|
[1]
|
牛丽纯, 孙玉芳, 赵天琦, 等. 未培养微生物的限制因素及培养方法研究进展[J]. 微生物前沿, 2014, 3(2): 17-28.
http://dx.doi.org/10.12677/AMB.2014.32003 [Google Scholar] [CrossRef]
|
|
[2]
|
Newman, D.K. and Banfield, J.F. (2002) Geomicrobiology: How Molecular-Scale Interactions Underpin Biogeochemical Systems. Science, 296(5570): 1071-1077. http://dx.doi.org/10.1126/science.1010716 [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Woese, C.R. and Fox, G.E. (1977) Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms. Proceedings of the National Academy of Sciences, 74, 5088-5090. http://dx.doi.org/10.1073/pnas.74.11.5088 [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Annelie, P., Jakob, P. and Rudolf, A. (2002) Fluorescence in Situ Hybridization and Catalyzed Reporter Deposition for the Identification of Marine Bacteria. Applied & Environmental Microbiology, 68, 3094-3101.
http://dx.doi.org/10.1128/AEM.68.6.3094-3101.2002 [Google Scholar] [CrossRef]
|
|
[5]
|
Peters, S., Koschinsky, S., Schwieger, F., et al. (2000) Succession of Microbial Communities during Hot Composting as Detected by PCR-Single-Strand-Conformation Polymorphism-Based Genetic Profiles of Small-Subunit rRNA Genes. Applied & Environmental Microbiology, 66, 930-936. http://dx.doi.org/10.1128/AEM.66.3.930-936.2000 [Google Scholar] [CrossRef]
|
|
[6]
|
Liu, W.T., Marsh, T.L., Cheng, H., et al. (1997) Characterization of Microbial Diversity by Determining Terminal Restriction Fragment Length Polymorphisms of Genes Encoding 16S rRNA. Applied & Environmental Microbiology, 63, 4516-4522.
|
|
[7]
|
田甜, 李冬梅, 戴世鲲, 等. 海洋环境中难培养微生物的寡营养培养[J]. 微生物学通报, 2009(36): 1031-1039.
|
|
[8]
|
王丽玲, 林景星, 胡建芳. 深海热液喷口生物群落研究进展[J]. 地球科学进展, 2008, 23(6): 604-612.
|
|
[9]
|
袁东芳, 于乐军, 刘晨光. 海洋微生物高通量培养方法和分选技术的研究进展[J]. 微生物学通报, 2014, 41(6): 1180-1187.
|
|
[10]
|
Scholten, H.J. and Rlm, P. (1998) Agar as a Gelling Agent: Chemical and Physical Analysis. Plant Cell Reports, 17, 230-235. http://dx.doi.org/10.1007/s002990050384 [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Das, N., Tripathi, N., Basu, S., Bose, C., Maitra, S. and Khurana, S. (2015) Progress in the Development of Gelling Agents for Improved Culturability of Microorganisms. Frontiers in Microbiology, 6, 698.
http://dx.doi.org/10.3389/fmicb.2015.00698 [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Abbott, I.A. and Chapman, F.A. (1981) Evaluation of Kappa Carrageenan as a Substitute for Agar in Microbiological Media. Archives of Microbiology, 128, 355-359. http://dx.doi.org/10.1007/BF00405912 [Google Scholar] [CrossRef]
|
|
[13]
|
Datta, S., Mody, K., Gopalsamy, G. and Jha, B. (2011) Novel Application of κ-Carrageenan: As a Gelling Agent in Microbiological Media to Study Biodiversity of Extreme Alkaliphiles. Carbohydrate Polymers, 85, 465-468.
http://dx.doi.org/10.1016/j.carbpol.2011.02.036 [Google Scholar] [CrossRef]
|
|
[14]
|
Lin, C.C. and Casida, L.E. (1984) GELRITE as a Gelling Agent in Media for the Growth of Thermophilic Microorganisms. Applied and Environmental Microbiology, 47, 427-429.
|
|
[15]
|
Shungu, D., Valiant, M., Tutlane, V., Weinberg, E., Weissberger, B., Koupal, L., Gadebusch, H. and Stapley, E. (1983) GELRITE as an Agar Substitute in Bacteriological Media. Applied and Environmental Microbiology, 46, 840-845.
|
|
[16]
|
金一荻. 基于结冷胶培养基的乌梁素海富营养化水体中可培养细菌的多样性分析[D]: [硕士学位论文]. 呼和浩特: 内蒙古农业大学, 2011.
|
|
[17]
|
Hideyuki, T., Yuji, S., Satoshi, H., Nakamura, K., Nomura, N., Matsumura, M. and Kamagata, Y. (2005) Comparative Analysis of Bacterial Diversity in Freshwater Sediment of a Shallow Eutrophic Lake by Molecular and Improved Cultivation-Based Techniques. Applied and Environmental Microbiology, 71, 2162-2169.
http://dx.doi.org/10.1128/AEM.71.4.2162-2169.2005 [Google Scholar] [CrossRef]
|
|
[18]
|
Tamaki, H., Hanada, S., Sekiguchi, Y., Tanaka, Y. and Kamagata, Y. (2009) Effect of Gelling Agent on Colony Formation in Solid Cultivation of Microbial Community in Lake Sediment. Environmental Microbiology, 11, 1827-1834.
http://dx.doi.org/10.1111/j.1462-2920.2009.01907.x [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kathryn, E.R.D., Shayne, J.J. and Peter, H.J. (2005) Effects of Growth Medium, Inoculum Size, and Incubation Time on Culturability and Isolation of Soil Bacteria. Applied and Environmental Microbiology, 71, 826-834.
http://dx.doi.org/10.1128/AEM.71.2.826-834.2005 [Google Scholar] [CrossRef]
|
|
[20]
|
Janssen, P.H., Yates, P.S., Grinton, B.E., Taylor, P.M. and Sait, M. (2002) Improved Culturability of Soil Bacteria and Isolation in Pure Culture of Novel Members of the Divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Applied and Environmental Microbiology, 68, 2391-2396.
http://dx.doi.org/10.1128/AEM.68.5.2391-2396.2002 [Google Scholar] [CrossRef]
|
|
[21]
|
Sait, M., Hugenholtz, P. and Janssen, P.H. (2002) Cultivation of Globally Distributed Soil Bacteria from Phylogenetic Lineages Previously Only Detected in Cultivation-Independent Surveys. Environmental Microbiology, 4, 654-666.
http://dx.doi.org/10.1046/j.1462-2920.2002.00352.x [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Sahay, S. (1999) The Use of Psyllium (Isubgol) as an Alternative Gelling Agent for Microbial Culture Media. World Journal of Microbiology & Biotechnology, 15, 733-735. http://dx.doi.org/10.1023/A:1008954128637 [Google Scholar] [CrossRef]
|
|
[23]
|
黎丽华. 瓜尔胶的改性、共混及其应用研究[D]: [硕士学位论文]. 武汉: 武汉大学, 2004.
|
|
[24]
|
Jain, R., Anjaiah, V. and Babbar, S.B. (2005) Guar Gum: A Cheap Substitute for Agar in Microbial Culture Media. Letters in Applied Microbiology, 41, 345-349. http://dx.doi.org/10.1111/j.1472-765X.2005.01760.x [Google Scholar] [CrossRef]
|
|
[25]
|
Petri, D.F.S. (2015) Xanthan Gum: A Versatile Biopolymer for Biomedical and Technological Applications. Journal of Applied Polymer Science, 132, 1-13. http://dx.doi.org/10.1002/app.42035 [Google Scholar] [CrossRef]
|
|
[26]
|
Babbar, S.B. and Jain, R. (2006) Xanthan Gum: An Economical Partial Substitute for Agar in Microbial Culture Media. Current Microbiology, 52, 287-292. http://dx.doi.org/10.1007/s00284-005-0225-5 [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Santini, J.M., Sly, L.I., Schnagl, R.D. and Macy, J.M. (2000) A New Chemolithoautotrophic Arsenite-Oxidizing Bacterium Isolated from a Gold Mine: Phylogenetic, Physiological, and Preliminary Biochemical Studies. Applied and Environmental Microbiology, 66, 92-97. http://dx.doi.org/10.1128/AEM.66.1.92-97.2000 [Google Scholar] [CrossRef]
|
|
[28]
|
Sorokin, D.Y., Tourova, T.P., Kolganova, T.V., Detkova, E.N., Galinski, E.A. and Muyzer, G. (2011) Culturable Diversity of Lithotrophic Haloalkaliphilic Sulfate-Reducing Bacteria in Soda Lakes and the Description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov. Extremophiles, 15, 391-401.
http://dx.doi.org/10.1007/s00792-011-0370-7 [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Coppola, S., Zoina, A. and Marino, P. (1976) Interactions of N6-(delta2-isopentenyl)adenine with Cyclic AMP on the Regulation of Growth and Beta-Galactosidase Synthesis in Escherichia coli. Journal of General Microbiology, 94, 436-438. http://dx.doi.org/10.1099/00221287-94-2-436 [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chen, G.C.C. and Brown, A. (1985) Bacterial Growth and the Concentrations of Cyclic Nucleotides in Legionella pneumophila Cultures. Current Microbiology, 12, 23-26. http://dx.doi.org/10.1007/BF01567748 [Google Scholar] [CrossRef]
|
|
[31]
|
Bruns, A., Cypionka, H. and Overmann, J. (2002) Cyclic AMP and Acyl Homoserine Lactones Increase the Cultivation Efficiency of Heterotrophic Bacteria from the Central Baltic Sea. Applied and Environmental Microbiology, 68, 3978-3986. http://dx.doi.org/10.1128/AEM.68.8.3978-3987.2002 [Google Scholar] [CrossRef]
|
|
[32]
|
岳秀娟, 余利岩, 李秋萍, 魏玉珍, 关艳, 张月琴. 自然界中难分离培养微生物的分离和应用[J]. 微生物学通报, 2006, 33(3): 77-81.
|
|
[33]
|
Connon, S.A. and Giovannoni, S.J. (2002) High-Throughput Methods for Culturing Microorganisms in Very-Low- Nutrient Media Yield Diverse New Marine Isolates. Applied and Environmental Microbiology, 68, 3878-3885.
http://dx.doi.org/10.1128/AEM.68.8.3878-3885.2002 [Google Scholar] [CrossRef]
|
|
[34]
|
Rappé, M.S., Connon, S.A., Vergin, K.L. and Giovannoni, S.J. (2002) Cultivation of the Ubiquitous SAR11 Marine Bacterioplankton Clade. Nature, 418, 630-633. http://dx.doi.org/10.1038/nature00917 [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Nichols, D., Lewis, K., Orjala, J., Mo, S., Ortenberg, R., O’Connor, P., Zhao, C., Vouros, P., Kaeberlein, T. and Epstein, S.S. (2008) Short Peptide Induces an “Uncultivable” Microorganism to Grow in Vitro. Applied and Environmental Microbiology, 74, 4889-4897. http://dx.doi.org/10.1128/AEM.00393-08 [Google Scholar] [CrossRef]
|
|
[36]
|
Burmølle, M., Johnsen, K., Al-Soud, W.A., Hansen, L.H. and Sørensen, S.J. (2009) The Presence of Embedded Bacterial Pure Cultures in Agar Plates Stimulate the Culturability of Soil Bacteria. Journal of Microbiological Methods, 79, 166-173. http://dx.doi.org/10.1016/j.mimet.2009.08.006 [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Song, J., Oh, H.M. and Cho, J.C. (2009) Improved Culturability of SAR11 Strains in Dilution-to-Extinction Culturing from the East Sea, West Pacific Ocean. FEMS Microbiology Letters, 295, 141-147.
http://dx.doi.org/10.1111/j.1574-6968.2009.01623.x [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Hugenholtz, P. (2002) Exploring Prokaryotic Diversity in the Genomic Era. Genome Biology, 3, reviews0003.
|
|
[39]
|
Männistö, M.K. and Puhakka, J.A. (2002) Psychrotolerant and Microaerophilic Bacteria in Boreal Groundwater. FEMS Microbiology Ecology, 41, 9-16. http://dx.doi.org/10.1016/S0168-6496(02)00262-3 [Google Scholar] [CrossRef]
|
|
[40]
|
Kaakoush, N.O., Miller, W.G., Reuse, H.D. and Mendz, G.L. (2007) Oxygen Requirement and Tolerance of Campylobacter jejuni. Research in Microbiology, 158, 644-650. http://dx.doi.org/10.1016/j.resmic.2007.07.009 [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Hirvelä-Koski, V. (2008) The Fish Pathogen Renibacterium salmoninarum: Growth in a Microaerophilic Atmosphere. Veterinary Microbiology, 127, 191-195. http://dx.doi.org/10.1016/j.vetmic.2007.08.011 [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Anders, O., Cockrell, D.C., Dale, H., Fischer, E.R., Virtaneva, K., Sturdevant, D.E., Porcella, S.F. and Heinzen, R.A. (2009) Host Cell-Free Growth of the Q Fever Bacterium Coxiella burnetii. Proceedings of the National Academy of Sciences of the United States of America, 106, 4430-4434. http://dx.doi.org/10.1073/pnas.0812074106 [Google Scholar] [CrossRef] [PubMed]
|