L.H., Kotanchek, M.E. and Kordon, A.K. (2004) Fault Diagnosis Based on Fisher Discriminant Analysis and Support Vector Machines. Computers and Chemical Engineering, 28, 1389-1401.
http://dx.doi.org/10.1016/j.compchemeng.2003.10.002
[12] Liang, Z.Z. and Shi, P.F. (2004) An Efficient and Effective Method to Solve Kernel Fisher Discriminant Analysis. Neurocomputing, 61, 485-493.
http://dx.doi.org/10.1016/j.neucom.2004.06.005